First Record of the Invasive Woolly Whitefly Aleurothrixus Floccosus (Maskell) from India

Total Page:16

File Type:pdf, Size:1020Kb

First Record of the Invasive Woolly Whitefly Aleurothrixus Floccosus (Maskell) from India D:\ 81(4) 19142--Selvaraj Indian Journal of Entomology, 81(4): 000-000 (2019) DoI No.: FIRST RECORD OF THE INVASIVE WOOLLY WHITEFLY ALEUROTHRIXUS FLOCCOSUS (MASKELL) FROM INDIA SUNDARARAJ, R*, SELVARAJ, K**, KALLESHWARASWAMY, C M***, RANJITH, M***, SUMALATHA, B V** *Forest Protection Division, ICFRE-Institute of Wood Science and Technology, Bengaluru 560003 **Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insects Resources, Bengaluru 560024 ***Department of Agricultural Entomology, College of Agriculture, University of Agricultural and Horticultural Sciences, Shivamogga 577204 *Email: [email protected] (corresponding author) ABSTRACT Occurrence of the highly polyphagous woolly whitefly, Aleurothrixus floccosus (Maskell) (Hemiptera: Aleyrodidae) on guava (Psidium guajava L.) was recorded as invasive in India. The whitefly is believed to be neotropical origin but is now found throughout the warmer parts of the world. The identification of A. floccosus was done through taxonomic morphological characters of puparium and reconfirmed by DNA barcoding of adult whitefly using partial (658 bp) mitochondrial cytochrome oxidase 1 (CO1) gene. This is the first report of the breeding of A. floccosus on guava in India. Identification details, diagnosis, symptoms of damage and impact of its infestation on guava and citrus are discussed. Key words: Aleurothrixus floccosus, first record, invasive, guava,citrus, taxonomy, diagnsotics, symptoms of damage, life stages, mtCo1, natural enemies, Whiteflies (Hemiptera: Aleyrodidae) are distributed oriental, Neotropical and Nearctic Regions, Montenegro, throughout the major zoogeographical regions of the Croatia (Martin et al., 2000; Radonjic and Hrncic, 2003; world, with their greatest diversity in tropical and Simala and Milek, 2008). It is broadly polyphagous, south temperate regions. The trade of exotic plants is feeding on more than 20 plant families and exhibits a responsible for many accidental introductions of insects strong preference for citrus species (Malumphy et al., from their native area (Simala et al., 2015). Most alien 2015). In India it is found breeding on guava, Psidium species of whiteflies were accidentally introduced along guajava L. (Myrtaceae) for the first time at Kerala. with their host plant through plant trade, small in size, Martin et al. (2000) indicated its presence in India, but cryptic nature and immature stages being attached to the it may not be authentic as there was no information on host-plant and due to these characteristics, they are one its host plant in India. of the most commonly transported arthropod groups. They are also among the most successful groups in Recently there is a surge in the invasion of exotic terms of invading new geographical areas. Moreover, whiteflies to India particularly through south India. The changes in climate and global warming could influence record of A. floccosus in Kerala confirms the fact that it new introductions and distribution of exotic whitefly is a species which has been slowly extending its range species and increase the chances of their survival in for many years, and has been the cause of economic new environment (Simala et al., 2015). problems in several parts of the world (Martin, 1999). PreviewThe occurrence of this whitefly on guava, P. guajava Aleurothrixus floccosus (Maskell) was first described was confirmed for the first time in India. from Jamaica in 1896 (Martin and Mound, 2007) and was noticed in Florida in 1909. This whitefly is native MATERIALS AND METHODS to the Neotropical region but is now found throughout Whitefly specimens were collected from infested the warmer parts of the world, wherever citrus is grown guava plants by Ranjith, M from several places in (Malumphy et al., 2015). It was reported from Europe and Kozhikode (11.58oN; 75.78o E) and Malappuram Mediterranean countries, Palaearctic, Ethiopian, Austro- (11.11o N; 76.17o E) districts in Kerala. Whitefly adult 2 Indian Journal of Entomology, 81(4), 2019 individuals were used for DNA based identification following standard protocols. The amplified products and adult emerged puparium processed for permanent were sequenced by M/s Chromous Biotech Pvt Ltd, mounting as per Dubey and David (2012) and Bengaluru and the same were uploaded to GenBank identification is confirmed based on the puparial after annotation. taxonomic characteristics specific to the species. The confirmed mounted slides were deposited in the RESULTS AND DISCUSSION collection of ICAR- NBAIR, Bengaluru. Heavily Taxonomy infested leaves were kept in separate containers to observe and study the emergence of parasitoids. The slide mounts were obtained from the puparia Population and intensity of damage of whitefly on five from which adults had emerged and the identity randomly selected guava tree at three strata (basal, was confirmed as Aleurothrixus floccosus (Maskell) medium, lower leaves) was assessed. (Hemiptera: Aleyrodidae). Pale white to brown puparia covered with flocculent wax; puparial margin not Samples of whitefly from which individuals had deflexed, overall concentric, regularly toothed, each been identified by senior author were used in barcode tooth with a basal gland, without any modifications at development. Genomic DNA was extracted from thoracic and tracheal pore regions; submargin wide individual whiteflies using the GIAGEN DNeasy® separated from dorsal disc by submarginal/ subdorsal kit, Germany following the manufacturer’s protocols. fold, which arranged in distinct sections and complete; The DNA barcode region was amplified from whitefly cephalic and first abdominal setae absent, submedian species using 10 µl of universal DNA primers LCO1490 metathoracic setae present, eight abdominal and caudal (5’-GGTCAACAAATCATAAAGATATTGG-3’) setae long extending beyond puparial margin; inner and HCO 2198 (5’-TAAACTTCAGGGTGACC submargin with a row of five pairs of minute setae in AAAAAATCA-3’) for the amplification of mitochondrial cephalothorax and anterior abdomen; submedian ridge cytochrome c oxidase subunit I (Folmer et al., 1994). prominent; vasiform orifice elevated, transversely The extracts were subjected to PCR amplification of elliptical, operculum similarly shaped, almost filling the a 658bp region near the 5’ terminus of the COI gene orifice and obscuring the lingula (Martin, 1987) (Fig. 1). Preview Fig. 1. Aleurothriocus floccosus: a. Dorsal view of mounted puparium, b. Margin, c. Posterior region showing elongated caudal and 8th abdominal setae, d. Submargin with submarginal seta First record of the invasive woolly whiteflyAleurothrixus floccosus (Maskell) from india 3 Sundararaj, R et. al. This species is quite distinct from A. trichoides, the approximately 1.5 mm in length, with a yellow-white other already invaded known species of Aleurothrixus in body and wings that are covered with a white waxy India by the submargin without band of microtubercles; powder (Fig.3 b-d) and they prefer to feed and oviposit submarginal/ subdorsal fold almost concentric with on the undersides of young leaves that sprout when the margin, arranged in distinct sections and complete host trees are actively growing. between vasiform orifice and puparial margin; comparatively longer 8th abdominal and caudal setae, Natural enemies 8th abdominal setae reaching beyond puparial margin; No natural parasitism either of the indigenous inner submargin with a row of five pairs of tiny setae parasitoid or its potential parasitoid such as Cales noacki in cephalothorax and anterior abdomen and lingula tip (Hymenoptera: Aphelinidae) was observed, though to not bilobed. The determined slides are deposited in the the extent of 82% and 88% parasitism in Greece and collection of ICAR-NBAIR (Acc. No NBAII/HEM- Turkey, respectively were reported (Katsoyannos et ALEU/8-12/2019). al., 1998; Telli and Yiğit, 2012). Few predators such as Acletoxenus sp. (Diptera: Drosophilidae and Scymnus The nucleotide sequence obtained with 637 bp (Pullus) nr. utilis Hoang (Coleoptera: Coccinellidae) size from M/s Chromous Biotech Pvt Ltd, Bengaluru were found associated with A. floccosus colony under were edited and then subjected for BLAST with NCBI field conditions. Yu et al. (2011) recorded predaceous nucleotide sequence data library. The sequence was drosophilid Acletoxenus indicus Malloch preying on submitted to GenBank (acc. no MN027508) and larvae of A. dispersus and Aleurocanthus sp. in South further BLAST analysis revealed that our sequence China. was matched 98% nucleotide identity with available sequence (KF059956) of A. floccosus at NCBI Impact on guava and citrus submitted by Ovalle et al (2013) from Colombia and A. floccosus may become invasive pest and cause whiteflies collected inCitrus sinensis and thus, confirm economic loss for horticulture farmers not only on the identity of the species. P. guajava but also on Citrus spp. as it is a serious Symptoms and severity of damage pest on Citrus in many countries. In India, guava and citrus are two economically important fruit crops with Nymphs and adults suck phloem sap from host rich source of vitamin C and widely cultivated. In plants and indirectly damage by copious execration of guava, about 80 species of insects have been recorded honey dew which attract and support for development to affecting yield and quality of fruits which include of the sooty mould on infested plants and blackening three invasive whiteflies viz., A. dispersus, P. bondari of entire leaves (Fig. 2a). Under severe infestation, the and A.
Recommended publications
  • New Data on the Whiteflies (Insecta: Hemiptera: Aleyrodidae) of Montenegro, Including Three Species New for the Country
    Acta entomologica serbica, 2015, 20: 29-41 UDC 595.754(497.16)"2012" DOI: 10.5281/zenodo.44654 NEW DATA ON THE WHITEFLIES (INSECTA: HEMIPTERA: ALEYRODIDAE) OF MONTENEGRO, INCLUDING THREE SPECIES NEW FOR THE COUNTRY CHRIS MALUMPHY1, SANJA RADONJIĆ2, SNJEŽANA HRNČIĆ2 and M ILORAD RAIČEVIĆ2 1 The Food and Environment Research Agency, Sand Hutton, YO41 1LZ, United Kingdom E-mail: [email protected] 2 Biotechnical Faculty of the University of Montenegro, Podgorica, Montenegro Abstract Collection data on nine species of whitefly collected in the coastal and central regions of Montenegro during October 2012 are presented. Three species are recorded from Montenegro for the first time: Aleuroclava aucubae (Kuwana), Aleurotuba jelinekii (Frauenfeld) and Bemisia afer (Priesner & Hosny) complex. Two of the species, A. aucubae and B. afer complex were found in Tološi, on Citrus sp. and Laurus nobilis, respectively. Aleurotuba jelinekii was found in Podgorica on Viburnum tinus. KEY WORDS: Whiteflies, Aleyrodidae, Montenegro Introduction Whiteflies comprise a single family, Aleyrodidae, which currently contains 1556 extant species in 161 genera (Martin & Mound, 2007). Fifty-six species occur outdoors in Europe and the Mediterranean basin (Martin et al., 2000). All whiteflies are phytophagous and have three developmental stages: egg, larval (with four larval instars) and adult. Many species are economically important plant pests of outdoor crops, ornamentals and indoor plantings. Feeding by immature whiteflies reduces plant vigor by depletion of plant sap, and foliage becomes contaminated with eliminated honeydew on which black sooty mold grows, thereby reducing the photosynthetic area and lowering the aesthetic appearance of ornamentals. Adults of a small number of species, most notably Bemisia tabaci (Gennadius), are important vectors of plant viruses (Jones, 2003).
    [Show full text]
  • EPPO Reporting Service, 1996, No. 2
    EPPO Reporting Service Paris, 1996-01-02 Reporting Service 1996, No. 02 CONTENTS 96/021 - EPPO Electronic Documentation Service 96/022 - Situation of Burkholderia (Pseudomonas) solanacearum in France and Portugal 96/023 - Fireblight foci in Puy-de-Dôme (FR) 96/024 - Toxoptera citricida found in Florida (US) 96/025 - Hyphantria cunea found in Tessin (CH) 96/026 - Bactrocera dorsalis trapped in California and Florida (US) 96/027 - Anastrepha ludens trapped in California (US) 96/028 - Further spread of Maconellicoccus hirsutus in the Caribbean 96/029 - Tilletia controversa is not present in Germany 96/030 - Present situation of citrus tristeza closterovirus in Spain 96/031 - Citrus whiteflies in Spain 96/032 - Proposed names for citrus greening bacterium and lime witches' broom phytoplasma 96/033 - Report of phytoplasma infection in European plums in Italy 96/034 - Susceptibility of potato cultivars to Synchytrium endobioticum 96/035 - Specific ELISA detection of the Andean strain of potato S carlavirus 96/036 - NAPPO quarantine lists for potato pests 96/037 - Studies on the possible use of sulfuryl fluoride fumigation against Ceratocystis fagacearum 96/038 - Treatments of orchid blossoms against Thrips palmi and Frankliniella occidentalis 96/039 - Soil solarization to control Clavibacter michiganensis subsp. michiganensis 96/040 - Metcalfa pruinosa: a new pest in Europe 96/041 - Phytophthora disease of common alder 96/042 - Potential spread of Artioposthia triangulata (New Zealand flatworm) and Australoplana sanguinea var. alba to continental Europe EPPO Reporting Service 96/021 EPPO Electronic Documentation Service EPPO Electronic Documentation is a new service developed by EPPO to make documents available in electronic form to EPPO correspondents.
    [Show full text]
  • (Hemiptera: Aleyrodidae), a New Invasive Citrus Pest in Ethiopia Difabachew K
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 8-2011 Ecology and Management of the Woolly Whitefly (Hemiptera: Aleyrodidae), a New Invasive Citrus Pest in Ethiopia Difabachew K. Belay University of Nebraska-Lincoln, [email protected] Abebe Zewdu Ethiopian Institute of Agricultural Research John E. Foster University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Agriculture Commons, and the Entomology Commons Belay, Difabachew K.; Zewdu, Abebe; and Foster, John E., "Ecology and Management of the Woolly Whitefly H( emiptera: Aleyrodidae), a New Invasive Citrus Pest in Ethiopia" (2011). Faculty Publications: Department of Entomology. 636. http://digitalcommons.unl.edu/entomologyfacpub/636 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Belay, Zewdu, & Foster in J. Econ. Entomol. 104 (2011) 1 Published in Journal of Economic Entomology 104:4 (2011), pp 1329–1338. digitalcommons.unl.edu doi 10.1603/EC11017 Copyright © 2011 Entomological Society of America. Used by permission. Submitted 18 January 2011; accepted 7 June 2011. Ecology and Management of the Woolly Whitefly (Hemiptera: Aleyrodidae), a New Invasive Citrus Pest in Ethiopia Difabachew K. Belay,1,2 Abebe Zewdu,1 & John E. Foster2 1 Ethiopian Institute of Agricultural Research, Melkassa Research Center, P.O. Box 436, Nazareth, Ethiopia 2 University of Nebraska–Lincoln, 202 Entomology Hall, Lincoln, NE 68583-0816 Corresponding author — D.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 11 PARIS, 2016-11 General 2016/202 New EU plant health regime 2016/203 Details on quarantine pests in Spain: 2015 situation 2016/204 New BBCH growth stage keys Pests 2016/205 Update on the situation of Anoplophora chinensis in Turkey and confirmed absence of A. glabripennis 2016/206 First reports of Drosophila suzukii in Bosnia and Herzegovina, Romania, Serbia and Turkey 2016/207 Zaprionus indianus and Z. tuberculatus: addition to the EPPO Alert List 2016/208 First report of Vespa velutina in the United Kingdom 2016/209 First report of Aleurothrixus (=Aleurotrachelus) trachoides in India 2016/210 First reports of Phytoliriomyza jacarandae in Greece, Portugal and Spain 2016/211 First report of Meloidogyne graminicola in Italy 2016/212 Previous finding of Meloidogyne ethiopica in Slovenia is now attributed to Meloidogyne luci Diseases 2016/213 First report of Xylella fastidiosa in Spain 2016/214 First report of Gnomoniopsis smithogilvyi in the United Kingdom 2016/215 Phytophthora pluvialis is causing a new disease on Pinus radiata in New Zealand 2016/216 First report of Chrysanthemum stem necrosis virus in the Republic of Korea 2016/217 Potato spindle tuber viroid detected in volunteer and wild plants in Western Australia (AU) 2016/218 Studies on seed transmission of four pospiviroids in horticultural plants Invasive plants 2016/219 Biological control of Impatiens glandulifera 2016/220 A prioritization process for invasive alien plants incorporating the requirements of the EU Regulation no. 1143/2014 2016/221 Assessment of the risks to Norwegian biodiversity from aquarium and garden pond plants 2016/222 Honolulu challenge – action on invasive alien species 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 E-mail: [email protected] 75011 Paris Fax: 33 1 70 76 65 47 Web: www.eppo.int EPPO Reporting Service 2016 no.
    [Show full text]
  • Reliable Molecular Identification of Nine Tropical Whitefly Species
    Reliable molecular identification of nine tropical whitefly species Tatiana M. Ovalle1, Soroush Parsa1,2, Maria P. Hernandez 1 & Luis A. Becerra Lopez-Lavalle1,2 1Centro Internacional de Agricultura Tropical (CIAT), Km 17, Recta Cali-Palmira, Cali, Colombia 2CGIAR Research Program for Root Tubers and Bananas, Lima, Peru Keywords Abstract COI, RFLP-PCR, Tropical whiteflies, Molecular identification. The identification of whitefly species in adult stage is problematic. Morphologi- cal differentiation of pupae is one of the better methods for determining identity Correspondence of species, but it may vary depending on the host plant on which they develop Luis A. Becerra Lopez-Lavalle, Centro which can lead to misidentifications and erroneous naming of new species. Poly- Internacional de Agricultura Tropical (CIAT) merase chain reaction (PCR) fragment amplified from the mitochondrial cyto- Km 17, Recta Cali-Palmira, Cali, Colombia. chrome oxidase I (COI) gene is often used for mitochondrial haplotype Tel: +57 2445 0000; Fax: +57 2445 0073; E-mail: [email protected] identification that can be associated with specific species. Our objective was to compare morphometric traits against DNA barcode sequences to develop and Funding Information implement a diagnostic molecular kit based on a RFLP-PCR method using the This should state that the CGIAR Reseach COI gene for the rapid identification of whiteflies. This study will allow for the Program for Root Tubers and Bananas rapid diagnosis of the diverse community of whiteflies attacking plants of eco- provided the resources to do this work. nomic interest in Colombia. It also provides access to the COI sequence that can be used to develop predator conservation techniques by establishing which Received: 4 April 2014; Revised: 20 June predators have a trophic linkage with the focal whitefly pest species.
    [Show full text]
  • 1.6 Parasitoids of Giant Whitefly
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Life Histories and Host Interaction Dynamics of Parasitoids Used for Biological Control of Giant Whitefly (Aleurodicus dugesii) Cockerell (Hemiptera: Aleyrodidae) Permalink https://escholarship.org/uc/item/8020w7rd Author Schoeller, Erich Nicholas Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Life Histories and Host Interaction Dynamics of Parasitoids Used for Biological Control of Giant Whitefly (Aleurodicus dugesii) Cockerell (Hemiptera: Aleyrodidae) A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Entomology by Erich Nicholas Schoeller March 2018 Dissertation Committee: Dr. Richard Redak, Chairperson Dr. Timothy Paine. Dr. Matthew Daugherty Copyright by Erich Nicholas Schoeller 2018 The Dissertation of Erich Nicholas Schoeller is approved: Committee Chairperson University of California, Riverside Acknowledgements This dissertation was made possible with the kind support and help of many individuals. I would like to thank my advisors Drs. Richard Redak, Timothy Paine, and Matthew Daugherty for their wisdom and guidance. Their insightful comments and questions helped me become a better scientist and facilitated the development of quality research. I would particularly like to thank Dr. Redak for his endless patience and unwavering support throughout my degree. I wish to also thank Tom Prentice and Rebeccah Waterworth for their support and companionship. Their presence in the Redak Lab made my time there much more enjoyable. I would like to thank all of the property owners who kindly allowed me to work on their lands over the years, as well as the many undergraduate interns who helped me collect and analyze data from the experiments in this dissertation.
    [Show full text]
  • Voltinism of Aleurothrixus Floccosus Maskel (Hemiptera: Aleyrodidae) in an Oasis Agroecosystem in the Atacama Desert, Tarapacá Region, Chile
    Páginas 000-000 B. SCIENTIFIC NOTES / NOTAS CIENTÍFICAS IDESIA (Chile) 2018 Voltinism of Aleurothrixus floccosus Maskel (Hemiptera: Aleyrodidae) in an oasis agroecosystem in the Atacama Desert, Tarapacá Region, Chile Voltinismo de Aleurothrixus floccosus Maskel (Hemiptera: Aleyrodidae) en un agroecosistema de oasis en el Desierto de Atacama, Región de Tarapacá, Chile Víctor Tello¹*, Osman Peralta¹, Tommy Rioja¹ ABSTRACT The number of generations of woolly whitefly [Aleurpthrixus floccosus (Maskell)] was determined on sweet orange orchards [Citrus sinensis (L.) Osbeck] in the Pica Oasis, Tarapacá Region, Chile. The essays lasted one year, from April 2010 to April 2011. Woolly whitefly presented 7 generations in the Pica Oasis, which overlap causing the constant presence of this pest in Pica. In the coldest months (autumn-winter) the cycle tends to be longer (65.5 days), while in the warmer months (spring-summer) the cycle lasts 45.5 days. In general, the cycle is completed at 52 days. Keywords: Generations, woolly whitefly, citrus, Pica. RESUMEN Se determinó el número de generaciones de la mosca blanca algodonosa de los cítricos [Aleurothrixus floccosus (Maskell)] en huertos de naranja dulce [Citrus sinensis (L.) Osbeck] en el Oasis de Pica, Región de Tarapacá, Chile. Los ensayos tuvieron una duración de un año, desde abril del 2010 hasta abril de 2011. La mosca blanca de los cítricos presentó 7 generaciones en el Oasis de Pica, cuyos estadios se superponen causando la presencia constante de esta plaga en Pica. En los meses más fríos (otoño-invierno) el ciclo tiende a ser más largo (65,5 días), mientras que en los meses más cálidos (primavera-verano) el ciclo dura 45,5 días.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • (Hymenoptera: Aphelinidae) Parasitic on Whiteflies (Homoptera: Aleyrodidae) in North America
    A Pictorial Guide to the species of Encarsia (Hymenoptera: Aphelinidae) parasitic on whiteflies (Homoptera: Aleyrodidae) in North America. Michael E. Schauff and Gregory A. Evans. (MES) Systematic Entomology Laboratory, PSI, USDA, c/o National Museum of Natural History, NHB 168, Washington, D.C. 20560. (GAE) Department of Nematology and Entomology, University of Florida, Gainesville, FL 32611 KEY To Enter the Pictorial Key click here Abstract.-- The 27 species of Encarsia (Hymenoptera: Aphelinidae) occuring in North America (including Mexico) and attacking whiteflies (Homoptera: Aleyrodidae) are treated. Each species is keyed and illustrated. A separate diagnosis, list of hosts, and summary of distribution are provided. Keywords: Biological Control, Aphelinidae, Aleyrodidae, Encarsia, parasite. 2 Various species of whiteflies (Aleyrodidae) are among the most serious of agricultural pests, causing millions of dollars of damage each year to various crops. In 1991, one species (Bemisia argentfolii Bellows and Perring) caused damage in excess of $500 million in the U.S. alone (Perring, et al., 1993). Among the most common and effective parasitoids of whiteflies are parasitic wasps in the genus Encarsia (Hymenoptera: Aphelinidae). These tiny wasps are primary parasites of whitefly species as well as species of scale insects (Coccoidea). Worldwide, over 170 Encarsia species have been described (Hayat, 1989). In spite of their abundance and usefulness, there are still very few well illustrated keys and diagnoses, and in North America, no recent identification aids exist. Because of their small size, identification of the various species is difficult under even the best of circumstances and requires the intervention of a specialist in aphelinid taxonomy. In this paper, we treat the 27 species of Encarsia known to occur in North America that are parasitic on whiteflies.
    [Show full text]
  • An Assessment of Population Fluctuations of Citrus Pest Woolly
    doi:10.14720/aas.2018.111.2.15 Original research article / izvirni znanstveni članek An assessment of population fluctuations of citrus pest woolly whitefly Aleurothrixus floccosus (Maskell, 1896) (Homoptera, Aleyrodidae) and its parasitoid Cales noacki Howard, 1907 (Hymenoptera, Aphelinidae): A case study from Northwestern Algeria Abdelhaq MAHMOUDI1, Leila ALLAL BENFEKIH1, Abdurrahman YIGIT2, Mattheus F. A. GOOSEN3 Received March 19, 2018; accepted June 19, 2018. Delo je prispelo 19. March 2018, sprejeto 19. junija 2018. ABSTRACT IZVLEČEK The aim of this study was to assess the effectiveness of the OVREDNOTENJE NIHANJA POPULACIJ parasitoid Cales noacki Howard, 1907 (Hymenoptera, ŠKODLJIVCA CITRUSOV, ŠČITKARJA Aleurothrixus Aphelinidae) in the biological control of the citrus pest woolly floccosus (Maskell, 1896), IN NJEGOVEGA whitefly, Aleurothrixus floccosus (Maskell,1896) in PARAZITOIDA Cales noacki Howard, 1907: VZORČNA Northwestern Algeria. In particular the pest and parasitoid ŠTUDIJA IZ SEVEROZAHODNE ALŽIRIJE population fluctuations under different environmental conditions were investigated. The study was conducted by Namen raziskave je bil oceniti učinkovitost parazitoida Cales examination and sampling of whitefly adult populations on noacki Howard, 1907 (Hymenoptera, Aphelinidae) pri biotičnem young shoots and catches as well as its parasitoid during a 12- zatiranju škodljivca citrusov, ščitkarja Aleurothrixus floccosus month period by counting the parasite and infested-live larvae. (Maskell, 1896), v severozohaodni Alžiriji. Še posebej je bilo Results showed remarkable variations in abundance indices preučevano nihanje populacij škodljivca in parazitoida v and infestation rates of larvae and adults that depended on the odvisnosti od različnih okoljskih razmer. V raziskavi so bile growth flush in foliage and meteorological conditions of the pregledane in vzorčene populacije odraslih osebkov ščitkarja na region.
    [Show full text]
  • Life Table Parameters of the Woolly Whitefly Aleurothrixus Floccosus
    Eur. J. Entomol. 111(2): 251–256, 2014 doi: 10.14411/eje.2014.020 ISSN 1210-5759 (print), 1802-8829 (online) Life table parameters of the woolly whiteflyAleurothrixus floccosus (Hemiptera: Aleyrodidae) and its parasitoid Cales noacki (Hymenoptera: Aphelinidae) VÍCTOR TEllo MErcaDo 1, ENZO SolIMano FErnánDEz 1 and JAN H. GIlIoMEE 2 1 Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Avenida Arturo Prat 2120, Casilla 121, Iquique, Chile; e-mail: [email protected]; [email protected] 2 Centre for Invasion Biology, Dept. of Botany & Zoology, University of Stellenbosch, 7602 South Africa; e-mail: [email protected] Key words. Hymenoptera, Aphelinidae, Cales noacki, parasitism, life table, biological control, woolly whitefly, population ecology Abstract. Biological parameters of the woolly whitefly Aleurothrixus floccosus (Hemiptera: Aleyrodidae) and its parasitoid Cales noacki (Hymenoptera: Aphelinidae) were determined at 25.0 ± 2.0°C, 50.0 ± 10.0% RH and a photoperiod of 14L : 10D on three differ- ent Citrus host plants. The percentage survival of A. floccosus ranged between 40.23 and 44.44%. The highest mortality was recorded in the first nymphal instar with mortalities ranging between 36.36 and 39.39%. on C. aurantifolia the total development time was 39.83 ± 0.68 days and the pre-oviposition, oviposition and post-oviposition periods 2.45, 10.68 and 1.68 days, respectively. Adult lon- gevity was 15.0 days and average fecundity 73.27 ± 9.07 eggs. For C. noacki the pre-oviposition period was 0.8 days, oviposition period 4.38 days and post-oviposition period < 1 day. Adult longevity of C.
    [Show full text]
  • Coastal Sage Scrub at University of California, Los Angeles
    BIOLOGICAL ASSESSMENT: COASTAL SAGE SCRUB AT UNIVERSITY OF CALIFORNIA, LOS ANGELES Prepared by: Geography 123: Bioresource Management UCLA Department of Geography, Winter 1996 Dr. Rudi Mattoni Robert Hill Alberto Angulo Karl Hillway Josh Burnam Amanda Post John Chalekian Kris Pun Jean Chen Julien Scholnick Nathan Cortez David Sway Eric Duvernay Alyssa Varvel Christine Farris Greg Wilson Danny Fry Crystal Yancey Edited by: Travis Longcore with Dr. Rudi Mattoni, Invertebrates Jesus Maldonado, Mammals Dr. Fritz Hertel, Birds Jan Scow, Plants December 1, 1997 TABLE OF CONTENTS CHAPTER 1: INTRODUCTION ..........................................................................................................................1 CHAPTER 2: PHYSICAL DESCRIPTION ........................................................................................................2 GEOLOGICAL FRAMEWORK.....................................................................................................................................2 LANDFORMS AND SOILS ..........................................................................................................................................2 The West Terrace ...............................................................................................................................................3 Soil Tests.............................................................................................................................................................4 SLOPE, EROSION, AND RUNOFF ..............................................................................................................................4
    [Show full text]