“How to Do a Good Experiment”

Total Page:16

File Type:pdf, Size:1020Kb

“How to Do a Good Experiment” “How to do a Good Experiment” Marc S. Mendonca, Ph.D. Since before the time of the Ancient Greeks, thousands of years ago, people have tried to find out more about the world around them, wondering how and why things work. Scientists come up with many great ideas to show how things work, but for an idea to become accepted, it has to be tested. The tool scientists use to test their theories is called the scientific method. Whether you are studying stars, caterpillars or medicines, this method remains the same. If you have an idea, or a question, you have to be able to prove it and give evidence so that other scientists can check and test your results. Full reference: Martyn Shuttleworth (Mar 19, 2008). How to Conduct Science Experiments. Retrieved from Explorable.com: https://explorable.com/conduct-science-experiments 1) Pick a Scientific Topic Experiments whose results cause sweeping scientific paradigm shifts are very, very rare. (Sorry) The vast majority of experiments answer small (focused), specific questions. Science is built upon the accumulation of data from countless experiments. Pick a topic or an unanswered question with a small, testable scope. Science moves really fast! Serious scientific research requires you do extensive background reading (before you plan your experiments). Deep Dive Into the Literature Have past experiments (i.e. the published literature) answered the question you want to study? If yes, then what questions have been left unanswered in your area of research interest? What is your overarching Hypothesis? (The BIG IDEA) Narrow your research focus to one testable problem at a time! Deep Dive Into the Literature How to begin? • Actively read a book(s) that surveys the entire field that can act as a jumping-off point • Talk to people (e.g. your advisor, postdocs) who are well-versed in the field and get their suggestions for what to look at • Use technology… Find all-around resources like Wikipedia and use those as jumping-off points • For academic reading, focus on reading review articles which summarize findings GO TO SEMINARS!!!!! Deep Dive Into the Literature You should be reading ………. Deep Dive Into the Literature You should be reading on a regular basis! Deep Dive Into the Literature You should be reading on a regular basis! Carefully read one paper every day!! Deep Dive Into the Literature Read the primary literature in your area of interest Start with papers that have high impact/citation numbers Read “deeply” i.e. the older literature!! Find the “original” papers in your area of interest. (these are frequently not the highly cited papers) Read technique papers!!!! 2) Make a hypothesis Your hypothesis should be a quantitative declarative sentence and a prediction of the experimental results. Informed by the results of literature research and perhaps some preliminary data you or your lab have gathered Remember you are testing your hypothesis: (it could be wrong, either way you learn from good experiments) 2) Isolate your variable(s) Good scientific experiments test specific, measurable parameters called variables. In general, when you perform an experiment for a range of values for the variable you are testing (dose response) When doing experiments try to adjust only the specific variable(s) you are testing for 3) Plan you data collection Know what data you want to collect and when! If you do not know the time scale cover short and long ranges of time. Design a table to write down data, time points, etc. (Note when things went well and when “the wheels came off” and things did not go so well) 4) Be Methodical!! Carefully plan what reagents you are going to use and how you will use them! Make sure reagents are vetted, fresh, and at proper temperature and pH. Keep your experiments to a schedule! (do not assume 15 minutes or 30 minutes or 1 day will not matter) 5) Record your data and procedures Record “all” your data and procedures immediately into your lab book. (outliers too) Repeat experiments, three to five times. Quantitate your endpoints, calculate means ± s.d. Use appropriate statistical methods to test for significance. If appropriate, plot your data (look for visual trends) Plot trend lines, best fit curves, etc. 6) Analyze data from each experiment, organize and state your results, develop your conclusions. Was your hypothesis correct? Were there observable trends in the data? Were there any unexpected data or trends? Do you have unanswered questions that can be the basis of future experiments? Write up your results into a meeting abstract and build a poster or talk at a meeting. Write up a draft of your paper. Volume 186, Number 5, November 2016 ISSN 0033–7587 R a d i a t i Submit and publish your best stuff in: o n R e Radiation Research s e a r c h Radiation Research V o l u m e 1 8 6 , N u m b e r 5 , N o v e m b e r 2 0 1 6 In this issue: Review by Mary Sproull and Kevin Camphausen, “State- of-the-Art Advances in Radiation Biodosimetry for Mass P a Casualty Events Involving Radiation Exposure” g e s On the cover: 4 Tilton et al., “Identification of Differential Gene 2 3 – Expression Patterns after Acute Exposure to High 5 3 and Low Doses of Low-LET Ionizing Radiation in a 8 Reconstituted Human Skin Tissue” So…. Why is only 20% of the published biomedical literature reproducible? Good Science for “Dummies” YOU MUST TAKE CONTROL OF YOUR EXPERIMENTS!! YOU MUST TAKE CONTROL OF YOUR EXPERIMENTS!! A control is a set of base values against which you use to compare your experimental results/data from your experiment. Without these you have no idea whether your results are higher, lower, or “not statistically different”. YOU MUST TAKE CONTROL OF YOUR EXPERIMENTS!! A control is a set of base values against which you use to compare your experimental results/data from your experiment. Without these you have no idea whether your results are higher, lower, or “not statistically different”. CONTROLS, CONTROLS, CONTROLS….. Because CONTROLS ARE SO……… Because CONTROLS ARE SO……… BORING!!!!! To cut or not to cut……… To cut or not to cut……… Quiet, the tumor cells are sleeping… Quiet, the tumor cells are sleeping… Quiet, the tumor cells are sleeping… Quiet, the tumor cells are sleeping… Quiet, the tumor cells are sleeping… Quiet, the tumor cells are sleeping… Quiet, the tumor cells are sleeping… Quiescent Cells = Stem Cells CONTROLS = SCIENTIFIC RIGOR CONTROLS = SCIENTIFIC RIGOR VET YOUR REAGENTS VET YOUR REAGENTS VET YOUR REAGENTS VET YOUR REAGENTS CONTROLS = SCIENTIFIC RIGOR VET YOUR REAGENTS ARE YOUR CELLS WHAT YOU THINK THEY ARE? ARE YOUR VECTORS, PROBES, & ANTIBODIES WHAT YOU THINK THEY ARE? Deep Dive Into the Literature Write a NIH Type Specific Aims Page on Your Research Idea .
Recommended publications
  • Introduction to Biostatistics
    Introduction to Biostatistics Jie Yang, Ph.D. Associate Professor Department of Family, Population and Preventive Medicine Director Biostatistical Consulting Core Director Biostatistics and Bioinformatics Shared Resource, Stony Brook Cancer Center In collaboration with Clinical Translational Science Center (CTSC) and the Biostatistics and Bioinformatics Shared Resource (BB-SR), Stony Brook Cancer Center (SBCC). OUTLINE What is Biostatistics What does a biostatistician do • Experiment design, clinical trial design • Descriptive and Inferential analysis • Result interpretation What you should bring while consulting with a biostatistician WHAT IS BIOSTATISTICS • The science of (bio)statistics encompasses the design of biological/clinical experiments the collection, summarization, and analysis of data from those experiments the interpretation of, and inference from, the results How to Lie with Statistics (1954) by Darrell Huff. http://www.youtube.com/watch?v=PbODigCZqL8 GOAL OF STATISTICS Sampling POPULATION Probability SAMPLE Theory Descriptive Descriptive Statistics Statistics Inference Population Sample Parameters: Inferential Statistics Statistics: 흁, 흈, 흅… 푿ഥ , 풔, 풑ෝ,… PROPERTIES OF A “GOOD” SAMPLE • Adequate sample size (statistical power) • Random selection (representative) Sampling Techniques: 1.Simple random sampling 2.Stratified sampling 3.Systematic sampling 4.Cluster sampling 5.Convenience sampling STUDY DESIGN EXPERIEMENT DESIGN Completely Randomized Design (CRD) - Randomly assign the experiment units to the treatments
    [Show full text]
  • Experimentation Science: a Process Approach for the Complete Design of an Experiment
    Kansas State University Libraries New Prairie Press Conference on Applied Statistics in Agriculture 1996 - 8th Annual Conference Proceedings EXPERIMENTATION SCIENCE: A PROCESS APPROACH FOR THE COMPLETE DESIGN OF AN EXPERIMENT D. D. Kratzer K. A. Ash Follow this and additional works at: https://newprairiepress.org/agstatconference Part of the Agriculture Commons, and the Applied Statistics Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Kratzer, D. D. and Ash, K. A. (1996). "EXPERIMENTATION SCIENCE: A PROCESS APPROACH FOR THE COMPLETE DESIGN OF AN EXPERIMENT," Conference on Applied Statistics in Agriculture. https://doi.org/ 10.4148/2475-7772.1322 This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Conference on Applied Statistics in Agriculture Kansas State University Applied Statistics in Agriculture 109 EXPERIMENTATION SCIENCE: A PROCESS APPROACH FOR THE COMPLETE DESIGN OF AN EXPERIMENT. D. D. Kratzer Ph.D., Pharmacia and Upjohn Inc., Kalamazoo MI, and K. A. Ash D.V.M., Ph.D., Town and Country Animal Hospital, Charlotte MI ABSTRACT Experimentation Science is introduced as a process through which the necessary steps of experimental design are all sufficiently addressed. Experimentation Science is defined as a nearly linear process of objective formulation, selection of experimentation unit and decision variable(s), deciding treatment, design and error structure, defining the randomization, statistical analyses and decision procedures, outlining quality control procedures for data collection, and finally analysis, presentation and interpretation of results.
    [Show full text]
  • An Introduction to Psychometric Theory with Applications in R
    What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD An introduction to Psychometric Theory with applications in R William Revelle Department of Psychology Northwestern University Evanston, Illinois USA February, 2013 1 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD Overview 1 Overview Psychometrics and R What is Psychometrics What is R 2 Part I: an introduction to R What is R A brief example Basic steps and graphics 3 Day 1: Theory of Data, Issues in Scaling 4 Day 2: More than you ever wanted to know about correlation 5 Day 3: Dimension reduction through factor analysis, principal components analyze and cluster analysis 6 Day 4: Classical Test Theory and Item Response Theory 7 Day 5: Structural Equation Modeling and applied scale construction 2 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD Outline of Day 1/part 1 1 What is psychometrics? Conceptual overview Theory: the organization of Observed and Latent variables A latent variable approach to measurement Data and scaling Structural Equation Models 2 What is R? Where did it come from, why use it? Installing R on your computer and adding packages Installing and using packages Implementations of R Basic R capabilities: Calculation, Statistical tables, Graphics Data sets 3 Basic statistics and graphics 4 steps: read, explore, test, graph Basic descriptive and inferential statistics 4 TOD 3 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD What is psychometrics? In physical science a first essential step in the direction of learning any subject is to find principles of numerical reckoning and methods for practicably measuring some quality connected with it.
    [Show full text]
  • Cluster Analysis for Gene Expression Data: a Survey
    Cluster Analysis for Gene Expression Data: A Survey Daxin Jiang Chun Tang Aidong Zhang Department of Computer Science and Engineering State University of New York at Buffalo Email: djiang3, chuntang, azhang @cse.buffalo.edu Abstract DNA microarray technology has now made it possible to simultaneously monitor the expres- sion levels of thousands of genes during important biological processes and across collections of related samples. Elucidating the patterns hidden in gene expression data offers a tremen- dous opportunity for an enhanced understanding of functional genomics. However, the large number of genes and the complexity of biological networks greatly increase the challenges of comprehending and interpreting the resulting mass of data, which often consists of millions of measurements. A first step toward addressing this challenge is the use of clustering techniques, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. Cluster analysis seeks to partition a given data set into groups based on specified features so that the data points within a group are more similar to each other than the points in different groups. A very rich literature on cluster analysis has developed over the past three decades. Many conventional clustering algorithms have been adapted or directly applied to gene expres- sion data, and also new algorithms have recently been proposed specifically aiming at gene ex- pression data. These clustering algorithms have been proven useful for identifying biologically relevant groups of genes and samples. In this paper, we first briefly introduce the concepts of microarray technology and discuss the basic elements of clustering on gene expression data.
    [Show full text]
  • Reliability Engineering: Today and Beyond
    Reliability Engineering: Today and Beyond Keynote Talk at the 6th Annual Conference of the Institute for Quality and Reliability Tsinghua University People's Republic of China by Professor Mohammad Modarres Director, Center for Risk and Reliability Department of Mechanical Engineering Outline – A New Era in Reliability Engineering – Reliability Engineering Timeline and Research Frontiers – Prognostics and Health Management – Physics of Failure – Data-driven Approaches in PHM – Hybrid Methods – Conclusions New Era in Reliability Sciences and Engineering • Started as an afterthought analysis – In enduing years dismissed as a legitimate field of science and engineering – Worked with small data • Three advances transformed reliability into a legitimate science: – 1. Availability of inexpensive sensors and information systems – 2. Ability to better described physics of damage, degradation, and failure time using empirical and theoretical sciences – 3. Access to big data and PHM techniques for diagnosing faults and incipient failures • Today we can predict abnormalities, offer just-in-time remedies to avert failures, and making systems robust and resilient to failures Seventy Years of Reliability Engineering – Reliability Engineering Initiatives in 1950’s • Weakest link • Exponential life model • Reliability Block Diagrams (RBDs) – Beyond Exp. Dist. & Birth of System Reliability in 1960’s • Birth of Physics of Failure (POF) • Uses of more proper distributions (Weibull, etc.) • Reliability growth • Life testing • Failure Mode and Effect Analysis
    [Show full text]
  • Biostatistics (BIOSTAT) 1
    Biostatistics (BIOSTAT) 1 This course covers practical aspects of conducting a population- BIOSTATISTICS (BIOSTAT) based research study. Concepts include determining a study budget, setting a timeline, identifying study team members, setting a strategy BIOSTAT 301-0 Introduction to Epidemiology (1 Unit) for recruitment and retention, developing a data collection protocol This course introduces epidemiology and its uses for population health and monitoring data collection to ensure quality control and quality research. Concepts include measures of disease occurrence, common assurance. Students will demonstrate these skills by engaging in a sources and types of data, important study designs, sources of error in quarter-long group project to draft a Manual of Operations for a new epidemiologic studies and epidemiologic methods. "mock" population study. BIOSTAT 302-0 Introduction to Biostatistics (1 Unit) BIOSTAT 429-0 Systematic Review and Meta-Analysis in the Medical This course introduces principles of biostatistics and applications Sciences (1 Unit) of statistical methods in health and medical research. Concepts This course covers statistical methods for meta-analysis. Concepts include descriptive statistics, basic probability, probability distributions, include fixed-effects and random-effects models, measures of estimation, hypothesis testing, correlation and simple linear regression. heterogeneity, prediction intervals, meta regression, power assessment, BIOSTAT 303-0 Probability (1 Unit) subgroup analysis and assessment of publication
    [Show full text]
  • Big Data for Reliability Engineering: Threat and Opportunity
    Reliability, February 2016 Big Data for Reliability Engineering: Threat and Opportunity Vitali Volovoi Independent Consultant [email protected] more recently, analytics). It shares with the rest of the fields Abstract - The confluence of several technologies promises under this umbrella the need to abstract away most stormy waters ahead for reliability engineering. News reports domain-specific information, and to use tools that are mainly are full of buzzwords relevant to the future of the field—Big domain-independent1. As a result, it increasingly shares the Data, the Internet of Things, predictive and prescriptive lingua franca of modern systems engineering—probability and analytics—the sexier sisters of reliability engineering, both statistics that are required to balance the otherwise orderly and exciting and threatening. Can we reliability engineers join the deterministic engineering world. party and suddenly become popular (and better paid), or are And yet, reliability engineering does not wear the fancy we at risk of being superseded and driven into obsolescence? clothes of its sisters. There is nothing privileged about it. It is This article argues that“big-picture” thinking, which is at the rarely studied in engineering schools, and it is definitely not core of the concept of the System of Systems, is key for a studied in business schools! Instead, it is perceived as a bright future for reliability engineering. necessary evil (especially if the reliability issues in question are safety-related). The community of reliability engineers Keywords - System of Systems, complex systems, Big Data, consists of engineers from other fields who were mainly Internet of Things, industrial internet, predictive analytics, trained on the job (instead of receiving formal degrees in the prescriptive analytics field).
    [Show full text]
  • Interactive Statistical Graphics/ When Charts Come to Life
    Titel Event, Date Author Affiliation Interactive Statistical Graphics When Charts come to Life [email protected] www.theusRus.de Telefónica Germany Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 2 www.theusRus.de What I do not talk about … Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 3 www.theusRus.de … still not what I mean. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data. 1973 PRIM-9 Tukey et al. Interactive Statistical Graphics – When Charts come to Life PSI Graphics One Day Meeting Martin Theus 4 www.theusRus.de Interactive Graphics ≠ Dynamic Graphics • Interactive Graphics … uses various interactions with the plots to change selections and parameters quickly. • Dynamic Graphics … uses animated / rotating plots to visualize high dimensional (continuous) data.
    [Show full text]
  • Cluster Analysis Or Clustering Is a Common Technique for Statistical
    IOSR Journal of Engineering Apr. 2012, Vol. 2(4) pp: 719-725 AN OVERVIEW ON CLUSTERING METHODS T. Soni Madhulatha Associate Professor, Alluri Institute of Management Sciences, Warangal. ABSTRACT Clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning, data mining, pattern recognition, image analysis and bioinformatics. Clustering is the process of grouping similar objects into different groups, or more precisely, the partitioning of a data set into subsets, so that the data in each subset according to some defined distance measure. This paper covers about clustering algorithms, benefits and its applications. Paper concludes by discussing some limitations. Keywords: Clustering, hierarchical algorithm, partitional algorithm, distance measure, I. INTRODUCTION finding the length of the hypotenuse in a triangle; that is, it Clustering can be considered the most important is the distance "as the crow flies." A review of cluster unsupervised learning problem; so, as every other problem analysis in health psychology research found that the most of this kind, it deals with finding a structure in a collection common distance measure in published studies in that of unlabeled data. A cluster is therefore a collection of research area is the Euclidean distance or the squared objects which are “similar” between them and are Euclidean distance. “dissimilar” to the objects belonging to other clusters. Besides the term data clustering as synonyms like cluster The Manhattan distance function computes the analysis, automatic classification, numerical taxonomy, distance that would be traveled to get from one data point to botrology and typological analysis. the other if a grid-like path is followed.
    [Show full text]
  • Cluster Analysis: What It Is and How to Use It Alyssa Wittle and Michael Stackhouse, Covance, Inc
    PharmaSUG 2019 - Paper ST-183 Cluster Analysis: What It Is and How to Use It Alyssa Wittle and Michael Stackhouse, Covance, Inc. ABSTRACT A Cluster Analysis is a great way of looking across several related data points to find possible relationships within your data which you may not have expected. The basic approach of a cluster analysis is to do the following: transform the results of a series of related variables into a standardized value such as Z-scores, then combine these values and determine if there are trends across the data which may lend the data to divide into separate, distinct groups, or "clusters". A cluster is assigned at a subject level, to be used as a grouping variable or even as a response variable. Once these clusters have been determined and assigned, they can be used in your analysis model to observe if there is a significant difference between the results of these clusters within various parameters. For example, is a certain age group more likely to give more positive answers across all questionnaires in a study or integration? Cluster analysis can also be a good way of determining exploratory endpoints or focusing an analysis on a certain number of categories for a set of variables. This paper will instruct on approaches to a clustering analysis, how the results can be interpreted, and how clusters can be determined and analyzed using several programming methods and languages, including SAS, Python and R. Examples of clustering analyses and their interpretations will also be provided. INTRODUCTION A cluster analysis is a multivariate data exploration method gaining popularity in the industry.
    [Show full text]
  • Double Blind Trials Workshop
    Double Blind Trials Workshop Introduction These activities demonstrate how double blind trials are run, explaining what a placebo is and how the placebo effect works, how bias is removed as far as possible and how participants and trial medicines are randomised. Curriculum Links KS3: Science SQA Access, Intermediate and KS4: Biology Higher: Biology Keywords Double-blind trials randomisation observer bias clinical trials placebo effect designing a fair trial placebo Contents Activities Materials Activity 1 Placebo Effect Activity Activity 2 Observer Bias Activity 3 Double Blind Trial Role Cards for the Double Blind Trial Activity Testing Layout Background Information Medicines undergo a number of trials before they are declared fit for use (see classroom activity on Clinical Research for details). In the trial in the second activity, pupils compare two potential new sunscreens. This type of trial is done with healthy volunteers to see if the there are any side effects and to provide data to suggest the dosage needed. If there were no current best treatment then this sort of trial would also be done with patients to test for the effectiveness of the new medicine. How do scientists make sure that medicines are tested fairly? One thing they need to do is to find out if their tests are free of bias. Are the medicines really working, or do they just appear to be working? One difficulty in designing fair tests for medicines is the placebo effect. When patients are prescribed a treatment, especially by a doctor or expert they trust, the patient’s own belief in the treatment can cause the patient to produce a response.
    [Show full text]
  • Observational Studies and Bias in Epidemiology
    The Young Epidemiology Scholars Program (YES) is supported by The Robert Wood Johnson Foundation and administered by the College Board. Observational Studies and Bias in Epidemiology Manuel Bayona Department of Epidemiology School of Public Health University of North Texas Fort Worth, Texas and Chris Olsen Mathematics Department George Washington High School Cedar Rapids, Iowa Observational Studies and Bias in Epidemiology Contents Lesson Plan . 3 The Logic of Inference in Science . 8 The Logic of Observational Studies and the Problem of Bias . 15 Characteristics of the Relative Risk When Random Sampling . and Not . 19 Types of Bias . 20 Selection Bias . 21 Information Bias . 23 Conclusion . 24 Take-Home, Open-Book Quiz (Student Version) . 25 Take-Home, Open-Book Quiz (Teacher’s Answer Key) . 27 In-Class Exercise (Student Version) . 30 In-Class Exercise (Teacher’s Answer Key) . 32 Bias in Epidemiologic Research (Examination) (Student Version) . 33 Bias in Epidemiologic Research (Examination with Answers) (Teacher’s Answer Key) . 35 Copyright © 2004 by College Entrance Examination Board. All rights reserved. College Board, SAT and the acorn logo are registered trademarks of the College Entrance Examination Board. Other products and services may be trademarks of their respective owners. Visit College Board on the Web: www.collegeboard.com. Copyright © 2004. All rights reserved. 2 Observational Studies and Bias in Epidemiology Lesson Plan TITLE: Observational Studies and Bias in Epidemiology SUBJECT AREA: Biology, mathematics, statistics, environmental and health sciences GOAL: To identify and appreciate the effects of bias in epidemiologic research OBJECTIVES: 1. Introduce students to the principles and methods for interpreting the results of epidemio- logic research and bias 2.
    [Show full text]