Malignant Thyroid-Type Papillary Neoplasm in Struma Ovarii: a Case Report

Total Page:16

File Type:pdf, Size:1020Kb

Malignant Thyroid-Type Papillary Neoplasm in Struma Ovarii: a Case Report Open Access Case Report DOI: 10.7759/cureus.6450 Malignant Thyroid-type Papillary Neoplasm in Struma Ovarii: A Case Report Syed Adeel Hassan 1 , Ali Akhtar 2 , Noor Ul Falah 3 , Fahad N. Sheikh 4 1. Internal Medicine, Dow University of Health Sciences, Karachi, PAK 2. Internal Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK 3. Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, PAK 4. Internal Medicine, Sahiwal Medical College, Sahiwal, PAK Corresponding author: Syed Adeel Hassan, [email protected] Abstract Papillary thyroid carcinoma (PTC) arising in a coexistent struma ovarii (SO) is a rare malignancy. It manifests with abdominal symptoms such as palpable mass, pain, distension, and possibly ascites. It is usually diagnosed postoperatively, and its histopathological diagnostic criteria remain identical to that of papillary carcinoma of the thyroid gland. Due to the relative rarity of the disease, definitive guidelines for its overall management are still undefined. We present a case of a 51-year old female with suspicion of a left ovarian tumor due to her presenting symptoms: raised serum CA-125 levels and abnormal abdominopelvic CT scan findings. She underwent complete surgical debulking of the mass (total abdominal hysterectomy (TAH), bilateral salpingo-oophorectomy (BSO), omentectomy, appendectomy, and pelvic lymphadenectomy). The mass was postoperatively diagnosed by histopathology as PTC in SO (stage IA). Furthermore, our patient did not receive any adjuvant treatment. The patient has been disease-free for 24 months post-surgery and is scheduled for regular biannual follow-ups. Categories: Internal Medicine, Pathology, Oncology Keywords: papillary thyroid carcinoma, struma ovarii, thyroid gland, ovarian tumor, surgical debulking, psammoma body, dystrophic calcification, orphan annie eye nuclei, ca-125, stained glass appearance Introduction Struma ovarii (SO) is defined as the presence of a single predominant type of mature thyroid tissue in a coexisting ovarian tumor. To date, only about 200 cases have been reported in the literature. It presents more frequently between the ages of 40 and 60 [1]. The majority of SO are benign and belong to the category of mature teratomas, which account for 2-5% of overall benign mature teratomas [2,3]. Rarely, a malignant type of tissue may arise in the background of SO, thereby transforming it into a thyroid-type carcinoma. In such malignant cases, the most common histological subtypes, in the order of decreasing prevalence, include papillary thyroid carcinoma (PTC), follicular thyroid carcinoma, and highly differentiated follicular carcinoma (HDFCO) [3]. Malignant struma ovarii (MSO) are usually asymptomatic. However, thyrotoxicosis is reported to be present in 5-8% of the affected patients [4]. Our case discussion pertains to the rare variant Received 11/25/2019 Review began 12/19/2019 of MSO harboring a focus of the classical or conventional type of PTC. Due to its rarity, sufficient data are Review ended 12/19/2019 not available regarding an approach to diagnosis, treatment, and prognosis. Therefore, our report discusses Published 12/23/2019 its clinicopathological features, diagnostic criteria, and management strategies. © Copyright 2019 Hassan et al. This is an open access article distributed under the terms of the Case Presentation Creative Commons Attribution License A 51-year-old female (gravida 6, para 6) presented to our walk-in clinic with a four-month history of CC-BY 3.0., which permits unrestricted progressive lower abdominal pain and distention in the lower left quadrant. She complained of indigestion use, distribution, and reproduction in any medium, provided the original author and and had had significant weight loss in the last two months. Her past medical history revealed she had been source are credited. operated for cholelithiasis 14 years ago. The patient's family history was insignificant for other comorbidities and cancer. Physical examination was consistent with a palpable abdominopelvic mass (8-10 weeks in size) on the lower left side. A CT scan of the abdomen and pelvis yielded a large left adnexal mass measuring approximately 8.1 x 6.7 cm (Figure 1). The architecture of the mass depicted compositions of both solid and cystic components (Figure 2). The uterus and the right adnexa showed no signs of disease involvement and therefore were deemed to be normal. However, small-to-moderate volume ascitic fluid with peritoneal stranding was noted. No pelvic invasion, lymphadenopathy, or secondary implants were identified. Digital chest X-ray and CT of the chest to rule out systemic spread showed clear lung fields and no pleural involvement. Our patient also tested positive for serum CA-125, whose levels were noted at 413 units/mL (normal range: 0-35 units/mL). The results of other diagnostic tests such as thyroid profile, serum LDH, alpha-fetoprotein, and beta-HCG were within normal limits. Therefore, based on imaging results and serum CA-125 levels, the initial diagnosis of the primary ovarian tumor was made. Subsequently, our patient underwent total abdominal hysterectomy (TAH) with bilateral salpingo-oophorectomy (BSO). Omentectomy, appendectomy, pelvic lymphadenectomy, and peritoneal biopsy were also performed. On gross examination of the surgically resected specimen, a multiloculated solid and cystic left ovarian mass was noted. Uterus, right ovary, and How to cite this article Hassan S, Akhtar A, Falah N, et al. (December 23, 2019) Malignant Thyroid-type Papillary Neoplasm in Struma Ovarii: A Case Report . Cureus 11(12): e6450. DOI 10.7759/cureus.6450 bilateral fallopian tubes showed no gross signs of disease involvement. Adhesions noted between the small bowel and urinary bladder wall were removed via adhesiolysis. The postoperative recovery was uneventful and satisfactory. FIGURE 1: Sagittal CT scan of the abdomen/pelvis Sagittal CT depicting a large left adnexal mass (red circle) 2019 Hassan et al. Cureus 11(12): e6450. DOI 10.7759/cureus.6450 2 of 8 FIGURE 2: Coronal CT scan of the abdomen/pelvis A left multiloculated adnexal mass (blue circle), with solid and cystic components, is appreciated. The differential signal intensity between locules imparts a stained glass appearance. Histopathological studies of the left ovarian mass revealed a focus of classical PTC measuring 2 cm in the background of a SO (Figures 3-5). The focus of carcinoma lacked features of surface involvement or capsular rupture. Right adnexa, left fallopian tube, endometrium, appendix, omentum, pelvic lymph nodes, and peritoneum showed no signs of malignant involvement. Therefore, the tumor was limited to one ovary with its capsule intact and showed no signs of involvement on the ovarian surface. As per the International Federation of Gynecology and Obstetrics (FIGO) system for ovarian cancer staging, our specimen was considered IA (pT1aN0M0). Immunohistochemistry was not pursued owing to the histological confirmation of the tumor. Due to a lack of metastasis and localization of the tumor in the left ovary, it was decided that the patient should not be given any form of adjuvant therapy. Postoperatively, the patient was surveilled for thyroid carcinoma with the help of thyroid panel tests and thyroid gland ultrasonography (done twice). The results of the surveillance were normal. FIGURE 3: Low-resolution image depicting a focus of PTC in a struma ovarii PTC: papillary thyroid carcinoma Multiple complex and branched papillae with central fibrovascular cores are seen, with presumably dystrophic calcification (psammoma body) in one papilla. The identification of psammoma bodies in a thyroid-type papillary neoplasm is highly supportive of malignancy. However, they are better visualized on a higher resolution 2019 Hassan et al. Cureus 11(12): e6450. DOI 10.7759/cureus.6450 3 of 8 FIGURE 4: High-resolution image depicting the papillary architecture of the tumor The papillary architecture of the tumor is evident with stromal tissue in the fibrovascular cores. Papillae are lined by cuboidal to low columnar neoplastic cells with characteristic ‘Orphan-Annie eye’ nuclei, having clear ground-glass chromatin (black arrow). Nuclear overcrowding is evident (green arrow). Some nuclei show coffee-bean appearance, with longitudinal grooves due to nuclear membrane infoldings (yellow arrow) FIGURE 5: Low-resolution image showing mature teratoma on the left side of the image adjacent to the focus of papillary thyroid carcinoma arising in a struma ovarii 2019 Hassan et al. Cureus 11(12): e6450. DOI 10.7759/cureus.6450 4 of 8 PTC: papillary thyroid carcinoma The major bulk of the PTC can be seen on the right side. The benign teratomatous tissue shows dense stroma with multiple, relatively well-circumscribed sebaceous glands (black arrows) and overlying stratified epithelium. Benign-looking thyroid follicular tissue with eosinophilic colloid and flattened epithelial lining can also be seen at the top right corner Our patient was scheduled for biannual follow-ups and is now disease-free two years post-resection. Postoperative serial measurements of thyroglobulin, anti-thyroglobulin antibody, serum CA-125 levels and contrast CT imaging of chest, abdomen, and pelvis have been conducted. CT has not shown any residual or recurrent disease so far. The patient is euthyroid with normal postoperative thyroglobulin and anti- thyroglobulin antibody levels. Serum CA-125 levels have shown an initial decreasing trend post-surgery. However, during the second follow-up visit, a raised serum CA-125 level was noted, which regressed to baseline during the subsequent follow-ups. The preoperative and postoperative progression patterns of serum CA-125 levels are noted below in Table 1. Patient’s stage Serum CA-125 level (U/mL) Preoperative 413 One month post-surgery 26.7 First follow-up 18.3 Second follow-up 38.3 Third follow-up 18 Fourth follow-up 14.7 TABLE 1: Postoperative follow-up of patient’s serum CA-125 levels CA 125: cancer antigen 125; normal serum CA 125: <35 U/mL Discussion Germ cell tumors of the ovary are known to arise from any form of pathogenic insult to the normal ovarian germ cell lineage.
Recommended publications
  • Ptvg-HP Vaccine Protocol
    Version 10/7/2015 Randomized Phase II Trial of a DNA Vaccine Encoding Prostatic Acid Phosphatase (pTVG-HP) versus GM-CSF Adjuvant in Patients with Non-Metastatic Prostate Cancer CO 08801 Investigational Agent: BB IND 12109 - pTVG-HP DNA encoding human prostatic acid phosphatase Study Sponsors: 56 patients – treated at UWCCC and UCSF Department of Defense Prostate Cancer Research Program federal grant 50 patients in biomarker cohort – treated at UWCCC, UCSF and JHU Madison Vaccines Inc. (MVI) corporate sponsor STUDY SITE INFORMATION Study Sites: University of Wisconsin Carbone Cancer Center (UWCCC) 1111 Highland Avenue Madison, WI 53705 University of California San Francisco (UCSF) Johns Hopkins School of Medicine (JHU) Study Principal Investigator: Douglas G. McNeel, M.D., Ph.D. UWCCC 7007 Wisconsin Institutes for Medical Research 1111 Highland Ave. Madison, WI 53705 Tel: (608) 263-4198 Fax: (608) 265-0614 [email protected] UWCCC Local Principal Investigator : Glenn Liu, MD UWCCC 7051 Wisconsin Institutes for Medical Research 1111 Highland Ave. Madison, WI 53705 Tel : (608) 265-8689 Fax : (608) 265-5146 [email protected] Medical Monitor: Mark Albertini, M.D. UWCCC 600 Highland Ave. K6/5 CSC Madison, WI 53792 Tel: (608) 265-8131 Fax: (608) 265-8133 [email protected] Other UWCCC Investigators: Joshua Lang, M.D. – Clinical Investigator Christos Kyriakopolous, M.D. – Clinical Investigator Robert Jeraj, Ph.D. – Medical Physics, Quantitative Total Bone Imaging Scott Perlman, M.D. – Nuclear Medicine UCSF Principal Investigator: Lawrence Fong, M.D. JHU Principal Investigator: Emmanuel Antonarakis, MD Study Coordinator: Mary Jane Staab, R.N. B.S.N. UWCCC 600 Highland Ave.
    [Show full text]
  • Tumor Markers
    Tumor Markers Alan H.B. Wu, Ph.D. Professor, Laboratory Medicine, UCSF Section Chief, Clinical Chemistry, Toxicology, Pharmacogenomics Laboratory, SFGH Learning objectives • Know the ideal characteristics of a tumor marker • Understand the role of tumor markers for diagnosis and management of patients with cancer. • Know the emerging technologies for tumor markers • Understand the role of tumor markers for therapeutic selection How do we diagnose cancer today? Physical Examination Blood tests CT scans Biopsy Human Prostate Cancer Normal Blood Smear Chronic Myeloid Leukemia Death rates for cancer vs. heart disease New cancer cases per year Cancer Site or Type New Cases Prostate 218,000 Lung 222,500 Breast 207,500 Colorectal 149,000 Urinary system 131,500 Skin 68,770 Pancreas 43,100 Ovarian 22,000 Myeloma 20,200 Thyroid 44,700 Germ Cell 9,000 Types of Tumor Markers • Hormones (hCG; calcitonin; gastrin; prolactin;) • Enzymes (acid phosphatase; alkaline phosphatase; PSA) • Cancer antigen proteins & glycoproteins (CA125; CA 15.3; CA19.9) • Metabolites (norepinephrine, epinephrine) • Normal proteins (thyroglobulin) • Oncofetal antigens (CEA, AFP) • Receptors (ER, PR, EGFR) • Genetic changes (mutations/translocations, etc.) Characteristics of an ideal tumor marker • Specificity for a single type of cancer • High sensitivity and specificity for cancerous growth • Correlation of marker level with tumor size • Homogeneous (i.e., minimal post-translational modifications) • Short half-life in circulation Roles for tumor markers • Determine risk (PSA)
    [Show full text]
  • LEUKOCYTE SURFACE ORIGIN of HUMAN At-ACID GLYCOPROTEIN (OROSOMUCOID)*
    LEUKOCYTE SURFACE ORIGIN OF HUMAN at-ACID GLYCOPROTEIN (OROSOMUCOID)* BY CARL G. GAHMBERG AND LEIF C. ANDERSSON (From the Department of Bacteriology and Immunology, and the Transplantation Laboratory, Department of Surgery IV, University of Helsinki, Helsinki 29, Finland) Human al-acid glycoprotein (orosomucoid) (o~I-AG)1 constitutes the main component of the seromucoid fraction of human plasma. It belongs to the acute phase proteins, which increase under conditions such as inflammation, pregnancy, and cancer (1, 2). al-AG has previously been found to be synthesized in liver (3), and after removal of terminal sialic acids, it is cleared from the circulation by binding to a receptor protein on liver cell plasma membranes (4). The structure of al-AG is well known. It is composed of a single polypeptide chain and contains 245% carbohydrate including a large amount of sialic acid. The carbohydrate is located in the first half of the peptide chain linked to asparagine residues (5, 6). The function of al-AG is unclear. However, Schmid et al. (5) and Ikenaka et al. (7) and reported that the amino acid sequence of the protein shows a significant homology with human IgG. This finding and the striking increase in inflammatory and lymphopro- liferative disorders made us consider the possibility that leukocytes could be directly involved in the synthesis and release of a~-AG. We report here the presence of a membrane form of al-AG, with an apparent tool wt of 52,000, on normal human lymphocytes, granulocytes, and monocytes. By the use of internal labeling with [3H]leucine in vitro, we demonstrate that the membrane protein is synthesized by lymphocytes.
    [Show full text]
  • Endocrinology Test List Endocrinology Test List
    For Endocrinologists Endocrinology Test List Endocrinology Test List Extensive Capabilities Managing patients with endocrine disorders is complex. Having access to the right test for the right patient is key. With a legacy of expertise in endocrine laboratory diagnostics, Quest Diagnostics offers an extensive menu of laboratory tests across the spectrum of endocrine disorders. This test list highlights the extensive menu of laboratory diagnostic tests we offer, including highly specialized tests and those performed using highly specific and sensitive mass spectrometry detection. It is conveniently organized by glandular function or common endocrine disorder, making it easy for you to identify the tests you need to care for the patients you treat. Comprehensive Care Quest Diagnostics Nichols Institute has been pioneering state-of-the-art endocrine testing for over four decades. Our commitment to innovative diagnostics and our dedication to quality and service means we deliver solutions that enable you to make informed clinical decisions for comprehensive patient management. We strive to remain at the forefront of innovation in endocrine testing so you can deliver the highest level of patient care. Abbreviations and Footnotes NDM, neonatal diabetes mellitus; MODY, maturity-onset diabetes of the young; CH, congenital hyperinsulinism; MSUD, maple syrup urine disease; IHH, idiopathic hypogonadotropic hypogonadism; BBS, Bardet-Biedl syndrome; OI, osteogenesis imperfecta; PKD, polycystic kidney disease; OPPG, osteoporosis-pseudoglioma syndrome; CPHD, combined pituitary hormone deficiency; GHD, growth hormone deficiency. The tests highlighted in green are performed using highly specific and sensitive mass spectrometry detection. Panels that include a test(s) performed using mass spectrometry are highlighted in yellow. For tests highlighted in blue, refer to the Athena Diagnostics website (athenadiagnostics.com/content/test-catalog) for test information.
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Thyroglobulin (Tg) Assays
    Thyroglobulin (Tg) Assays ABOUT DTC patients is limited. In the US, a Tg-RIA with a functional sensitivity (9, 10) The Laboratory Services Committee of the American Thyroid of 0.5 µg/L is available for clinical purposes. Although the functional Association® (ATA) conducted a survey of ATA® members to identify sensitivity of this assay is still suboptimal, it has been extensively used as areas of member interest for education in pathology and laboratory a “gold standard” in studies evaluating the effect of TgAb interference in (4, 11, 12, 13) medicine. In response to the results of the survey, the Lab Service Tg IMA. This assay is promoted as being more resistant to TgAb Committee developed a series of educational materials to share with the interferences due to the use of polyclonal antibodies that could recognize 9 ATA® membership. The topics below were ranked as high educational Tg epitopes even when bound to TgAb. However, interferences in Tg-RIA priorities amongst the membership. results have been reported. Early studies reported that TgAb caused an overestimation of Tg by RIA.14 Others have reported underestimation of MEASUREMENT OF SERUM THYROGLOBULIN Tg by RIA in the presence of TgAb.(15,16) Thyroglobulin (Tg) measurement is an integral part of the follow up IMMUNOMETRIC ASSAYS and management of patients with differentiated thyroid cancer (DTC). Tg-IMA are based on a two-site reaction that involves Tg capture by Although, measurement of Tg for initial evaluation of suspicious thyroid a solid-phase antibody followed by addition of a labeled antibody that nodules is not recommended, serum Tg measurements are used targets different epitopes on the captured Tg.
    [Show full text]
  • A Study on a Large Cohort of Renal Transplant Patients This Information Is Current As of September 24, 2021
    Generation of Catalytic Antibodies Is an Intrinsic Property of an Individual's Immune System: A Study on a Large Cohort of Renal Transplant Patients This information is current as of September 24, 2021. Ankit Mahendra, Ivan Peyron, Olivier Thaunat, Cécile Dollinger, Laurent Gilardin, Meenu Sharma, Bharath Wootla, Desirazu N. Rao, Séverine Padiolleau-Lefevre, Didier Boquet, Abhijit More, Navin Varadarajan, Srini V. Kaveri, Christophe Legendre and Sébastien Lacroix-Desmazes Downloaded from J Immunol 2016; 196:4075-4081; Prepublished online 11 April 2016; doi: 10.4049/jimmunol.1403005 http://www.jimmunol.org/content/196/10/4075 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2016/04/09/jimmunol.140300 Material 5.DCSupplemental References This article cites 20 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/196/10/4075.full#ref-list-1 by guest on September 24, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc.
    [Show full text]
  • Differential Serum Interferon-Β Levels in Autoimmune Thyroid Diseases
    Clinical research Differential serum interferon-β levels in autoimmune thyroid diseases Chao-Wen Cheng1,2,3, Kam-Tsun Tang4, Wen-Fang Fang5, Ting-I Lee6,7, Jiunn-Diann Lin7,8 1Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Corresponding author: Taipei 11031, Taiwan Jiunn-Diann Lin MD 2Traditional Herb Medicine Research Center, Taipei Medical University Hospital, Division of Endocrinology Taipei Medical University, Taipei 11031, Taiwan Department of Internal 3Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical Medicine University, Taipei 11696, Taiwan Shuang Ho Hospital 4Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Taipei Medical University Veterans General Hospital, Taipei 11217, Taiwan 291 Jhongzheng Rd. 5Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei Jhonghe District City 23561, Taiwan New Taipei City 23561, 6Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Taiwan Hospital, Taipei Medical University, Taipei 11696, Taiwan Phone: +886-2-22490088 7Division of Endocrinology and Metabolism, Department of Internal Medicine, School Fax: +886-2-22490088 of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan E-mail: 8Division of Endocrinology, Department of Internal Medicine, Shuang Ho Hospital, [email protected] Taipei Medical University, New Taipei City 23561, Taiwan Submitted: 18 December 2018 Accepted: 21 June 2019 Arch Med Sci DOI: https://doi.org/10.5114/aoms/110164 Copyright © 2021 Termedia & Banach Abstract Introduction: Interferon (IFN)-β is known as an environmental trigger for the occurrence of autoimmune thyroid disease (AITD). However, the association of another type-1 IFN, IFN-β, with AITD is unknown.
    [Show full text]
  • Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma
    G C A T T A C G G C A T genes Article Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma Dumitru A. Iacobas Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; [email protected]; Tel.: +1-936-261-9926 Received: 1 August 2020; Accepted: 1 September 2020; Published: 2 September 2020 Abstract: Publicly available (own) transcriptomic data have been analyzed to quantify the alteration in functional pathways in thyroid cancer, establish the gene hierarchy, identify potential gene targets and predict the effects of their manipulation. The expression data have been generated by profiling one case of papillary thyroid carcinoma (PTC) and genetically manipulated BCPAP (papillary) and 8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric paradigm that considers the transcriptome as a multi-dimensional mathematical object based on the three independent characteristics that can be derived for each gene from the expression data. We found remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene Master Regulator of the investigated PTC. The substantial increase in the expression synergism of SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue (NOR) suggests that SPINT2 experimental overexpression may force the PTC cells into apoptosis with a negligible effect on the NOR cells. The predictive value of the expression coordination for the expression regulation was validated with data from 8505C and BCPAP cell lines before and after lentiviral transfection with DDX19B.
    [Show full text]
  • Thyroglobulin Antibodies
    Laboratory Procedure Manual Analyte: Thyroglobulin Antibodies Matrix: Serum Method: Access 2 (Beckman Coulter) Method No: Revised: as performed by: University of Washington Medical Center Department of Laboratory Medicine Immunology Division Director: Mark Wener M.D. Supervisor: Kathleen Hutchinson M.S., M.T. (ASCP) Authors: Michael Walsh, MT (ASCP), September 2006 contact: Dr Mark Wener, M.D. Important Information for Users University of Washington periodically refines these laboratory methods. It is the responsibility of the user to contact the person listed on the title page of each write-up before using the analytical method to find out whether any changes have been made and what revisions, if any, have been incorporated. Thyroglobulin Antibodies in Serum NHANES 2007-2008 Public Release Data Set Information This document details the Lab Protocol for testing the items listed in the following table: Variable File Name SAS Label Name THYROD_E LBXATG Thyroglobulin Antibodies (IU/mL) 1 Thyroglobulin Antibodies in Serum NHANES 2007-2008 1. SUMMARY OF TEST PRINCIPLE AND CLINICAL RELEVANCE The Access thyroglobulin antibody assay is a sequential two-step immunoenzymatic "sandwich" assay. A sample is added to a reaction vessel with paramagnetic particles coated with the thyroglobulin protein. After incubation, materials bound to the solid phase are held in a magnetic field while unbound materials are washed away. The thyroglobulin-alkaline phosphatase conjugate is added and binds to the TgAb. After a second incubation, the reaction vessel is washed to remove unbound materials. A chemiluminescent substrate, Lumi-Phos** 530 is added to the reaction vessel and light generated by the reaction is measured with a luminometer.
    [Show full text]
  • Glycoproteomic Markers of Hepatocellular Carcinoma-Mass Spectrometry Based Approaches 1
    Review Article Glycoproteomic Markers of Hepatocellular Carcinoma-Mass Spectrometry Based Approaches 1 Jianhui Zhu, Elisa Warner, Neehar D. Parikh and David M. Lubman Department of Surgery, The University of Michigan, Ann Arbor, MI 48109 Department of Internal Medicine, The University of Michigan, Ann Arbor, MI 48109 Corresponding Author: David M. Lubman Department of Surgery The University of Michigan Ann Arbor, MI 48109 Tel: 734-647-8834 FAX: 734-615-2088Author Manuscript 1 This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/mas.21583 This article is protected by copyright. All rights reserved. Email:[email protected] Table of Contents: I. Introduction II. Glycosylation a. Rationale for Glycosylation as a Marker of Cancer b. Different Types of Glycosylation III. Current Markers IV. Non-Mass Spectrometry Based Methods a. Immunoassays b. CE-Based Assays for the HCC Markers c. Lectin Fluorophore-Linked Immunoabsorbent Assays 1. Method 2. Lectin-FLISA targeting Fucosylation d. 2-D Gel Electrophoresis and Lectin Analysis V. Mass Spectrometry Based Assays a. Mass Spectrometry versus non-Mass Spectrometry Methods b. Methods for Enrichment c. MALDI-MS Profiling of Glycans 1. Method 2. Targeted MALDI Profiling for Hp and AGP 3. Global MALDIAuthor Screening to Profile Manuscript HCC Markers in Serum 4. MALDI-Imaging of Tissues in HCC d. Electrospray Profiling of Glycans 1. Method 2. Global Profiling of Glycans with LC-ESI-MS for Biomarkers of HCC 3.
    [Show full text]
  • Endocrine Test Selection and Interpretation
    The Quest Diagnostics Manual Endocrinology Test Selection and Interpretation Fourth Edition The Quest Diagnostics Manual Endocrinology Test Selection and Interpretation Fourth Edition Edited by: Delbert A. Fisher, MD Senior Science Officer Quest Diagnostics Nichols Institute Professor Emeritus, Pediatrics and Medicine UCLA School of Medicine Consulting Editors: Wael Salameh, MD, FACP Medical Director, Endocrinology/Metabolism Quest Diagnostics Nichols Institute San Juan Capistrano, CA Associate Clinical Professor of Medicine, David Geffen School of Medicine at UCLA Richard W. Furlanetto, MD, PhD Medical Director, Endocrinology/Metabolism Quest Diagnostics Nichols Institute Chantilly, VA ©2007 Quest Diagnostics Incorporated. All rights reserved. Fourth Edition Printed in the United States of America Quest, Quest Diagnostics, the associated logo, Nichols Institute, and all associated Quest Diagnostics marks are the trademarks of Quest Diagnostics. All third party marks − ®' and ™' − are the property of their respective owners. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, and information storage and retrieval system, without permission in writing from the publisher. Address inquiries to the Medical Information Department, Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92690-6130. Previous editions copyrighted in 1996, 1998, and 2004. Re-order # IG1984 Forward Quest Diagnostics Nichols Institute has been
    [Show full text]