CHAPTER 1 Derivation of Telegrapher's Equations and Field-To

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 1 Derivation of Telegrapher's Equations and Field-To CHAPTER 1 Derivation of telegrapher’s equations and fi eld-to-transmission line interaction C.A. Nucci1, F. Rachidi2 & M. Rubinstein3 1University of Bologna, Bologna, Italy. 2Swiss Federal Institute of Technology, Lausanne, Switzerland. 3Western University of Applied Sciences, Yverdon, Switzerland. Abstract In this chapter, we discuss the transmission line theory and its application to the problem of external electromagnetic fi eld coupling to transmission lines. After a short discussion on the underlying assumptions of the transmission line theory, we start with the derivation of fi eld-to-transmission line coupling equations for the case of a single wire line above a perfectly conducting ground. We also describe three seemingly different but completely equivalent approaches that have been proposed to describe the coupling of electromagnetic fi elds to transmission lines. The derived equations are extended to deal with the presence of losses and multiple conductors. The time-domain representation of fi eld-to-transmission line coupling equations, which allows a straightforward treatment of non-linear phenomena as well as the variation in the line topology, is also described. Finally, solution meth- ods in frequency domain and time domain are presented. 1 Transmission line approximation The problem of an external electromagnetic fi eld coupling to an overhead line can be solved using a number of approaches. One such approach makes use of antenna theory, a general methodology based on Maxwell’s equations [1]. Differ- ent methods based on this approach generally use the thin-wire approximation, in which the wire’s cross section is assumed to be much smaller than the minimum signifi cant wavelength. When electrically long lines are involved, however, the antenna theory approach requires prohibitively long computational times and high computer resources. On the WIT Transactions on State of the Art in Science and Eng ineering, Vol 29, © 2008 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) doi:10.2495/978-1-84564-063-7/01 4 Electromagnetic Field Interaction with Transmission Lines other hand, the less resource hungry quasi-static approximation [1], in which propa- gation is neglected and coupling is described by means of lumped elements, can be adopted only when the overall dimensions of the circuit are smaller than the mini- mum signifi cant wavelength of the electromagnetic fi eld. For many practical cases, however, this condition is not satisfi ed. As an example, let us consider the case of power lines illuminated by a lightning electromagnetic pulse (LEMP). Power net- works extend, in general, over distances of several kilometers, much larger than the minimum wavelengths associated with LEMP. Indeed, signifi cant portions of the fre- quency spectrum of LEMP extend to frequencies up to a few MHz and beyond, which corresponds to minimum wavelengths of about 100 m or less [2]. A third approach is known as transmission line theory. The main assumptions for this approach are as follows: 1. Propagation occurs along the line axis. 2. The sum of the line currents at any cross section of the line is zero. In other words, the ground – the reference conductor – is the return path for the currents in the n overhead conductors. 3. The response of the line to the coupled electromagnetic fi elds is quasi-transverse electromagnetic (quasi-TEM) or, in other words, the electromagnetic fi eld pro- duced by the electric charges and currents along the line is confi ned in the transverse plane and perpendicular to the line axis. If the cross-sectional dimensions of the line are electrically small, propagation can indeed be assumed to occur essentially along the line axis only and the fi rst assumption can be considered to be a good approximation. The second condition is satisfi ed if the ground plane exhibits infi nite conductiv- ity since, in that case, the currents and voltages can be obtained making use of the method of images, which guarantees currents of equal amplitude and opposite direction in the ground. The condition that the response of the line is quasi-TEM is satisfi ed only up to a threshold frequency above which higher-order modes begin to appear [1]. For some cases, such as infi nite parallel plates or coaxial lines, it is possible to derive an exact expression for the cutoff frequency below which only the TEM mode exists [3]. For other line structures (i.e. multiple conductors above a ground plane), the TEM mode response is generally satisfi ed as long as the line cross section is electrically small [3]. Under these conditions, the line can be represented by a distributed-parameter structure along its axis. For uniform transmission lines with electrically small cross-sectional dimen- sions (not exceeding about one-tenth of the minimum signifi cant wavelength of the exciting electromagnetic fi eld), a number of theoretical and experimental studies have shown a fairly good agreement between results obtained using the transmis- sion line approximation and results obtained either by means of antenna theory or experiments [4]. A detailed discussion of the validity of the basic assumptions of the transmission line theory is beyond the scope of this chapter. However, it is worth noting that, by assuming that the sum of all the currents is equal to zero, we are WIT Transactions on State of the Art in Science and Eng ineering, Vol 29, © 2008 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) Derivation of Telegrapher’s Equations 5 considering only ‘transmission line mode’ currents and neglecting the so-called ‘antenna-mode’ currents [1]. If we wish to compute the load responses of the line, this assumption is adequate, because the antenna mode current response is small near the ends of the line. Along the line, however, and even for electrically small line cross sections, the presence of antenna-mode currents implies that the sum of the currents at a cross section is not necessarily equal to zero [1, 3]. However, the quasi-symmetry due to the presence of the ground plane results in a very small contribution of antenna mode currents and, consequently, the predominant mode on the line will be transmission line [1]. 2 Single-wire line above a perfectly conducting ground We will consider fi rst the case of a lossless single-wire line above a perfectly conducting ground. This simple case will allow us to introduce various coupling models and to discuss a number of concepts essential to the understanding of the electromagnetic fi eld coupling phenomenon. Later in this chapter (Sections 4 and 5), we will cover the cases of lossy and multiconductor lines. The transmission line is defi ned by its geometrical parameters (wire radius a and height above ground h) and its terminations ZA and ZB, as illustrated in Fig. 1, where the line is illuminated by an external electromagnetic fi eld. The problem of interest is the calculation of the induced voltages and currents along the line and at the terminations. e e The external exciting electric and magnetic fi elds E and B are defi ned as the i i r r sum of the incident fi elds, E and B , and the ground-refl ected fi elds, E and B , determined in absence of the line conductor. The total fi elds E and B at a given point in space are given by the sum of the excitation fi elds and the scattered fi elds from the line, the latter being denoted as Es and Bs. The scattered fi elds are created by the currents and charges fl owing in the line conductor and by the corresponding currents and charges induced in the ground. Three seemingly different but completely equivalent approaches have been pro- posed to describe the coupling of electromagnetic fi elds to transmission lines. In what z E e e B 2a y C h ZA ZB x 0Lx x + dx Figure 1: Geometry of the problem. WIT Transactions on State of the Art in Science and Eng ineering, Vol 29, © 2008 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) 6 Electromagnetic Field Interaction with Transmission Lines follows, we will present each one of them in turn. We will fi rst derive the fi eld-to- transmission line coupling equations (which are sometimes referred to as generalized telegrapher’s equations) following the development of Taylor et al. [5]. 2.1 Taylor, Satterwhite and Harrison model 2.1.1 Derivation of the fi rst fi eld-to-transmission line coupling (generalized telegrapher’s) equation Consider the single conductor transmission line of height h in Fig. 1. Applying Stokes’ theorem to Maxwell’s equation ∇E = –jwB for the area enclosed by the closed contour C yields ⋅=− ⋅ ∫∫∫Eldd jw BeSy (1) C S Since the contour has a differential width ∆x, eqn (1) can be written as hxx+∆ +∆ − + − ∫∫[Exzz ( xzExzz ,) (,)]d [ ExhEx xx (,) (,0)]d x 0 x h xx+∆ =− jBxzxzw∫∫ y (,)dd (2) 0 x (The coordinate y will be implicitly assumed to be 0 and, for the sake of clar- ity, we will omit the y-dependence unless the explicit inclusion is important for the discussion.) Dividing by ∆x and taking the limit as ∆x approaches zero yields ∂ hh ∫∫ExzzExhEx(,)d+−=− (,) (,0) jw Bxzz (,)d (3) ∂x zxx y 00 Since the wire and the ground are assumed to be perfect conductors, the total tangential electric fi elds at their respective surfaces, Ex(x,h) and Ex(x,0), are zero. Defi ning also the total transverse voltage V(x) in the quasi-static sense (since h << λ) as h =− Vx()∫ Ez (,)d xz z (4) 0 Equation (3) becomes d()Vx hhh =−jBxzzjBxzzjBxzzwww∫∫∫(,)d =−es (,)d − (,)d (5) dx yyy 000 where we have decomposed the B-fi eld into the excitation and scattered components.
Recommended publications
  • Laboratory #1: Transmission Line Characteristics
    EEE 171 Lab #1 1 Laboratory #1: Transmission Line Characteristics I. OBJECTIVES Coaxial and twisted pair cables are analyzed. The results of the analyses are experimentally verified using a network analyzer. S11 and S21 are found in addition to the characteristic impedance of the transmission lines. II. INTRODUCTION Two commonly encountered transmission lines are the coaxial and twisted pair cables. Coaxial cables are found in broadcast, cable TV, instrumentation, high-speed computer network, and radar applications, among others. Twisted pair cables are commonly found in telephone, computer interconnect, and other low speed (<10 MHz) applications. There is some discussion on using twisted pair cable for higher bit rate computer networking applications (>10 MHz). The characteristic impedance of a coaxial cable is, L 1 m æ b ö Zo = = lnç ÷, (1) C 2p e è a ø so that e r æ b ö æ b ö Zo = 60ln ç ÷ =138logç ÷. (2) mr è a ø è a ø The dimensions a and b of the coaxial cable are shown in Figure 1. L is the line inductance of a coaxial cable is, m æ b ö L = ln ç ÷ [H/m] . (3) 2p è a ø The capacitor per unit length of a coaxial cable is, 2pe C = [F/m] . (4) b ln ( a) EEE 171 Lab #1 2 e r 2a 2b Figure 1. Coaxial Cable Dimensions The two commonly used coaxial cables are the RG-58/U and RG-59 cables. RG-59/U cables are used in cable TV applications. RG-59/U cables are commonly used as general purpose coaxial cables.
    [Show full text]
  • Modulated Backscatter for Low-Power High-Bandwidth Communication
    Modulated Backscatter for Low-Power High-Bandwidth Communication by Stewart J. Thomas Department of Electrical and Computer Engineering Duke University Date: Approved: Matthew S. Reynolds, Supervisor Steven Cummer Jeffrey Krolik Romit Roy Choudhury Gregory Durgin Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical and Computer Engineering in the Graduate School of Duke University 2013 Abstract Modulated Backscatter for Low-Power High-Bandwidth Communication by Stewart J. Thomas Department of Electrical and Computer Engineering Duke University Date: Approved: Matthew S. Reynolds, Supervisor Steven Cummer Jeffrey Krolik Romit Roy Choudhury Gregory Durgin An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Electrical and Computer Engineering in the Graduate School of Duke University 2013 Copyright c 2013 by Stewart J. Thomas All rights reserved Abstract This thesis re-examines the physical layer of a communication link in order to increase the energy efficiency of a remote device or sensor. Backscatter modulation allows a remote device to wirelessly telemeter information without operating a traditional transceiver. Instead, a backscatter device leverages a carrier transmitted by an access point or base station. A low-power multi-state vector backscatter modulation technique is presented where quadrature amplitude modulation (QAM) signalling is generated without run- ning a traditional transceiver. Backscatter QAM allows for significant power savings compared to traditional wireless communication schemes. For example, a device presented in this thesis that implements 16-QAM backscatter modulation is capable of streaming data at 96 Mbps with a radio communication efficiency of 15.5 pJ/bit.
    [Show full text]
  • British Standards Communications Cable Standards
    Communications Cable Standards British Standards Standard No Description BS 3573:1990 Communication cables, polyolefin insulated & sheathed copper-conductor cables Zinc or zinc alloy coated non-alloy steel wire for armouring either power or telecomms BSEN 10257-1:1998 cables. Land cables Zinc or zinc alloy coated non-alloy steel wire for armouring either power or telecomms BSEN 10257-2:1998 cables. Submarine cables BSEN 50098-1:1999 Customer premised cabling for information technology. ISDN basic access Coaxial cables. Sectional specification for cables used in cabled distribution networks. BSEN 50117-2-1:2005 Indoor drop cables for systems operating at 5MHz - 1000MHz Coaxial cables. Sectional specification for cables used in cabled distribution networks. BSEN 50117-2-2:2004 Outdoor drop cables for systems operating at 5MHz - 1000MHz Coaxial cables. Sectional specification for cables used in cabled distribution networks. BSEN 50117-2-3:2004 Distribution and trunk cables operating at 5MHz - 1000MHz Coaxial cables. Sectional specification for cables used in cabled distribution networks. BSEN 50117-2-4:2004 Indoor drop cables for systems operating at 5MHz - 3000MHz Coaxial cables. Sectional specification for cables used in cabled distribution networks. BSEN 50117-2-5:2004 Outdoor drop cables for systems operating at 5MHz - 3000MHz Coaxial cables used in cabled distribution networks. Sectional specification for outdoor drop BSEN 50117-3:1996 cables Coaxial cables used in cabled distribution networks. Sectional specification for distribution BSEN 50117-4:1996 and trunk cables Coaxial cables used in cabled distribution networks. Sectional specification for indoor drop BSEN 50117-5:1997 cables for systems operating at 5MHz - 2150MHz Coaxial cables used in cabled distribution networks.
    [Show full text]
  • Chapter 25: Impedance Matching
    Chapter 25: Impedance Matching Chapter Learning Objectives: After completing this chapter the student will be able to: Determine the input impedance of a transmission line given its length, characteristic impedance, and load impedance. Design a quarter-wave transformer. Use a parallel load to match a load to a line impedance. Design a single-stub tuner. You can watch the video associated with this chapter at the following link: Historical Perspective: Alexander Graham Bell (1847-1922) was a scientist, inventor, engineer, and entrepreneur who is credited with inventing the telephone. Although there is some controversy about who invented it first, Bell was granted the patent, and he founded the Bell Telephone Company, which later became AT&T. Photo credit: https://commons.wikimedia.org/wiki/File:Alexander_Graham_Bell.jpg [Public domain], via Wikimedia Commons. 1 25.1 Transmission Line Impedance In the previous chapter, we analyzed transmission lines terminated in a load impedance. We saw that if the load impedance does not match the characteristic impedance of the transmission line, then there will be reflections on the line. We also saw that the incident wave and the reflected wave combine together to create both a total voltage and total current, and that the ratio between those is the impedance at a particular point along the line. This can be summarized by the following equation: (Equation 25.1) Notice that ZC, the characteristic impedance of the line, provides the ratio between the voltage and current for the incident wave, but the total impedance at each point is the ratio of the total voltage divided by the total current.
    [Show full text]
  • The Gulf of Georgia Submarine Telephone Cable
    .4 paper presented at the 285th Meeting of the American Institute of Electrical Engineers, Vancouver, B. C., September 10, 1913. Copyright 1913. By A.I.EE. THE GULF OF GEORGIA SUBMARINE TELEPHONE CABLE BY E. P. LA BELLE AND L. P. CRIM The recent laying of a continuously loaded submarine tele- phone cable, across the Gulf of Georgia, between Point Grey, near Vancouver, and Nanaimo, on Vancouver Island, in British Columbia, is of interest as it is the only cable of its type in use outside of Europe. The purpose of this cable was to provide such telephonic facilities to Vancouver Island that the speaking range could be extended from any point on the Island to Vancouver, and other principal towns on the mainland in the territory served by the British Columbia Telephone Company. The only means of telephonic communication between Van- couver and Victoria, prior to the laying of this cable, was through a submarine cable between Bellingham and Victoria, laid in 1904. This cable was non-loaded, of the four-core type, with gutta-percha insulation, and to the writer's best knowledge, is the only cable of this type in use in North America. This cable is in five pieces crossing the various channels between Belling- ham and Victoria. A total of 14.2 nautical miles (16.37 miles, 26.3 km.) of this cable is in use. The conductors are stranded and weigh 180 lb. per nautical mile (44. 3 kg. per km.). By means of a circuit which could be provided through this cable by way of Bellingham, a fairly satisfactory service was maintained between Vancouver and Victoria, the circuit equating to about 26 miles (41.8 km.) of standard cable.
    [Show full text]
  • Transmission Line Characteristics
    IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834, p- ISSN: 2278-8735. PP 67-77 www.iosrjournals.org Transmission Line Characteristics Nitha s.Unni1, Soumya A.M.2 1(Electronics and Communication Engineering, SNGE/ MGuniversity, India) 2(Electronics and Communication Engineering, SNGE/ MGuniversity, India) Abstract: A Transmission line is a device designed to guide electrical energy from one point to another. It is used, for example, to transfer the output rf energy of a transmitter to an antenna. This report provides detailed discussion on the transmission line characteristics. Math lab coding is used to plot the characteristics with respect to frequency and simulation is done using HFSS. Keywords - coupled line filters, micro strip transmission lines, personal area networks (pan), ultra wideband filter, uwb filters, ultra wide band communication systems. I. INTRODUCTION Transmission line is a device designed to guide electrical energy from one point to another. It is used, for example, to transfer the output rf energy of a transmitter to an antenna. This energy will not travel through normal electrical wire without great losses. Although the antenna can be connected directly to the transmitter, the antenna is usually located some distance away from the transmitter. On board ship, the transmitter is located inside a radio room and its associated antenna is mounted on a mast. A transmission line is used to connect the transmitter and the antenna The transmission line has a single purpose for both the transmitter and the antenna. This purpose is to transfer the energy output of the transmitter to the antenna with the least possible power loss.
    [Show full text]
  • What Is Characteristic Impedance?
    Dr. Eric Bogatin 26235 W 110th Terr. Olathe, KS 66061 Voice: 913-393-1305 Fax: 913-393-1306 [email protected] www.BogatinEnterprises.com Training for Signal Integrity and Interconnect Design Reprinted with permission from Printed Circuit Design Magazine, Jan, 2000, p. 18 What is Characteristic Impedance? Eric Bogatin Bogatin Enterprises 913-393-1305 [email protected] www.bogatinenterprises.com Introduction Perhaps the most important and most common electrical issue that keeps coming up in high speed design is controlled impedance boards and the characteristic impedance of the traces. Yet, it is also one of the most un-intuitive and confusing topics for non electrical engineers. And, in my experience teaching over 2000 engineers, it’s confusing to many electrical engineers as well. In this brief note, we will walk through a simple and intuitive explanation of characteristic impedance, the most fundamental quality of a transmission line. What’s a transmission line Let’s start with what’s a transmission line. All it takes to make a transmission line is two conductors that have length. One conductor acts as the signal path and the other is the return path. (Forget the word “ground” and always think “return path”). In a multilayer board, EVERY trace is part of a transmission line, using the adjacent reference plane as the second trace or return path. What makes a trace a “good” transmission line is that its characteristic impedance is constant everywhere down its length. What makes a board a “controlled impedance” board is that the characteristic impedance of all the traces meets a target spec value, typically between 25 Ohms and 70 Ohms.
    [Show full text]
  • An Adaptive, Linear, High Gain X-Band Gallium Nitride High Power
    An Adaptive, Linear, and High Gain X-Band Gallium Nitride High Power Amplifier by Srdjan Najhart A thesis submitted to the Faculty of Graduate and Post Doctoral Affairs in partial fulfillment of the requirements for the degree ofMaster of Applied Science Ottawa-Carleton Institute for Electrical Engineering Department of Electronics Faculty of Engineering Carleton University Ottawa, Canada ⃝c Srdjan Najhart, 2016 Abstract The work in this thesis presents the design and implementation of an MMIC reconfigurable power amplifier operating in the X-band for the purpose of creat- ing a smart antenna system capable of adapting to performance compromising situations arising from changes in impedance due to thermal expansion and elec- tromagnetic coupling to nearby dielectric objects. A two-stage power amplifier and three-bit reconfigurable output matching network topology is implemented in a coplanar waveguide design within a 4 mm × 2 mm area using a 500 nm AlGaN/GaN process. Simulations show an output power of 34 dBm, with PAE of 33 % and gain of 23 dB at the 1 dB compression point, and a saturated output power of 36 dBm and peak PAE of 36 %, which is accomplished using an 800 µm wide HEMT device. Eight discreet output impedance steps allow a tuning range corresponding to a VSWR ratio of 2.1. ii Acknowledgments There are a number of individuals I would like to thank for their contributions, both tangible and intangible, to my research and towards the completion of this thesis. My supervisor, Dr. James Wight, has imparted to me a great deal of advice and wisdom, and provided me with the resources needed to carry out my research.
    [Show full text]
  • Characteristic Impedance Analysis of Medium-Voltage Underground Cables with Grounded Shields and Armors for Power Line Communication
    electronics Article Characteristic Impedance Analysis of Medium-Voltage Underground Cables with Grounded Shields and Armors for Power Line Communication Hongshan Zhao *, Weitao Zhang and Yan Wang School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; [email protected] (W.Z.); [email protected] (Y.W.) * Correspondence: [email protected]; Tel.: +86-135-0313-5810 Received: 25 March 2019; Accepted: 18 May 2019; Published: 23 May 2019 Abstract: The characteristic impedance of a power line is an important parameter in power line communication (PLC) technologies. This parameter is helpful for understanding power line impedance characteristics and achieving impedance matching. In this study, we focused on the characteristic impedance matrices (CIMs) of the medium-voltage (MV) cables. The calculation and characteristics of the CIMs were investigated with special consideration of the grounded shields and armors, which are often neglected in current research. The calculation results were validated through the experimental measurements. The results show that the MV underground cables with multiple grounding points have forward and backward CIMs, which are generally not equal unless the whole cable structure is longitudinally symmetrical. Then, the resonance phenomenon in the CIMs was analyzed. We found that the grounding of the shields and armors not only affected their own characteristic impedances but also those of the cores, and the resonance present in the CIMs should be of concern in the impedance matching of the PLC systems. Finally, the effects of the grounding resistances, cable lengths, grounding point numbers, and cable branch numbers on the CIMs of the MV underground cables were discussed through control experiments.
    [Show full text]
  • On the Steady-State Harmonic Performance of Subsea Power Cables Used in Offshore Power Generation Schemes
    On the Steady-State Harmonic Performance of Subsea Power Cables Used in Offshore Power Generation Schemes Chang-Hsin CHIEN A Thesis Submitted for the Degree of Doctor of Philosophy Department of Mechanical Engineering University College London June 2007 UMI Number: U592682 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U592682 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 To my grandfather and in memory of my grandmother and to those who believe that education is invaluable asset which can never be taken from us 1 Statement of Originality I, Chang-Hsin CHIEN, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, 1 confirm that this has been indicated in the thesis. Chang-Hsin CHIEN University College London 20 June 2007 Singed: 2 Abstract This thesis reports upon investigations undertaken into the electrical performance o f high power subsea transmission cables and is specifically focused upon their harmonic behaviour, an understanding o f which is fundamental for developing accurate computer based models to evaluate the performance o f existing or new offshore generation schemes.
    [Show full text]
  • Microwave Impedance Measurements and Standards
    NBS MONOGRAPH 82 MICROWAVE IMPEDANCE MEASUREMENTS AND STANDARDS . .5, Y 1 p p R r ' \ Jm*"-^ CCD 'i . y. s. U,BO»WOM t «• U.S. DEPARTMENT OF STANDARDS NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and main- tenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and struc- tures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units. Institute for Basic Standards. Applied Mathematics. Electricity. Metrology. Mechanics. Heat. Atomic Physics. Physical Chem- istry. Laboratory Astrophysics.* Radiation Physics. Radio Stand- ards Laboratory:* Radio Standards Physics; Radio Standards Engineering.
    [Show full text]
  • Multiband RF Circuits and Techniques for Wireless Transmitters Multiband RF Circuits and Techniques for Wireless Transmitters Wenhua Chen • Karun Rawat Fadhel M
    Wenhua Chen · Karun Rawat Fadhel M. Ghannouchi Multiband RF Circuits and Techniques for Wireless Transmitters Multiband RF Circuits and Techniques for Wireless Transmitters Wenhua Chen • Karun Rawat Fadhel M. Ghannouchi Multiband RF Circuits and Techniques for Wireless Transmitters 123 Wenhua Chen Fadhel M. Ghannouchi Tsinghua University University of Calgary Beijing Calgary, AB China Canada Karun Rawat Indian Institute of Technology Roorkee Roorkee India ISBN 978-3-662-50438-3 ISBN 978-3-662-50440-6 (eBook) DOI 10.1007/978-3-662-50440-6 Library of Congress Control Number: 2016940120 © Springer-Verlag Berlin Heidelberg 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]