S-Parameters... Circuit Analysis and Design

Total Page:16

File Type:pdf, Size:1020Kb

S-Parameters... Circuit Analysis and Design WHAT ARE "S" PARAMETERS? "S" parameters are measured so easily that obtaining accurate "S" parameters are reflection and transmission coefficients, phase information is no longer a problem. Measurements like elec- familiar concepts to RF and microwave designers. Transmission co- trical length or dielectric coefficient can be determined readily from efficients are commonly called gains or attenuations; reflection co- the phase of a transmission coefficient. Phase is the difference be- efficients are directly related to VSWR's and impedances. tween only knowing a VSWR and knowing the exact impedance. VSWR's have been useful in calculating mismatch uncertainty, but Conceptually they are like "h," "y," or "z" parameters because they describe the inputs and outputs of a black box. The inputs and when components are characterized with "s" parameters there is no outputs are in terms of power for "s" parameters, while they are mismatch uncertainty. The mismatch error can be precisely calcu- voltages and currents for "h," "y," and "z" parameters. Using the lated. convention that "a" is a signal into a port and "b" is a signal out of a port, the figure below will help to explain "s" parameters. Easy To Measure Two-port "s" parameters are easy to measure at high frequencies TEST DEVICE because the device under test is terminated in the characteristic impedance of the measuring system. The characteristic impedance i termination has the following advantages: s S2| s22 i i " S|2 1 1. The termination is accurate at high frequencies ... it is 02 possible to build an accurate characteristic impedance load. "Open" or "short" terminations are required to determine "h," "y," or "z" In this figure, "a" and "b" are the square roots of power; (a,)J is parameters, but lead inductance and capacitance make these termi- 2 nations unrealistic at high frequencies. the power incident at port 1, and (b2) is the power leaving port 2. The diagram shows the relationship between the "s" parameters 2. No tuning is required to terminate a device in the characteristic and the "a's" and "b's." For example, a signal a, is partially re- impedance . positioning an "open" or "short" at the terminals of flected at port 1 and the rest of the signal is transmitted through a test device requires precision tuning. A "short" is placed at the the device and out of port 2. The fraction of a, that is reflected at end of a transmission line, and the line length is precisely varied un- port 1 is Sn, and the fraction of a, that is transmitted is s, . Simi- ( til an "open" or "short" is reflected to the device terminals. On the larly, the fraction of a that is reflected at port 2 is $32, and the z other hand, if a characteristic impedance load is placed at the end fraction 5u is transmitted. of the line, the device will see the characteristic impedance regard- The signal bi leaving port 1 is the sum of the fraction of a, that was reflected at port 1 and the fraction of a? that was transmitted less of line length. from port 2. 3. Broadband swept frequency measurements are possible . Thus, the outputs can be related to the inputs by the equations: because the device will remain terminated in the characteristic im- bi = SM 3, -f Su 3i pedance as frequency changes. However, a carefully reflected "open" j = Si. a, -f s» a2 or "short" will move away from the device terminals as frequency When ai = 0, and when a, = 0, is changed, and will need to be "tuned-in" at each frequency. b, b, b, Sn — a, ', Su —' a, - ai 4. The termination enhances stability ... it provides a resistive The setup below shows how s and Su are measured. termination that stabilizes many negative resistance devices, which u might otherwise tend to oscillate. An advantage due to the inherent nature of "s" parameters is: 50il TRANSMISSION LINE 50iiTRANSMISSION LINE 5. Different devices can be measured with one setup . probes 0,-* ZSOURCE=50iii TEST -b, do not have to be located right at the test device. Requiring probes ESOfl DEVICE to be located at the test device imposes severe limitations on the RF SOURCE (?y) b,— — Q2=0 TERMINATION > i i setup's ability to adapt to different types of devices. Port 1 is driven and aj is made zero by terminating the 50 n Easy To Use transmission line coming out of port 2 in its characteristic 50 ^ Quicker, more accurate microwave design is possible with "s" impedance. This termination ensures that none of the transmitted parameters. When a Smith Chart is laid over a polar display of s,, signal, bj, will be reflected toward the test device. or s», the input or output impedance is read directly. If a swept- Similarly, the setup for measuring s,j and sn is: frequency source is used, the display becomes a graph of input or output impedance versus frequency. Likewise, CW or swept-frequency displays of gain or attenuation can be made. 50 a TRANSMISSION LINE 5011 TRANSMISSION LINE "S" parameter design techniques have been used for some time. son The Smith Chart and "s" parameters are used to optimize matching TERMINATION networks and to design transistor amplifiers. Amplifiers can be de- TERMINATION signed for maximum gain, or for a specific gain over a given fre- RF SOURCE quency range. Amplifier stability can be investigated, and oscillators can be designed. These techniques are explained in the literature listed at the If the usual "h," "y," or "z" parameters are desired, they can be bottom of this page. Free copies can be obtained from your local calculated readily from the "s" parameters. Electronic computers Hewlett-Packard Sales Representative. and calculators make these conversions especially easy. References: 1. "Transistor Parameter Measurements," Application Note 77-1, February WHY "S" PARAMETERS 1, 1967. 2. "Scattering Parameters Speed Design of High Frequency Transistor Cir- Total Information cuits," by Fritz Weinert, Electronics, September 5, 1966. "S" parameters are vector quantities; they give magnitude and 3. "S" Parameter Techniques for Faster, More Accurate Network Design," phase information. Most measurements of microwave components, by Dick Anderson, Hewlett-Packard Journal, February 1967. 4. "Two Port Power Flow Analysis Using Generalized Scattering Param- like attenuation, gain, and VSWR, have historically been measured eters," by George Bodway, Microwave Journal, May 1967. only in terms of magnitude. Why? Mainly because it was too difficult 5. "Quick Amplifier Design with Scattering Parameters," by William H. to obtain both phase and magnitude information. Froehner, Electronics, October 16, 1967. S-Parameters .... Circuit Analysis and Design APPLICATION NOTE 95 A Collection of Articles Describing S-Parameter Circuit Design and Analysis SEPTEMBER 1968 INTRODUCTION THE STATE OF HIGH-FREQUENCY CIRCUIT DESIGN The designer of high-frequency circuits can now do in hours what formerly took weeks or months. For a longtime there has been no simple, accurate way to characterize high-frequency circuit components. Now, in a matter of minutes, the frequency response of the inputs and outputs of a device can be measured as s parameters. As shown in some of the articles in this application note, an amplifier circuit can be completely designed on a Smith Chart with s-parameter data. Circuit de- sign is greatly accelerated by using small computers or calculators to solve lengthy vector design equations. This leads to some creative man-machine interactions where the designer can "tweek" his circuit via the computer and see how its response is affected The computer can search through hundreds of thousands of possible designs and select the best one. An even more powerful approach that makes one's imagination run away with itself is to combine the measuring equip- ment and the computer as in the HP 8541A. Theoret- ically, one could plug in a transistor, specify the type of circuit to be designed, and get a readout of the op- timal design. This note consists primarily of a collection of recent articles describing the s-parameter design of high- frequency circuits. Following the articles is a brief section describing the rather straightforward technique of measuring s parameters. Many useful design equations and techniques are contained in this litera- ture, and amplifier design, stability, and high-fre- quency transistor characterization are fully discussed. TABLE OF CONTENTS Section Page Microwave Transistor Characterization 1-1 !! Scattering Parameters Speed Design of High Frequency Transistor Circuits 2-1 Ml S-Parameter Techniques for Faster, More Accurate Network Design 3-1 Combine S Parameters with Time Sharing 4-1 V Quick Amplifier Design with Scattering Parameters 5-1 \ i Two-Port Flow Analysis Using Generalized Scattering Parameters 6-1 VII Circuit Design and Characterization of Transistors by Means of Three-Port Scattering Parameters. 7-1 APPENDIX A-l iii SECTION I MICROWAVE TRANSISTOR CHARACTERIZATION Julius Lange describes the parameters he feels are most important for characterizing microwave tran- sistors. These include the two-port s parameters, MSG (maximum stable gain), Gmax (maximum tuned or maximum available gain), K (Rollett's stability factor), and U (unilateral gain). The test setups used for measuring these parameters are described and a transistor fixture for Tl-line transistors plus a slide screw tuner designed by Lange are shown. Thearticle concludes with equations relating y parameters, h parameters, MSG, Gmax, K, and U to the two-port s parameters. Introduction 1-1 S Parameter Measurements 1-2 Gain and Stability Measurements 1-5 MSG (Maximum Stable Gain) 1-6 GMAX (Maximum Available Gain) 1-6 K (Rollett's Stability Factor 1-6 U (Unilateral Gain - Mason Invariant) 1-7 Test Fixtures. 1-8 Special S Parameter Relationships 1-12 Tr.XAS INSTRUMENTS INCORPORATED COMPONENTS GROUP MICROWAVE TRANSISTOR CHARACTERIZATION INCLUDING S-PARAMETERS* by Julius Lange A.
Recommended publications
  • Laboratory #1: Transmission Line Characteristics
    EEE 171 Lab #1 1 Laboratory #1: Transmission Line Characteristics I. OBJECTIVES Coaxial and twisted pair cables are analyzed. The results of the analyses are experimentally verified using a network analyzer. S11 and S21 are found in addition to the characteristic impedance of the transmission lines. II. INTRODUCTION Two commonly encountered transmission lines are the coaxial and twisted pair cables. Coaxial cables are found in broadcast, cable TV, instrumentation, high-speed computer network, and radar applications, among others. Twisted pair cables are commonly found in telephone, computer interconnect, and other low speed (<10 MHz) applications. There is some discussion on using twisted pair cable for higher bit rate computer networking applications (>10 MHz). The characteristic impedance of a coaxial cable is, L 1 m æ b ö Zo = = lnç ÷, (1) C 2p e è a ø so that e r æ b ö æ b ö Zo = 60ln ç ÷ =138logç ÷. (2) mr è a ø è a ø The dimensions a and b of the coaxial cable are shown in Figure 1. L is the line inductance of a coaxial cable is, m æ b ö L = ln ç ÷ [H/m] . (3) 2p è a ø The capacitor per unit length of a coaxial cable is, 2pe C = [F/m] . (4) b ln ( a) EEE 171 Lab #1 2 e r 2a 2b Figure 1. Coaxial Cable Dimensions The two commonly used coaxial cables are the RG-58/U and RG-59 cables. RG-59/U cables are used in cable TV applications. RG-59/U cables are commonly used as general purpose coaxial cables.
    [Show full text]
  • Modulated Backscatter for Low-Power High-Bandwidth Communication
    Modulated Backscatter for Low-Power High-Bandwidth Communication by Stewart J. Thomas Department of Electrical and Computer Engineering Duke University Date: Approved: Matthew S. Reynolds, Supervisor Steven Cummer Jeffrey Krolik Romit Roy Choudhury Gregory Durgin Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical and Computer Engineering in the Graduate School of Duke University 2013 Abstract Modulated Backscatter for Low-Power High-Bandwidth Communication by Stewart J. Thomas Department of Electrical and Computer Engineering Duke University Date: Approved: Matthew S. Reynolds, Supervisor Steven Cummer Jeffrey Krolik Romit Roy Choudhury Gregory Durgin An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical and Computer Engineering in the Graduate School of Duke University 2013 Copyright c 2013 by Stewart J. Thomas All rights reserved Abstract This thesis re-examines the physical layer of a communication link in order to increase the energy efficiency of a remote device or sensor. Backscatter modulation allows a remote device to wirelessly telemeter information without operating a traditional transceiver. Instead, a backscatter device leverages a carrier transmitted by an access point or base station. A low-power multi-state vector backscatter modulation technique is presented where quadrature amplitude modulation (QAM) signalling is generated without run- ning a traditional transceiver. Backscatter QAM allows for significant power savings compared to traditional wireless communication schemes. For example, a device presented in this thesis that implements 16-QAM backscatter modulation is capable of streaming data at 96 Mbps with a radio communication efficiency of 15.5 pJ/bit.
    [Show full text]
  • Analysis of Microwave Networks
    ! a b L • ! t • h ! 9/ a 9 ! a b • í { # $ C& $'' • L C& $') # * • L 9/ a 9 + ! a b • C& $' D * $' ! # * Open ended microstrip line V + , I + S Transmission line or waveguide V − , I − Port 1 Port Substrate Ground (a) (b) 9/ a 9 - ! a b • L b • Ç • ! +* C& $' C& $' C& $ ' # +* & 9/ a 9 ! a b • C& $' ! +* $' ù* # $ ' ò* # 9/ a 9 1 ! a b • C ) • L # ) # 9/ a 9 2 ! a b • { # b 9/ a 9 3 ! a b a w • L # 4!./57 #) 8 + 8 9/ a 9 9 ! a b • C& $' ! * $' # 9/ a 9 : ! a b • b L+) . 8 5 # • Ç + V = A V + BI V 1 2 2 V 1 1 I 2 = 0 V 2 = 0 V 2 I 1 = CV 2 + DI 2 I 2 9/ a 9 ; ! a b • !./5 $' C& $' { $' { $ ' [ 9/ a 9 ! a b • { • { 9/ a 9 + ! a b • [ 9/ a 9 - ! a b • C ) • #{ • L ) 9/ a 9 ! a b • í !./5 # 9/ a 9 1 ! a b • C& { +* 9/ a 9 2 ! a b • I • L 9/ a 9 3 ! a b # $ • t # ? • 5 @ 9a ? • L • ! # ) 9/ a 9 9 ! a b • { # ) 8
    [Show full text]
  • Scattering Parameters
    Scattering Parameters Motivation § Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic L’s and C’s § Potential stability problems for active devices when measured in non-operating conditions § Difficult to measure V and I at microwave frequencies § Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves 1 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Scattering Parameters Motivation § Difficult to implement open and short circuit conditions in high frequencies measurements due to parasitic L’s and C’s § Potential stability problems for active devices when measured in non-operating conditions § Difficult to measure V and I at microwave frequencies § Direct measurement of amplitudes/ power and phases of incident and reflected traveling waves 2 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 1 General Network Formulation V + I + 1 1 Z Port Voltages and Currents 0,1 I − − + − + − 1 V I V = V +V I = I + I 1 1 k k k k k k V1 port 1 + + V2 I2 I2 V2 Z + N-port 0,2 – port 2 Network − − V2 I2 + VN – I Characteristic (Port) Impedances port N N + − + + VN I N Vk Vk Z0,k = = − + − Z0,N Ik Ik − − VN I N Note: all current components are defined positive with direction into the positive terminal at each port 3 Prof. Andreas Weisshaar ― ECE580 Network Theory - Guest Lecture ― Fall Term 2011 Impedance Matrix I1 ⎡V1 ⎤ ⎡ Z11 Z12 Z1N ⎤ ⎡ I1 ⎤ + V1 Port 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - V2 Z21 Z22 Z2N I2 ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ I2 + ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ V2 Port 2 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ - V Z Z Z I N-port ⎣ N ⎦ ⎣ N1 N 2 NN ⎦ ⎣ N ⎦ Network I N [V]= [Z][I] V + Port N N + - V Port i i,oc- Open-Circuit Impedance Parameters Port j Ij N-port Vi,oc Zij = Network I j Port N Ik =0 for k≠ j 4 Prof.
    [Show full text]
  • Voltage Standing Wave Ratio Measurement and Prediction
    International Journal of Physical Sciences Vol. 4 (11), pp. 651-656, November, 2009 Available online at http://www.academicjournals.org/ijps ISSN 1992 - 1950 © 2009 Academic Journals Full Length Research Paper Voltage standing wave ratio measurement and prediction P. O. Otasowie* and E. A. Ogujor Department of Electrical/Electronic Engineering University of Benin, Benin City, Nigeria. Accepted 8 September, 2009 In this work, Voltage Standing Wave Ratio (VSWR) was measured in a Global System for Mobile communication base station (GSM) located in Evbotubu district of Benin City, Edo State, Nigeria. The measurement was carried out with the aid of the Anritsu site master instrument model S332C. This Anritsu site master instrument is capable of determining the voltage standing wave ratio in a transmission line. It was produced by Anritsu company, microwave measurements division 490 Jarvis drive Morgan hill United States of America. This instrument works in the frequency range of 25MHz to 4GHz. The result obtained from this Anritsu site master instrument model S332C shows that the base station have low voltage standing wave ratio meaning that signals were not reflected from the load to the generator. A model equation was developed to predict the VSWR values in the base station. The result of the comparism of the developed and measured values showed a mean deviation of 0.932 which indicates that the model can be used to accurately predict the voltage standing wave ratio in the base station. Key words: Voltage standing wave ratio, GSM base station, impedance matching, losses, reflection coefficient. INTRODUCTION Justification for the work amplitude in a transmission line is called the Voltage Standing Wave Ratio (VSWR).
    [Show full text]
  • British Standards Communications Cable Standards
    Communications Cable Standards British Standards Standard No Description BS 3573:1990 Communication cables, polyolefin insulated & sheathed copper-conductor cables Zinc or zinc alloy coated non-alloy steel wire for armouring either power or telecomms BSEN 10257-1:1998 cables. Land cables Zinc or zinc alloy coated non-alloy steel wire for armouring either power or telecomms BSEN 10257-2:1998 cables. Submarine cables BSEN 50098-1:1999 Customer premised cabling for information technology. ISDN basic access Coaxial cables. Sectional specification for cables used in cabled distribution networks. BSEN 50117-2-1:2005 Indoor drop cables for systems operating at 5MHz - 1000MHz Coaxial cables. Sectional specification for cables used in cabled distribution networks. BSEN 50117-2-2:2004 Outdoor drop cables for systems operating at 5MHz - 1000MHz Coaxial cables. Sectional specification for cables used in cabled distribution networks. BSEN 50117-2-3:2004 Distribution and trunk cables operating at 5MHz - 1000MHz Coaxial cables. Sectional specification for cables used in cabled distribution networks. BSEN 50117-2-4:2004 Indoor drop cables for systems operating at 5MHz - 3000MHz Coaxial cables. Sectional specification for cables used in cabled distribution networks. BSEN 50117-2-5:2004 Outdoor drop cables for systems operating at 5MHz - 3000MHz Coaxial cables used in cabled distribution networks. Sectional specification for outdoor drop BSEN 50117-3:1996 cables Coaxial cables used in cabled distribution networks. Sectional specification for distribution BSEN 50117-4:1996 and trunk cables Coaxial cables used in cabled distribution networks. Sectional specification for indoor drop BSEN 50117-5:1997 cables for systems operating at 5MHz - 2150MHz Coaxial cables used in cabled distribution networks.
    [Show full text]
  • Reflection Coefficient Analysis of Chebyshev Impedance Matching Network Using Different Algorithms
    ISSN: 2319 – 8753 International Journal of Innovative Research in Science, Engineering and Technology Vol. 1, Issue 2, December 2012 Reflection Coefficient Analysis Of Chebyshev Impedance Matching Network Using Different Algorithms Rashmi Khare1, Prof. Rajesh Nema2 Department of Electronics & Communication, NIIST/ R.G.P.V, Bhopal, M.P., India 1 Department of Electronics & Communication, NIIST/ R.G.P.V, Bhopal, M.P., India 2 Abstract: This paper discuss the design and implementation of broadband impedance matching network using chebyshev polynomial. The realization of 4-section impedance matching network using micro-strip lines each section made up of different materials is carried out. This paper discuss the analysis of reflection in 4-section chebyshev impedance matching network for different cases using MATLAB. Keywords: chebyshev polynomial , reflection, micro-strip line, matlab. I. INTRODUCTION In many cases, loads and termination for transmission lines in practical will not have impedance equal to the characteristic impedance of the transmission line. This result in high reflections of wave transverse in the transmission line and correspondingly a high vswr due to standing wave formations, one method to overcome this is to introduce an arrangement of transmission line section or lumped elements between the mismatched transmission line and its termination/loads to eliminate standing wave reflection. This is called as impedance matching. Matching the source and load to the transmission line or waveguide in a general microwave network is necessary to deliver maximum power from the source to the load. In many cases, it is not possible to choose all impedances such that overall matched conditions result. These situations require that matching networks be used to eliminate reflections.
    [Show full text]
  • Chapter 25: Impedance Matching
    Chapter 25: Impedance Matching Chapter Learning Objectives: After completing this chapter the student will be able to: Determine the input impedance of a transmission line given its length, characteristic impedance, and load impedance. Design a quarter-wave transformer. Use a parallel load to match a load to a line impedance. Design a single-stub tuner. You can watch the video associated with this chapter at the following link: Historical Perspective: Alexander Graham Bell (1847-1922) was a scientist, inventor, engineer, and entrepreneur who is credited with inventing the telephone. Although there is some controversy about who invented it first, Bell was granted the patent, and he founded the Bell Telephone Company, which later became AT&T. Photo credit: https://commons.wikimedia.org/wiki/File:Alexander_Graham_Bell.jpg [Public domain], via Wikimedia Commons. 1 25.1 Transmission Line Impedance In the previous chapter, we analyzed transmission lines terminated in a load impedance. We saw that if the load impedance does not match the characteristic impedance of the transmission line, then there will be reflections on the line. We also saw that the incident wave and the reflected wave combine together to create both a total voltage and total current, and that the ratio between those is the impedance at a particular point along the line. This can be summarized by the following equation: (Equation 25.1) Notice that ZC, the characteristic impedance of the line, provides the ratio between the voltage and current for the incident wave, but the total impedance at each point is the ratio of the total voltage divided by the total current.
    [Show full text]
  • The Gulf of Georgia Submarine Telephone Cable
    .4 paper presented at the 285th Meeting of the American Institute of Electrical Engineers, Vancouver, B. C., September 10, 1913. Copyright 1913. By A.I.EE. THE GULF OF GEORGIA SUBMARINE TELEPHONE CABLE BY E. P. LA BELLE AND L. P. CRIM The recent laying of a continuously loaded submarine tele- phone cable, across the Gulf of Georgia, between Point Grey, near Vancouver, and Nanaimo, on Vancouver Island, in British Columbia, is of interest as it is the only cable of its type in use outside of Europe. The purpose of this cable was to provide such telephonic facilities to Vancouver Island that the speaking range could be extended from any point on the Island to Vancouver, and other principal towns on the mainland in the territory served by the British Columbia Telephone Company. The only means of telephonic communication between Van- couver and Victoria, prior to the laying of this cable, was through a submarine cable between Bellingham and Victoria, laid in 1904. This cable was non-loaded, of the four-core type, with gutta-percha insulation, and to the writer's best knowledge, is the only cable of this type in use in North America. This cable is in five pieces crossing the various channels between Belling- ham and Victoria. A total of 14.2 nautical miles (16.37 miles, 26.3 km.) of this cable is in use. The conductors are stranded and weigh 180 lb. per nautical mile (44. 3 kg. per km.). By means of a circuit which could be provided through this cable by way of Bellingham, a fairly satisfactory service was maintained between Vancouver and Victoria, the circuit equating to about 26 miles (41.8 km.) of standard cable.
    [Show full text]
  • Transmission Line Characteristics
    IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834, p- ISSN: 2278-8735. PP 67-77 www.iosrjournals.org Transmission Line Characteristics Nitha s.Unni1, Soumya A.M.2 1(Electronics and Communication Engineering, SNGE/ MGuniversity, India) 2(Electronics and Communication Engineering, SNGE/ MGuniversity, India) Abstract: A Transmission line is a device designed to guide electrical energy from one point to another. It is used, for example, to transfer the output rf energy of a transmitter to an antenna. This report provides detailed discussion on the transmission line characteristics. Math lab coding is used to plot the characteristics with respect to frequency and simulation is done using HFSS. Keywords - coupled line filters, micro strip transmission lines, personal area networks (pan), ultra wideband filter, uwb filters, ultra wide band communication systems. I. INTRODUCTION Transmission line is a device designed to guide electrical energy from one point to another. It is used, for example, to transfer the output rf energy of a transmitter to an antenna. This energy will not travel through normal electrical wire without great losses. Although the antenna can be connected directly to the transmitter, the antenna is usually located some distance away from the transmitter. On board ship, the transmitter is located inside a radio room and its associated antenna is mounted on a mast. A transmission line is used to connect the transmitter and the antenna The transmission line has a single purpose for both the transmitter and the antenna. This purpose is to transfer the energy output of the transmitter to the antenna with the least possible power loss.
    [Show full text]
  • What Is Characteristic Impedance?
    Dr. Eric Bogatin 26235 W 110th Terr. Olathe, KS 66061 Voice: 913-393-1305 Fax: 913-393-1306 [email protected] www.BogatinEnterprises.com Training for Signal Integrity and Interconnect Design Reprinted with permission from Printed Circuit Design Magazine, Jan, 2000, p. 18 What is Characteristic Impedance? Eric Bogatin Bogatin Enterprises 913-393-1305 [email protected] www.bogatinenterprises.com Introduction Perhaps the most important and most common electrical issue that keeps coming up in high speed design is controlled impedance boards and the characteristic impedance of the traces. Yet, it is also one of the most un-intuitive and confusing topics for non electrical engineers. And, in my experience teaching over 2000 engineers, it’s confusing to many electrical engineers as well. In this brief note, we will walk through a simple and intuitive explanation of characteristic impedance, the most fundamental quality of a transmission line. What’s a transmission line Let’s start with what’s a transmission line. All it takes to make a transmission line is two conductors that have length. One conductor acts as the signal path and the other is the return path. (Forget the word “ground” and always think “return path”). In a multilayer board, EVERY trace is part of a transmission line, using the adjacent reference plane as the second trace or return path. What makes a trace a “good” transmission line is that its characteristic impedance is constant everywhere down its length. What makes a board a “controlled impedance” board is that the characteristic impedance of all the traces meets a target spec value, typically between 25 Ohms and 70 Ohms.
    [Show full text]
  • Scattering Parameters - Wikipedia, the Free Encyclopedia Page 1 of 13
    Scattering parameters - Wikipedia, the free encyclopedia Page 1 of 13 Scattering parameters From Wikipedia, the free encyclopedia Scattering parameters or S-parameters (the elements of a scattering matrix or S-matrix ) describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals. The parameters are useful for electrical engineering, electronics engineering, and communication systems design, and especially for microwave engineering. The S-parameters are members of a family of similar parameters, other examples being: Y-parameters,[1] Z-parameters,[2] H- parameters, T-parameters or ABCD-parameters.[3][4] They differ from these, in the sense that S-parameters do not use open or short circuit conditions to characterize a linear electrical network; instead, matched loads are used. These terminations are much easier to use at high signal frequencies than open-circuit and short-circuit terminations. Moreover, the quantities are measured in terms of power. Many electrical properties of networks of components (inductors, capacitors, resistors) may be expressed using S-parameters, such as gain, return loss, voltage standing wave ratio (VSWR), reflection coefficient and amplifier stability. The term 'scattering' is more common to optical engineering than RF engineering, referring to the effect observed when a plane electromagnetic wave is incident on an obstruction or passes across dissimilar dielectric media. In the context of S-parameters, scattering refers to the way in which the traveling currents and voltages in a transmission line are affected when they meet a discontinuity caused by the insertion of a network into the transmission line. This is equivalent to the wave meeting an impedance differing from the line's characteristic impedance.
    [Show full text]