Article in press - uncorrected proof Biol. Chem., Vol. 391, pp. 357–374, April 2010 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BC.2010.037 Review Natural and engineered kallikrein inhibitors: an emerging pharmacopoeia Joakim E. Swedberg, Simon J. de Veer and ulated activation cascades, suggesting an involvement in a Jonathan M. Harris* diverse range of physiological processes (Pampalakis and Sotiropoulou, 2007). Both liver-derived KLKB1 and tissue- Institute of Health and Biomedical Innovation, Queensland derived KLK1, as well as KLK2 and KLK12 in vitro (Giusti University of Technology, Brisbane, Queensland 4059, et al., 2005), participate in the progressive activation of Australia bradykinin, a bioactive peptide involved in blood pressure * Corresponding author homeostasis and inflammation initiation (Bhoola et al., e-mail:
[email protected] 1992). Although this is the only demonstration of classical kininogenic activity that was the original hallmark of kallik- Abstract rein proteases, the contribution of subsets of KLKs to vital physiological processes is well appreciated. Prostate- The kallikreins and kallikrein-related peptidases are serine expressed KLK2, 3, 4, 5 and 14 are involved in seminogelin proteases that control a plethora of developmental and home- hydrolysis (Lilja, 1985; Deperthes et al., 1996; Takayama et ostatic phenomena, ranging from semen liquefaction to skin al., 2001b; Michael et al., 2006; Emami and Diamandis, desquamation and blood pressure. The diversity of roles 2008), KLK6 and 8 have reported functions in defining neu- played by kallikreins has stimulated considerable interest in ral plasticity (Shimizu et al., 1998; Scarisbrick et al., 2002; these enzymes from the perspective of diagnostics and drug Tamura et al., 2006; Ishikawa et al., 2008) and KLK5, 7, 8 design.