UN Symposium on Hydropower and Sustainable Development Beijing, 27Th to 29Th October 2004
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of Tasmania's Energy Sector
Electricity Supply Industry Expert Panel The Evolution of Tasmania’s Energy Sector Discussion Paper April 2011 The Evolution of Tasmania’s Energy Sector Discussion Paper Electricity Industry Panel - Secretariat GPO Box 123 Hobart TAS 7001 Telephone: (03) 6232 7123 Email: [email protected] http://www.electricity.tas.gov.au April 2011 © Copyright State of Tasmania, 2011 Table of Contents Glossary ..................................................................................................................................................... 5 Foreword ................................................................................................................................................... 1 1. Highlights ........................................................................................................................................... 3 2. The Tasmanian Electricity Market - Agents of Change ............................................................. 7 3. A New Strategic Direction for Tasmania’s Energy Market – the 1997 Directions Statement ....................................................................................................................................... 12 4. Delivering the Reform Framework .............................................................................................. 14 4.1. Structural Reform of the Hydro-Electric Commission ....................................................... 14 4.2. The Development of Supply Options ................................................................................ -
Rapid Reserve Generation from a Francis Turbine for System Frequency Control
energies Article Rapid Reserve Generation from a Francis Turbine for System Frequency Control Dean R. Giosio 1,*, Alan D. Henderson 2, Jessica M. Walker 1 and Paul A. Brandner 1 1 Australian Maritime College, University of Tasmania, Launceston 7250, Tasmania, Australia; [email protected] (J.M.W.); [email protected] (P.A.B.) 2 School of Engineering & ICT, University of Tasmania, Hobart 7005, Tasmania, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-3-6324-9489 Academic Editor: K.T. Chau Received: 24 February 2017; Accepted: 31 March 2017; Published: 7 April 2017 Abstract: The increase in contributions from non base load renewables, such as wind and solar, can have adverse effects on the stability of an electrical grid. In this study, the possibility of rapidly loading a Francis turbine from a tail water depression (TWD) mode for providing additional system frequency control is investigated. Based on the analysis of full-scale TWD test results and key findings from the transient testing of a micro-hydro scale turbine unit, a detailed description of the TWD transition process is given. The formulation of an improved turbine model for use in one-dimensional hydro-electric plant models is presented with simulation results compared to full-scale data. The analytical model, which calculates output power according to the conservation of angular momentum and identified sources of loss, is used in parallel with full-scale and model scale test observations to elucidate the events and mechanisms occurring during this proposed transition. The output response, in terms of active power, was found to be highly dependent on guide vane opening rate in both full-scale and model tests. -
The Environmental Impact of Building Dams Aswan Dam the Aswan Dam, Built on the Nile River, Was an Enormous Feat of Engineering and Planning
The Environmental Impact of Building Dams Aswan Dam The Aswan dam, built on the Nile River, was an enormous feat of engineering and planning. Lake Nasser was created as a result of the ooding of the dam’s catchment area. Some important cultural heritage sites were taken apart, and rebuilt at Abu Simbel in order to avoid them being ooded by the project. Other sites were not saved and remain under the water. The Gordon Dam Gordon River in Tasmania, Australia. Built in 1974 The Gordon Dam was built for the purpose of providing hydroelectric supply. Water is fed down a 183 m drop to turn turbines that are located under the ground below the dam wall. A proposed second dam on the Gordon River, the Franklin Dam, was never built due to strong opposition from community and environmental groups. The Tasmanian Wilderness Society ran a campaign from 1976 -1983 to save the pristine wilderness from environmental damage. The leader of the Tasmanian Wilderness Society, Dr Bob Brown, later became a member of the Tasmanian Parliament, an Australian Senator and the Parliamentary Leader of the Australian Greens political party. Murray River The Murray River ows for over 2500 km across eastern Australia to its outlet on the coast in South Australia. It forms part of the border between New South Wales and Victoria. During the early to mid 1900s, a series of dams, locks and weirs were built on the river. These disrupted the natural ow of the river and allowed fresh water to be available for irrigation to Australia’s largest food growing region. -
Water Management in the Anthony–Pieman Hydropower Scheme
Water management in the Anthony–Pieman hydropower scheme Pieman Sustainability Review June 2015 FACT SHEET Background The Anthony–Pieman hydropower scheme provides a highly valued and reliable source of electricity. The total water storage of the hydropower scheme is 512 gigalitres and the average annual generation is 2367 gigawatt hours. Construction of the Anthony–Pieman hydropower scheme has resulted in creation of water storages (lakes) and alterations to the natural flow of existing rivers and streams. The Pieman Sustainability Review is a review of operational, social and environmental aspects of the Anthony–Pieman hydropower scheme that are influenced by Hydro Tasmania. This fact sheet elaborates on water management issues presented in the summary report, available at http://www.hydro.com.au/pieman-sustainability-review Water storage levels in the Anthony–Pieman Water levels have been monitored at these storages since hydropower scheme their creation in stages between 1981 and 1991. The Anthony–Pieman hydropower scheme includes eight Headwater storages: Lake Mackintosh and Lake water storages, classified as headwater storages (Lakes Murchison Mackintosh and Murchison), diversion storages (Lakes Lakes Mackintosh and Murchison are the main headwater Henty and Newton and White Spur Pond) and run-of-river storages for the Anthony–Pieman hydropower scheme. storages (Lakes Rosebery, Plimsoll and Pieman). Lakes The water level fluctuates over the entire operating range Murchison, Henty and Newton and White Spur Pond do not from Normal Minimum Operating Level (NMOL) to Full release water directly to a power station; rather they are Supply Level (FSL) (Figures 1, 2). used to transfer water to other storages within the scheme. -
Implications for Tasmanian Electricity System of The
Backroad Connections Pty Ltd ABN: 64 090 245 382 [email protected] (0407) 486-651 www.backroad.com.au Implications for the Tasmanian electricity system of the proposal to restore Lake Pedder July 2019 Overview The paper analyses the implication for the Tasmanian electricity system of the proposal by the Lake Pedder Restoration Committee (LPRC) to restore the original Lake Pedder. It provides information on the current contribution of the Gordon Scheme to Tasmanian electricity generation and energy storage and provides some information and estimates on alternatives to replace this generation if the original Lake Pedder was restored. Background The original Lake Pedder was flooded in 1972 as part of an expansion of the Tasmanian hydro-electric scheme. The flooded area created is still officially known as Lake Pedder although the LPRC prefer the name Huon- Serpentine Impoundment. In this paper we will use the term ‘new Lake Pedder’. The new Lake Pedder at 242 sq km is vastly bigger than the original Lake Pedder at 10 sq km. The new Lake Pedder does not have its own hydro-electric generation. Its purpose is to trap and raise the level of the water that would otherwise flow down the Huon and Serpentine rivers. The water is raised to the level where it flows through a channel created at McPartlan Pass into the Gordon Dam and contributes to the storage and generation of the Gordon Scheme. As a result the level of the new Lake Pedder does not vary more than a few metres. This makes it more visually attractive and more suitable for recreational use than the adjacent Gordon Reservoir. -
Technical Parameters of the Tasmanian Electricity Supply System
Electricity Supply Industry Expert Panel Technical Parameters of the Tasmanian Electricity Supply System Information Paper December 2011 Electricity Industry Panel - Secretariat GPO Box 123 Hobart TAS 7001 Telephone: (03) 6232 7123 Email: [email protected] http://www.electricity.tas.gov.au December 2011 © Copyright State of Tasmania, 2011 Contents 1. Objectives and Structure of this Paper ........................................................................................ 1 2. Principles of an Electricity Supply System ..................................................................................... 2 2.1. Introduction .............................................................................................................................. 2 2.2. Properties of Electricity ........................................................................................................... 3 2.3. Generation ............................................................................................................................... 4 2.4. Delivery Elements .................................................................................................................... 7 3. Technical Issues of Meeting Demand, System Reliability & System Security Requirements 9 3.1. Demand .................................................................................................................................... 9 3.2. Reliability ................................................................................................................................ -
2011 Annual Report
directors’ statement To the Honourable Bryan Green, MHA, Minister for Energy and Resources, in compliance with requirements of the Government Business Enterprises Act 1995. In accordance with Section 55 of the Government Business Enterprises Act 1995, we hereby submit for your information and presentation to Parliament the report of the Hydro-Electric Corporation for the year ended 30 June 2011. The report has been prepared in accordance with the provisions of the Government Business Enterprises Act 1995. David Crean Chairman Hydro-Electric Corporation October 2011 Roy Adair CEO Hydro-Electric Corporation October 2011 Hydro-Electric Corporation ARBN 072 377 158 ABN 48 072 377 158 contents page 1 Our vision: Introduction 3 About this report 5 Australia’s leading clean About Hydro Tasmania 8 energy business, inspiring Achievements and challenges 2010-2011 10 Progress against 2010 commitments 11 pride and building value for Chairman’s review 12 our owners, our customers CEO’s report 15 and our people Statement of corporate intent 18 Independent assurance statement 21 Annual Report 2011 Tasmania Hydro Performance 25 Sustainability 27 Our values: Economic performance 30 Momentum 36 • We put people’s health Entura 38 and safety first Roaring 40s 41 Assets and resource use 43 • We always behave with Governance 49 The Board 52 honesty and integrity Executives 55 • We work together, People 57 respect each other and Employees 59 External stakeholders 66 value our diversity Environment 73 • We strive to deliver Ecosystems and heritage 75 Financial -
Musselroe Wind Farm, Development Proposal and Environmental Management Plan
This document is a summary of the Development Proposal and Environmental Management Plan (DPEMP) for the proposed Musselroe Wind Farm. The DPEMP is produced in five volumes as shown above. The Project Summary is not part of the DPEMP but provides an 5 abridged version of its contents. The Project Summary includes a brief description of the proposed development, assesses the likely impacts of the Project on environmental and socio- economic factors, and summarises the commitments process made by Hydro Tasmania in relation to the management of potential environmental impacts. 05.02.0066 0 Foreword FFoorreewwoorrdd The project proposed is for the construction of a $270 million wind farm on private land near Little Musselroe Bay at Cape Portland in north-east Tasmania. As a renewable energy project the Musselroe Wind Farm (the Project) will contribute to the Commonwealth Government’s Mandated Renewable Energy Target (MRET). The MRET is based on the recognition that renewable energy is a global key to long-term reduction in greenhouse gas emissions. This Project will generate approximately 400,000 MWh of renewable electricity and displace an estimated 368,000 tonnes CO2-e per year. In addition, the Project will provide considerable revenue to the State of Tasmania, facilitate the generation of temporary and long-term employment opportunities, and create indirect flow-on benefits to a number of service industries in the region. Hydro Tasmania is seeking a planning permit from Dorset Council for the establishment of the wind farm and a corridor of land for the construction of a 110 kV transmission line to connect the wind farm to the Tasmanian electricity grid at the Derby Electricity Substation. -
A Year in Review 2019
A Year in Review 2019 PHILANTHROPY AT THE UNIVERSITY OF TASMANIA A memorial scholarship helps bring a pioneering new heart procedure to Tasmania – Dr Heath Adams, Dr Vasheya Naidoo and their son Arthur. CONTENTS STUDENTS SPEAK 04 HELP SAVE ICONIC SPECIES FROM THE HEART Endemic animals being brought back from the brink by philanthropy 06 BRAIN RESEARCH BOOST Multi-generational giving kickstarts Janine Chang Fung Martel cutting-edge study Recipient of the Cuthbertson Elite Research Scholarship 08 KIMBERLEY DIAMOND SHINES Ossa Prize the launching pad for Please accept my deepest gratitude for your kind contribution. I hope I can thank singer’s burgeoning career you for your support through the outcomes of my research and show you how, with your help, we are able to assist dairy farmers prepare for future climates and provide 10 MOUNTAINS OF HOPE them with tools to use in the challenging times ahead. A man forced to flee his homeland is given the chance to transform his life 12 STATE OF THE HEART Allison Dooley A memorial scholarship has enabled Recipient of the Whitehead Family West North-West Scholarship alumnus Dr Heath Adams to learn an innovative heart procedure I would like to pass on to you my continued appreciation and assurance of how 14 AN ENDURING LEGACY receiving your generous scholarship continues to make my university journey Betty’s bequest will help secure the less stressful for me and my son. Tasmanian devils’ survival 16 ENGINEERING ASPIRATIONS Scholarship springboards student to success Jarra Lewis 18 GIFT LEADS TO PERFECT SCORE Recipient of the Caterpillar Underground Mining Scholarship in Engineering Family of carers share in young scholar’s achievement It is an honour to be recognised through this scholarship and I did not expect to receive anything like it during my time at university. -
A Review of Geoconservation Values
Geoconservation Values of the TWWHA and Adjacent Areas 3.0 GEOCONSERVATION AND GEOHERITAGE VALUES OF THE TWWHA AND ADJACENT AREAS 3.1 Introduction This section provides an assessment of the geoconservation (geoheritage) values of the TWWHA, with particular emphasis on the identification of geoconservation values of World Heritage significance. This assessment is based on: • a review (Section 2.3.2) of the geoconservation values cited in the 1989 TWWHA nomination (DASETT 1989); • a review of relevant new scientific data that has become available since 1989 (Section 2.4); and: • the use of contemporary procedures for rigorous justification of geoconservation significance (see Section 2.2) in terms of the updated World Heritage Criteria (UNESCO 1999; see this report Section 2.3.3). In general, this review indicates that the major geoconservation World Heritage values of the TWWHA identified in 1989 are robust and remain valid. However, only a handful of individual sites or features in the TWWHA are considered to have World Heritage value in their own right, as physical features considered in isolation (eg, Exit Cave). In general it is the diversity, extent and inter-relationships between numerous features, sites, areas or processes that gives World Heritage significance to certain geoheritage “themes” in the TWWHA (eg, the "Ongoing Natural Geomorphic and Soil Process Systems" and “Late Cainozoic "Ice Ages" and Climate Change Record” themes). This "wholistic" principle under-pinned the 1989 TWWHA nomination (DASETT 1989, p. 27; see this report Section 2.3.2), and is strongly supported by the present review (see discussion and justification of this principle in Section 2.2). -
Aurora Energy Correspondence and Submission
<747B 2#7&?B !-23>.#"&#:B ;);B 7#.;*=#/?B )*&)#7B !<:;31#7B 57*!#B 3<;!31#:B 2"B ::3!*;#"B !<:;31#7B$$37" *.*;?B*::<#:B*: BB -#?B53/*!?B!32:*"#7;*32B$38B;)#B:12*2B ;;#B 3=#721#2;B )3<."B ;)#B3=#91#2;B :##-B;3B""7#::B ;)*:B53/+!?B*::<#B *;B*: B:<&&#:;#"B;);B;)*:B*: B #:;B12&#"B 3<;:*"#B3$B;)#B >)3/#:/#B17-#;B7#&<.;37?B57*!*2&B$71#>37-B<737B2#7&?B::#7;:B ;);B!)2&#:B ;3B ;)#B2:;7<1#2;B ;3B !)* #=#B 3=#721#2;B 3.*!?B3<;!31#:B;);B"3B23;B557357*;#/?B 7#!3&2*:#B;)#B *2;#7!;*32B #;>##2B;)#B :53;B2"B $37>7"B!32;7!;B17-#;:B >*//B $<2"1#2;/0?B !315731*:#B;)#B */*;?B 3$B 7#;*/#7:B ;3B 12&#B >)3.#:0#B #/#!;7*!*;?B 17-#;B 7*:-B >)*!)B >*..B 0*-#/?B 7#:<.;B *2B .#::B $=3<7 .#B3<;!31#:B$37B !<:;31#7:B <737B 2#7&?:B :< 1*::*32B ;3B ;)#B #=*#>B *:B ;;!)#"B ;3B ;)*:B /#;;#7B 573=,"*2&B B 137#B "#;*/#"B 7#:532:#B ;3B;)#B6<#:;*32:B 3<;.*2#"B*2B;)#B7#/#:#"B32:<.;;*32B5#7B $ B?3<B )=#B2?B6<#:;*32:B 37B 7#6<*7#B $<7;)#7B*2$371;*32B 32B ;)*:B1;;#7B 5/#:#B!32;!;B */#:B)*;#)3<:#B32B B B B37B '*.#: >)* ;#)3< :#<737#2#7(@!31 <B #!<;*=#B %$*!#7B A 2!. B Aurora Energy Submission to the Department of Treasury and Finance Review of the Tasmanian Wholesale Electricity Market Regulatory Pricing Framework Responses to Consultation Questions 1. -
Reimagining the Visitor Experience of Tasmania's Wilderness World
Reimagining the Visitor Experience of Tasmania’s Wilderness World Heritage Area Ecotourism Investment Profile Reimagining the Visitor Experience of Tasmania’s Wilderness World Heritage Area: Ecotourism Investment Profile This report was commissioned by Tourism Industry Council Tasmania and the Cradle Coast Authority, in partnership with the Tasmanian Government through Tourism Tasmania and the Tasmanian Parks and Wildlife Service. This report is co-funded by the Australian Government under the Tourism Industry Regional Development Fund Grants Programme. This report has been prepared by EC3 Global, TRC Tourism and Tourism Industry Council Tasmania. Date prepared: June 2014 Design by Halibut Creative Collective. Disclaimer The information and recommendations provided in this report are made on the basis of information available at the time of preparation. While all care has been taken to check and validate material presented in this report, independent research should be undertaken before any action or decision is taken on the basis of material contained in this report. This report does not seek to provide any assurance of project viability and EC3 Global, TRC Tourism and Tourism Industry Council Tasmania accept no liability for decisions made or the information provided in this report. Cover photo: Huon Pine Walk Corinna The Tarkine - Rob Burnett & Tourism Tasmania Contents Background...............................................................2 Reimagining the Visitor Experience of the TWWHA .................................................................5