Rokid Air: Portable AR Glasses with Voice Control AI () Neurable
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jackson Heart Study Electronic Device Survey A. INTERNET
Confidential Jackson Heart Study Electronic Device Survey ID NUMBER __________________________________ Contact Year __________________________________ LAST NAME __________________________________ INITIALS __________________________________ A. INTERNET Jackson Heart Study investigators are thinking about using new electronic tools to conduct research on your heart and general health. We are interested in finding out what kind of electronic tools you use, including computers, internet and cell phones. This survey will take about 5 minutes. You will have to finish the survey in one sitting. You will not be able to save it and come back later. You do not have to complete this survey if you do not wish to do so. We want you to feel comfortable filling out this and future forms online. Please note that data provided via this survey are secure and confidential. These data will be used for research purposes only. 1. Do you use the internet at least occasionally? o Yes → o No GO TO QUESTION 4 1a. How do you access the internet? (check all that apply) Smart phone Tablet Computer 2. On average, how many hours per day do you use the internet? __________________________________ (number of hours) Page 1 of 6 Confidential 3. Do you have wireless internet (“wi-fi”) in your home? o Yes o No → GO TO QUESTION 4 B.EMAIL 4. Do you use email? o Yes o No → GO TO QUESTION 6 5. Can you… (check all that apply) Read new emails? Use the reply feature? Send an email? Open a file attached to an email? C. CELL PHONES 6. Do you use a cell phone? o Yes o No→ GO TO QUESTION 12 7. -
P15083: Virtual Visualization for Anatomy Teaching, Training and Surgery Simulation Applications
P15083: Virtual Visualization for Anatomy Teaching, Training and Surgery Simulation Applications Problem Definition Preamble ● Thank you for attending our review! We are looking for: ● constructive criticisms ● outside perspective Team Member Introduction Member Role Alex Dawson-Elli Team Lead - Biomedical Engineer Nate Burrell Biomedical Engineer Jascha Wilcox Biomedical Engineer Kenny LaMarca Computer Engineer Kevin Alexandre Computer Engineer context context volume rendering stereo visualization technology Background ● Anatomy is inherently a 3D problem ● conventional teaching techniques: ○ book -> 2D ○ dissection -> may discourage some students ● Modern technology is underutilized in the classroom Problem Statement Current State:Students learning anatomy from a textbook, at a low level of excitement, and a low level of exposure to modern imaging modalities Desired State: Students learning in a stereoscopic anatomy visualization environment, with a high level of excitement, and a high level of exposure to modern imaging modalities Project Goals: create a fully virtual stereo anatomy viewer Constraints: budget, pre-designed hardware, must use existing data set Stakeholders ● Project advisor ○ Dr. Christian Linte ● Teachers ○ Instructor of students (grade 6-12) ● Students ○ Our target age group is middle and high school students (grade 6-12) Use Scenario Customer Needs Customer Rqmt. # Importance Description CR1 9 Easy for a teacher to learn CR2 9 Easy for the Student to use CR3 9 Graphical Interface CR4 9 Stereo Viewing System, in 3D -
Effects of Control Device and Task Complexity on Performance and Task Shedding During a Robotic Arm Task
Old Dominion University ODU Digital Commons Psychology Theses & Dissertations Psychology Spring 2019 Effects of Control Device and Task Complexity on Performance and Task Shedding During a Robotic Arm Task Shelby K. Long Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/psychology_etds Part of the Applied Behavior Analysis Commons, Human Factors Psychology Commons, and the Robotics Commons Recommended Citation Long, Shelby K.. "Effects of Control Device and Task Complexity on Performance and Task Shedding During a Robotic Arm Task" (2019). Master of Science (MS), Thesis, Psychology, Old Dominion University, DOI: 10.25777/yh1y-0016 https://digitalcommons.odu.edu/psychology_etds/231 This Thesis is brought to you for free and open access by the Psychology at ODU Digital Commons. It has been accepted for inclusion in Psychology Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. EFFECTS OF CONTROL DEVICE AND TASK COMPLEXITY ON PERFORMANCE AND TASK SHEDDING DURING A ROBOTIC ARM TASK by Shelby K. Long B.S. December 2013, Georgia Institute of Technology A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE PSYCHOLOGY OLD DOMINION UNIVERSITY May 2019 Approved by: James P. Bliss (Director) Yusuke Yamani (Member) Xiaoxiao Hu (Member) ABSTRACT EFFECTS OF CONTROL DEVICE AND TASK COMPLEXITY ON PERFORMANCE AND TASK SHEDDING DURING A ROBOTIC ARM TASK Shelby K. Long Old Dominion University, 2019 Director: Dr. James P. Bliss The use of robotic arms across domains is increasing, but the relationship between control features and performance is not fully understood. -
U.S. Health Care Technologies
U.S. HEALTH CARE TECHNOLOGIES Quianta Moore, M.D. Ashleigh Johnson, M.P.H. U.S. HEALTH CARE TECHNOLOGIES Technology has permeated every sector of the market, making services and goods faster, cheaper and mobile. Not surprisingly, advancements in technology have also increased access to health information and self- monitoring for individual consumers, as well as increased health care providers’ ability to diagnose, monitor or treat their patients remotely. A plethora of health-related technology is available on the market. This brief summary provides a snapshot of the scope of what has been developed, which may also provide insight into the current needs or demands of patients and providers. Methods: We performed a search for health technology available to consumers and health care providers. The terms health or technology, equipment, consumer, portable, top and available were entered into the Google search engine. Inclusion criteria for search results were: 1) technology was available for purchase by consumers or health care providers, and 2) technology was used to monitor, prevent, diagnose or treat health issues or to increase access to health care treatment or information. The equipment category was then further divided into: 1) equipment for health care providers, 2) equipment for consumers, 3) equipment for consumers focused on physical fitness, and 4) equipment for consumers that has yet to be publicly released. We also performed a search for health technology mobile apps that are currently available for mobile use. The terms “health apps,” “health mobile apps,” “fitness apps,” “health apps physicians,” “health apps consult physicians,” and “top mobile health apps,” were entered into the Google, Apple store and Google Play search engines. -
Leap Motion Controllertm
Leap Motion ControllerTM The world’s leading hand tracking technology The Leap Motion Controller from Ultraleap is an optical hand tracking module that captures the movement of users’ hands and fingers so they can interact naturally with digital content. Small, fast, and accurate, the Leap Motion Controller can be used for productivity applications with Windows computers, integrated into enterprise- grade hardware solutions or displays, or attached to virtual/augmented reality headsets for AR/VR/XR prototyping, research, and development. The controller is capable of tracking hands within a 3D interactive zone that extends up to 60cm (24”) or more, extending from the device in a 120×150° field of view. Leap Motion‘s software is able to discern 27 distinct hand elements, including bones and joints, and track them even when they are obscured by other parts of the hand. With a 120Hz refresh rate and low-latency software, the time between motion and photon falls beneath the human perception threshold1. An accessory component, the VR Developer Mount, allows for easy, reliable, and consistent attachment of the device to virtual reality headsets such as the Oculus Rift and HTC Vive. The Leap Motion App Gallery features 75+ legacy desktop applications and a demo suite for virtual reality. Example applications • Entertainment (location-based VR/AR experiences, arcades, amusement parks) • Healthcare (stroke rehabilitation, training, mirror, medical imaging, lazy eye treatment) • Therapy and Education (anatomic visualizations, hands-on learning) • Personnel training (flight simulators, complex computer systems) • Industrial design and engineering (automotive, assembly lines, facilities management) • Robotics (telepresence, robotic controls, AI-assisted teaching) The Leap Motion Controller features a 120×150° • Global team collaboration field of view and an interactive tracking range of more than 2 feet (60cm). -
Natural Menu Interactions in VR with Leap Motion Masterarbeit
Natural Menu Interactions in VR with Leap Motion Masterarbeit Zur Erlangung des Grades Master of Science (M.Sc.) im Studiengang Informatik vorgelegt von Björn Zeutzheim Erstgutachter: Prof. Dr. Stefan Müller (Institut für Computervisualistik, AG Computergraphik) Zweitgutachter: Nils Höhner, M.Sc. (Institut für Wissensmedien, IWM) Koblenz, der 6. September 2019 Erklärung Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ja Nein Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einverstanden. □ □ . (Ort, Datum) (Unterschrift) Abstract With the appearance of modern virtual reality (VR) headsets on the consumer market, there has been the biggest boom in the history of VR technology. Naturally, this was accompanied by an increasing focus on the problems of current VR hardware. Especially the control in VR has always been a complex topic. One possible solution is the Leap Motion, a hand tracking device that was initially developed for desktop use, but with the last major software update it can be attached to standard VR headsets. This device allows very precise tracking of the user’s hands and fingers and their replication in the virtual world. The aim of this work is to design virtual user interfaces that can be operated with the Leap Motion to provide a natural method of interaction between the user and the VR environment. After that, subject tests are performed to evaluate their performance and compare them to traditional VR controllers. Zusammenfassung Mit dem Erscheinen moderner Virtual Reality (VR) Headsets auf dem Verbrauchermarkt, gab es den bisher größten Aufschwung in der Geschichte der VR Technologie. -
Universidad Católica De Santiago De Guayaquil Facultad De Artes Y Humanidades Carrera De Ingenieria En Producción Y Dirección En Artes Multimedia
UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE ARTES Y HUMANIDADES CARRERA DE INGENIERIA EN PRODUCCIÓN Y DIRECCIÓN EN ARTES MULTIMEDIA TÌTULO: CREACIÓN DE UNA APLICACIÓN MULTIMEDIA QUE DESARROLLE POR MEDIO DE JUEGOS Y ACTIVIDADES LAS HABILIDADES MOTRICES FINAS EN LOS NIÑOS DE PREESCOLAR USANDO LA REALIDAD VIRTUAL EN LOS DISPOSITIVOS MÓVILES TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN PRODUCCIÓN Y DIRECCIÓN EN ARTES MULTIMEDIA AUTOR: ROBERTO ADELKARÍN BELTRÁN LUCAS TUTOR: LIC. LAMBERT SARANGO YAMIL, MGS Guayaquil, Ecuador 2015 UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE ARTES Y HUMANIDADES INGENIERIA EN PRODUCCIÓN Y DIRECCIÓN EN ARTES MULTIMEDIA CERTIFICACIÓN Certificamos que el presente trabajo fue realizado en su totalidad por Roberto Adelkarín Beltrán Lucas, como requerimiento parcial para la obtención del Título de Ingeniero en Producción y Dirección de Arte Multimedia. TUTOR ______________________ Lic. Yamil Lambert Sarango, Mgs DIRECTOR DE LA CARRERA ______________________ Lic. Víctor Hugo Moreno, Mgs Guayaquil, a los 29 del mes de septiembre del año 2015 UNIVERSIDAD CATÓLICA DE SANTIAGO DE GUAYAQUIL FACULTAD DE ARTES Y HUMANIDADES INGENIERIA EN PRODUCCIÓN Y DIRECCIÓN EN ARTES MULTIMEDIA DECLARACIÓN DE RESPONSABILIDAD Yo, Roberto Adelkarín Beltrán Lucas DECLARO QUE: El Trabajo de Titulación Creación de una aplicación multimedia que a través de juegos y actividades desarrolle las habilidades cognitivas y motrices en los niños de preescolar, usando para ello la realidad virtual en los dispositivos móviles previa a la obtención del Título de Ingeniería en producción y dirección de arte multimedia, ha sido desarrollado respetando derechos intelectuales de terceros conforme las citas que constan al pie de las páginas correspondientes, cuyas fuentes se incorporan en la bibliografía. -
January 2020
Volume 8 Issue 2 Department of ECE, Half-Yearly Newsle�er JUNE 2019 - NOV 2019 Editor’s Note MEET THE TEAM FACULTY CO-ORDINATORS : DESIGN HEADS : 1. Dr. S. Radha 1. Jakkula Divya Tej, IV A Prof. & HOD, ECE 2. G.S. Karthik Narayanan, IV A 2. Dr. K.T. Selvan Professor, ECE DESIGNERS : 1. P. Abishek Viswanath, II A FACULTY INCHARGE : 2. Akilandeshwari R, II A 1. Dr. M. Gulam Nabi Alsath 3. Arjun Krishnan, III A Associate Professor, ECE 4. Athithiyan K, III A 5. Hyadarani Jayadharan, III A EDITORS : 6. Sai Deepika I, III C 1. Andrew Martin, IV A 7. Sanjana Sumanth, III C 2. Chinmayi Udaybhaskar, IV A 8. Sharath N Chittaragi, III C SUB EDITORS : 1. Anirudh L, III A 2. Divya N, III A CONTENTS Invited Article 5 Visits and Interactions 11 Expert Lectures 13 Events Organised and Attended 15 Report on Teacher Development Program 18 Professional Roles and Recognitions 22 Research News 25 Student’s Corner 31 Club Report 37 Tech & Travel 46 Campus Stars 49 Study Corner 52 Counsel for Confusion 56 Wassup? 58 Gadget Gizmos 62 Writer’s Enclave 65 Volume 8 Issue 2 5 INVITED ARTICLE Hyperspectral Imaging Dr. Hemalatha R Associate Professor Hyperspectral imaging (HSI) is the technique of capturing and processing an image at a very large number of wavelengths. It breaks the image down into tens or hundreds of colors, while multispectral imaging might evaluate an image in three or four colors. Hyperspectral sensors collect information as a set of ‘images’, which form a three-dimensional (x,y,λ) hyperspectral data cube, where x and y represent two spatial dimensions of the scene, and λ represents the spectral dimension (comprising a range of wavelengths) as shown below. -
Patten Smith and Faith Jones
July 2019 New technologies in survey research Ipsos MORI Social Research Institute Patten Smith and Faith Jones 1 19-01267301 | Version 10 | Confidential | This work was carried out in accordance with the requirements of the international quality standard for Market Research, ISO 20252, and with the Ipsos MORI Terms and Conditions which can be found at http://www.ipsos-mori.com/terms. © ESRC 2019 19-01267301 | Version 12 | Public| Confidential | This work was carried out in accordance with the requirements of the international quality standard for Market Research, ISO 20252, and with the Ipsos MORI Terms and Conditions which can be found at http://www.ipsos-mori.com/terms. © ESRC 2019 Ipsos MORI | [Report title] Contents 1 Executive Summary .................................................................................................................... 1 2 Introduction ............................................................................................................................... 7 3 The new methodologies .......................................................................................................... 10 Using Smartphones in Online Surveys .................................................................................................................... 10 App Based Measurement of Activity Type (eg time-use, travel, consumption) in Diaries ............................. 12 In-the-moment surveys ............................................................................................................................................ -
Trump Camp Posts Fake Video of Biden () Tesla Bot Explained
Serving robot finds work at Victoria restaurant () Utopia VR - The Metaverse for Everyone () Utopia VR Promo Video () Facebook warned over ‘very small’ indicator LED on smart glasses, as EU DPAs flag privacy concerns () Google’s Former AI Ethics Chief Has a Plan to Rethink Big Tech () Introducing iPhone 13 Pro | Apple () Introducing Apple Watch Series 7 | Apple () Apple reveals Apple Watch Series 7, featuring a larger, more advanced display () Xiaomi shows off concept smart glasses with MicroLED display () Xiaomi Smart Glasses | Showcase | A display in front of your eyes () ‘Neurograins’ Could be the Next Brain-Computer Interfaces () Welcome back to the moment. With Ray-Ban x Facebook () Facebook's Ray-Ban Stories smart glasses: Cool or creepy? () Introducing WHOOP 4.0 - The Personalized Digital Fitness and Health Coach () Introducing WHOOP Body - The Future of Wearable Technology () The Future of Communication in the Metaverse () Making pancakes with Reachy through VR Teleoperation () Trump Camp Posts Fake Video Of Biden () More than 50 robots are working at Singapore's high-tech hospital () The manual for Facebook’s Project Aria AR glasses shows what it’s like to wear them () Tesla Bot explained () Page 1 of 212 Tesla Bot Takes Tech Demos to Their Logical, Absurd Conclusion () Watch brain implant help man 'speak' for the first time in 15 years () An Artificial Intelligence Helped Write This Play. It May Contain Racism () Elon Musk REVEALS Tesla Bot () Meet Grace, a humanoid robot designed for healthcare () Horizon Workrooms - Remote Collaboration Reimagined () Atlas | Partners in Parkour () Inside the lab: How does Atlas work? () Neural recording and stimulation using wireless networks of microimplants () The Metaverse is a Dystopian Nightmare. -
Modelling Physical Activity in Virtual Reality Games
Modelling Physical Activity in Virtual Reality Games Soojeong Yoo Computer Human Adapted Interaction (CHAI) lab Faculty of Engineering and Computer Science The University of Sydney Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Soojeong Yoo Modelling Physical Activity in Virtual Reality Games January, 2020 Supervisor: Prof. Judy Kay The University of Sydney Computer Human Adapted Interaction (CHAI) lab Faculty of Engineering and Computer Science 1 Cleveland Street Sydney, 2008 Keywords Virtual Reality; Head Mounted Display; Exercise; Exertion; Games; User Model; Personalisation; Personal Informatics; Long-term Data; Physical Activity; Physical Activity Tracker; Exergame. iii Abstract This thesis was inspired by the possibility that virtual reality (VR) games, which are designed primarily to be fun, could also provide exercise. It aimed to gain insights about this by exploring whether people can gain beneficial levels of exercise while playing VR games and how they might use VR games for exercise over several weeks. Furthermore, this work also focuses on how the level of physical activity that can be captured during gameplay and how a long-term user model can be created for individual players, as a foundation for supporting the user in gaining personal informatics insights about their exertion as well as being used for personalisation and external recommendation for VR games. The key contributions of this research are: • The first study of a diverse set of commercial VR games to gain insights about the level of actual and perceived exertion players have. • The first long-term study of VR games in a sedentary workplace to gain insights about the ways people utilise it and the levels of exertion they gain. -
Instruction Manual
PO#2B4450-LS431-B002-说明书-A2 印色:单黑 材质:80g书写纸 尺寸:80*150 mm version:1.0 User Manual Activity Tracker Model:21200 FCC ID: OU9L405-B02 Manufactured for Zewa, Inc. Thank you very much for selecting Activity Tracker 21200 . 12960 Commerce Lakes Drive#29 Fort Myers, FL 33913 USA www.zewa.com Please read the user manual carefully and thoroughly so as to ensure Toll Free Customer Service: 1-888-993-3592 the safe usage of this product, Keep the manual well for further [email protected] reference in case you have problems. Table of Contents Table of Contents Symbol Meaning Symbol Meaning ......................................................................................................... 2 TFT Display ......................................................................................................... 4 Overview General Instructions ......................................................................................................... 5 Device Components ......................................................................................................... 5 List ..................................................................................................................................... 5 Initial Start-Up Activate the Activity Tracker .............................................................................................. 6 Install the App and Pair-up ................................................................................................ 7 Tie the wristband .............................................................................................................