Birch Bog on Anthropogenically Transformed Raised Bogs. a Case Study from Pomerania (Poland)

Total Page:16

File Type:pdf, Size:1020Kb

Birch Bog on Anthropogenically Transformed Raised Bogs. a Case Study from Pomerania (Poland) water Article Birch Bog on Anthropogenically Transformed Raised Bogs. A Case Study from Pomerania (Poland) Zofia Sotek 1,*, Małgorzata Stasi ´nska 1, Ryszard Malinowski 2, Renata Gamrat 3 and Małgorzata Gałczy ´nska 4 1 Department of Botany and Natural Conservation, Faculty of Biology, University of Szczecin, Felczaka 3c, PL-71-412 Szczecin, Poland; [email protected] 2 Department of Soil Science, Grassland and Environmental Chemistry, West Pomeranian University of Technology Szczecin, Słowackiego 17, PL-71-434 Szczecin, Poland; [email protected] 3 Department of Ecology, Environmental Protection and Management, West Pomeranian University of Technology Szczecin, Słowackiego 17, PL-71-434 Szczecin, Poland; [email protected] 4 Department of Chemistry, Microbiology and Environmental Biotechnology, West Pomeranian University of Technology Szczecin, Słowackiego 17, PL-71-434 Szczecin, Poland; [email protected] * Correspondence: [email protected] Received: 1 April 2019; Accepted: 31 May 2019; Published: 12 June 2019 Abstract: Birch bog is formed on the margins of or within raised bogs, on secondary habitats. The study aim was to understand the vegetation and mycological diversity of birch bog on the background of habitat conditions on raised bogs subject to anthropogenic changes, including 15 areas located on seven bogs. Two of the analyzed areas were located on a peat bog not subject to human impact. Phytosociological and mycosociological relevés were taken and substrate analyses were carried out (pH, humidity, N-NH4, N-NO2, N-NO3 and P-PO4). Based on habitat predictors, two area groups were distinguished, differing primarily in humidity. More humid habitats were present on the margins of bogs, and were characterized by lower acidity and higher N-NH4 and P-PO4 abundance. Despite the fact they were enriched by runoffs from the neighboring arable fields, this was not always reflected in the plant and fungi species richness. Quercus robur appeared on less humid habitats, which may be a symptom of unfavorable changes toward habitat drying. In the majority of cases, changes in the habitat independent of the birch patches located and the human impact type are not yet reflected in the vegetation. However, they may be indicated by the fungal diversity, highest in former peat extraction pits, and lowest in pristine peat. Keywords: Vaccinio uliginosi-Betuletum pubescentis; peat bog plants; macrofungi; former peat extraction pits; Betula pubescens; habitat predictors 1. Introduction Bogs are among the most valuable ecosystems, not only due to the rare and valuable species found therein, but also due to the fact that they are natural retention basins. They contain 10% of the freshwater volume of the Earth [1]. Moreover, they are of key importance for the long-term sequestration of atmospheric carbon [2]. It is estimated that peat contains circa 26% of all the terrestrial carbon accumulated since the Last Glacial Maximum [3] thus they are among the largest terrestrial carbon reservoirs. Close to 95% of all peat bogs around the world are located in the northern hemisphere in a cold and at the same time humid temperate climate [4]. It is also here where the majority of raised bogs are present, supplied solely by rainwater. Such ecosystems are highly susceptible not only to natural factors, such as unfavourable climatic changes but above all hydrological disturbances resulting from human activity [5]. Water 2019, 11, 1224; doi:10.3390/w11061224 www.mdpi.com/journal/water Water 2019, 11, 1224 2 of 18 Globally, the human impact on wetlands has intensified in the last 200 years, and particularly in the first half of the 20th century [1,6]. This phenomenon occurred at a high rate and extensively primarily in industrialised countries, where the bog areas have been drastically reduced [7]. Wetlands, including raised bogs, were frequently drained in order to use them in agriculture, forestry and to obtain peat [8,9]. In Europe, almost all bog areas have been disturbed [6], whereas in Poland, close to 80% of bog ecosystems have been subject to human interference [10]. In the majority of cases this has led to a loss or degradation of those valuable habitats and, as a consequence, to changes or loss of vegetation typical of bog ecosystems [11–13]. Plant species of raised bog communities are typically stenobionts; thus, they are among the ecosystem elements that are most sensitive to habitat changes, including rapidly expanding anthropogenic amendments, including drying and eutrophication [12,14]. Drying may trigger peat decomposition processes, leading to C and CO2 loss, as well as to increased mineralisation of nutrients, leading to internal eutrophication [15,16]. Processes occurring as a result of human impact may lead to a rapid invasion of trees on open areas and development of forest communities. This is an unfavourable phenomenon for raised bogs, as it leads to additional water drainage, increasing their degradation [17,18]. However, in the case of undisturbed bogs, tree invasion is inhibited, and their increasing share takes place only under conditions typical of late stages of natural succession [19]. Among forest communities found on raised bogs, bog coniferous and deciduous forests are distinguished, which are rare and valuable components of those ecosystems. They are included in the Annex 1 to the Habitats Directive of the EU, as 91D0: natural habitats of Community interest whose conservation requires the designation of special areas of conservation [20]. Birch bog (Vaccinio uliginosi-Betuletum pubescentis) is one such community. It is a plant community with Atlantic distribution type, occurring primarily in north-west Europe, including Austria [21], the Czech Republic [22], Denmark [23], Germany [24,25], Hungary [26], Ireland [27], Slovakia [28], and in Ukraine [29]. In Poland, it reaches its eastern boundary of geographic distribution. Patches of birch bog develop typically on drainless terrain depressions with high groundwater level, on rather shallow, mesotrophic, acidic transition peats, on acidic soils with the nature of stagnosol. It is the final stage of succession on transitional bogs, whereas it occurs on the margins of raised bogs, as well as on the habitats with secondary genesis—in the areas where intensive decomposition processes occur [30,31]. In many parts of Ireland, it develops on exploited and drained peatlands, while raised bogs are mainly associated with areas enriched with nutrients, originating from surface runoffs from surrounding areas [32]. Previous studies of swamp birch, both in north-western [23,27,32] and central [21,22] Europe, were mainly focused on understanding the species composition of plants that build this community and its structure. However, in general this aim was not a separate subject of consideration. Usually, it was included in the study on plants colonising the examined bog [33–35]; sometimes, the selected properties of the habitat were also taken into account [36]. Few reports concern the Holocene history of birch bog woodlands [37–41]. They show that phases rich in Betula were already present in the early Holocene or the Late Glacial in Central and Eastern Europe. Apart from plants, fungi are important biotic factors for the formation and functioning of phytocenoses because they are heterotrophic organisms they enter into a range of relationships with plants as well as influence their habitat directly, causing organic matter decomposition. Macromycetes of birch bog are sporadically included in research but they usually are only a single element of wider, more comprehensive studies [42,43]. Certain macromycetes species are strictly associated with peat ecosystems not to be found anywhere else [42,44,45]. Therefore, the condition of the plant community can be reflected not only by plants, their species composition and share, but also the diversity and composition of the mycobiota. These elements remain in a close relationship with the habitat conditions. However, to date these three components were not considered together in the aspect of anthropopression in birch bog. The aim of the study was to investigate the floristic and mycological diversity of birch bog in regard to habitat conditions in raised bogs under anthropogenic transformations. This objective was completed based on the answers to the following research questions: (1) Did the research areas differ significantly in terms of selected physical and chemical Water 2019, 11, 1224 3 of 18 properties of the soil, affecting the trophy of the habitat and, if so, whether this was influenced by the type of anthropopression? (2) Are there any significant differences in composition of fungal biota and plant species depending on the location of the research area and the type of anthropogenic impact? (3) If a lower level of habitat predictors (soil properties) is found, is this reflected in both plants and fungi or only in one of these components of the ecosystem? (4) Does the plant community have a chance to preserve its individuality and biodiversity despite the presence of anthropopression? 2. Materials and Methods The study was conducted in the period 2002–2004 and 2007–2009 in the area of seven raised bogs: Niewiadowo, Roby, Mszar near Stara Dobrzyca, Stramniczka, Torfowisko Toporzyk, Zielone Bagno and Ziemomy´sl,located in north-west Poland. Two of the studied objects are mid-forest bogs, and the other ones are located in the close vicinity of agricultural areas, used as arable fields or meadows. This means that they are exposed to an inflow of biogens as a result of surface runoffs. Only Mszar near Stara Dobrzyca was in the past and, is not exposed currently to any anthropogenic influences. Peat exploitation was performed on five of the examined locations, and it was preceded by the dewatering of deposits through a system of ditches that drained water from the peat bogs. However, the time of excavation of the first drainage ditches and the beginning of exploitation is unknown it may be concluded only on the basis of available historical maps.
Recommended publications
  • Riparian Vegetation Management
    Engineering in the Water Environment Good Practice Guide Riparian Vegetation Management Second edition, June 2009 Your comments SEPA is committed to ensuring its Good Practice Guides are useful and relevant to those carrying out activities in Scotland’s water environment. We welcome your comments on this Good Practice Guide so that we can improve future editions. A feedback form and details on how to send your comments to us can be found at the back of this guide in Appendix 1. Acknowledgements This document was produced in association with Northern Ecological Services (NES). Page 1 of 47 Engineering in the Water Environment Good Practice Guide: Riparian Vegetation Management Second edition, June 2009 (Document reference: WAT-SG-44) Contents 1 Introduction 3 1.1 What’s included in this Guide? 3 2 Importance of riparian vegetation 6 3 Establishing/creating vegetation 8 3.1 Soft or green engineering techniques 8 3.2 Seeding and planting of bare soil 10 3.3 Creating buffer strips 11 3.4 Planting trees and shrubs 15 3.5 Marginal vegetation 18 3.6 Urban watercourses 21 4 Managing vegetation 24 4.1 Management of grasses and herbs 24 4.2 Management of heath and bog 27 4.3 Management of adjacent wetlands 28 4.4 Management of non-native plant species 29 4.5 Management of scrub and hedgerows 31 4.6 Management of individual trees 31 4.7 Management of trees – riparian woodland 33 4.8 Management of trees – conifer plantations 35 4.9 Large woody debris 37 4.10 Marginal vegetation 37 4.11 Urban watercourses 40 4.12 Use of herbicides 40 4.13 Environmental management of vegetation 41 4.14 Vegetation management plans 41 5 Sources of further information 42 5.1 Publications 42 5.2 Websites 44 Appendix 1: Feedback form – Good Practice Guide WAT-SG-44 45 Page 2 of 47 1 Introduction This document is one of a series of good practice guides produced by SEPA to help people involved in the selection of sustainable engineering solutions that minimise harm to the water environment.
    [Show full text]
  • A Unique Raised Bog at Urbana, Ohio.*
    A UNIQUE RAISED BOG AT URBANA, OHIO.* ROBERT B. GORDON, Ohio State University. Located just north of the Champaign County Fair Grounds at Urbana, Ohio, is a unique dome-shaped bog, covered with shrubby vegetation for the most part, in which the center is raised at least ten feet above the margins. An old road crosses the bog. I have been told that it was once the main thorofare from Urbana to Columbus. Horses and wagons passed over it, I suppose, the drivers never realizing that a mat of fibrous roots less than one foot thick was all that held them over a body of water twelve feet in depth. Raised bogs, called "high moors" and "Hochmoore" in foreign literature, have long been known throughout Europe. N. S. Shaler is credited by Nichols with being the first to call attention to these peculiar swamps in North America, in 1888-89. Those which Shaler observed were "mostly limited to the eastern portion of Maine, near the shores of the Bay of Fundy," but some of lesser magnitude were reported for New Hampshire, northern Michigan, and Minnesota. Similar bogs, with centers about 13 feet above their margins, have been reported in the province of New Brunswick by Ganong (1897). Nichols (1919) described bogs of this type encountered in Maine, in which the elevation of the center above the margin varied from 2 or 3 feet to as high as 18 feet (e. g., Denbo Heath, covering several square miles in area). He asserts: "(1) that in the state of Maine raised bogs, in so far as they constitute a distinctive swamp type, are virtually restricted to the proximity of the seacoast; and (2) that in other portions of New England and of the eastern United States this type of bog is practically absent, although in occasional swamps it is possible to detect a slight elevation of the surface above the level of permanent ground water." Warming (1909) has summarized concisely the characteristic features of "Hochmoore." They owe their development to the growth of sphagnum mosses which absorb water that falls in the form of rain or snow.
    [Show full text]
  • National Water Summary Wetland Resources: Maine
    National Water Summary-Wetland Resources 213 Maine Wetland Resources M aine is rich in wetland resources. About 5 million acres, or one­ System Wetland description fourth of the State, is wetland. Maine has a wide variety of wetlands, Palustrine .................. Nontidal and tidal-freshwater wetlands in which ranging from immense inland peatlands to salt marshes and mud vegetation is predominantly trees (forested wet­ flats along the coast. lands); shrubs (scrub-shrub wetlands); persistent Wetlands are an integral part of Maine's natural resources. or nonpersistent emergent, erect, rooted herba­ ceous plants (persistent- and nonpersistent­ Wetlands provide essential habitat for certain types of wildlife and emergent wetlands); or submersed and (or) vegetation, including rare and endangered species. They are used floating plants (aquatic beds). Also, intermit­ for timber and peat; hunting, fishing, and shellfishing; education tently to permanently flooded open-water bod­ and research; and bird, wildlife and plant observation, all of which ies of less than 20 acres in which water is less than 6.6 feet deep. boost tourism and the general economy. Wetlands also provide flood control, bank and shoreline-erosion control, sediment retention, lacustrine ................. Nontidal and tidal-freshwater wetlands within an intermittently to permanently flooded lake or water fi ltration, and nutrient uptake. In recognition of the impor­ reservoir larger than 20 acres and (or) deeper tance of wetlands, many government and private organizations have than 6.6 feet. Vegetation, when present, is pre­ worked to preserve wetlands and educate the public about wetland dominantly nonpersistent emergent plants (non­ values. For example, the Maine Department of Conservation owns persistent-emergent wetlands), or submersed and (or) floating plants (aquatic beds), or both.
    [Show full text]
  • Archäologie Und Nation: Kontexte Der Erforschung „Vaterländischen Alterthums“
    Die Insel Rügen und die Erforschung ihrer vorgeschichtlichen Denkmäler, 1800 bis 1860 Achim Leube Die Insel Rügen ist heute nicht nur wegen ihrer natürlichen Schönheiten, sondern auch wegen des noch erhaltenen Reichtums vorgeschichtlicher Denkmäler eine der beliebtesten Urlaubs- und Erholungslandschaften Deutschlands. Der damit verbundene Tourismus sowie eine intensivere Be- schäftigung mit dem vaterländischen Altertum setzten auf Rügen am Ausgang des 18. Jahrhun- derts ein und erlebten in der ersten Hälfte des 19. Jahrhunderts einen starken Aufschwung. Das ist auch verständlich, wenn man das wirtschaftliche und gesellschaftliche Umfeld betrachtet. Um 1800 war die etwa 1.000 km2 große Insel von ca. 25.000 Menschen bewohnt, von denen etwa 20.000 Einwohner auf dem Lande in Leibeigenschaft einer überaus dominanten – mitunter auch als patriarchalisch bezeichneten – Gutsherrschaft lebten. In zwei kleinen Landstädten, Bergen (Stadtrecht 1613) und Garz (Stadtrecht 1319), gab es eine zahlenmäßig geringe Intelligenz – das Schulwesen lag ganz darnieder. Erst 1913 entstand ein rügensches Gymnasium in Bergen. Rügen gehörte seit 1637 zu Schweden, das aber nur geringe Steuern erhob und Schwedisch- Pommern weitgehend selbstständig beließ. Nachdem bereits unter König Friedrich Wilhelm I. 1720 die Grenzen Preußens bis zur Peene ausgedehnt worden waren, was zur Einverleibung Usedom­ Wollins geführt hatte, verblieb nur der nördliche Teil Vorpommerns und Rügen als „Schwedisch- Vorpommern“ in schwedischem Besitz. Erst nach dem Wiener Kongress im Jahre 1815 fiel dieser Teil Pommerns – nun als Neuvorpommern und Rügen bezeichnet – an Preußen.1 Die Entdeckung Rügens im frühen 19. Jahrhundert Bereits in schwedischer Zeit wurde Rügen als eine „deutsche“ Insel entdeckt und aufgesucht. Es begann 1796 mit einer Reise Wilhelm von Humboldts.
    [Show full text]
  • This Document Was Withdrawn on 6 November 2017
    2017. November 6 on understanding withdrawn was water for wildlife document This Water resources and conservation: the eco-hydrological requirements of habitats and species Assessing We are the Environment Agency. It’s our job to look after your 2017. environment and make it a better place – for you, and for future generations. Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are makingNovember your environment cleaner and healthier. 6 The Environment Agency. Out there, makingon your environment a better place. withdrawn was Published by: Environment Agency Rio House Waterside Drive, Aztec West Almondsbury, Bristol BS32 4UD Tel: 0870document 8506506 Email: [email protected] www.environment-agency.gov.uk This© Environment Agency All rights reserved. This document may be reproduced with prior permission of the Environment Agency. April 2007 Contents Brief summary 1. Introduction 2017. 2. Species and habitats 2.2.1 Coastal and halophytic habitats 2.2.2 Freshwater habitats 2.2.3 Temperate heath, scrub and grasslands 2.2.4 Raised bogs, fens, mires, alluvial forests and bog woodland November 2.3.1 Invertebrates 6 2.3.2 Fish and amphibians 2.3.3 Mammals on 2.3.4 Plants 2.3.5 Birds 3. Hydro-ecological domains and hydrological regimes 4 Assessment methods withdrawn 5. Case studies was 6. References 7. Glossary of abbreviations document This Environment Agency in partnership with Natural England and Countryside Council for Wales Understanding water for wildlife Contents Brief summary The Restoring Sustainable Abstraction (RSA) Programme was set up by the Environment Agency in 1999 to identify and catalogue2017.
    [Show full text]
  • 6-1 Final Report of the 2017 Reporting on The
    Baltic Marine Environment Protection Commission Group on Ecosystem-based Sustainable Fisheries FISH 8-2018 Warsaw, Poland, 23-24 May 2018 Document title Final report of the 2017 reporting on the implementation of Recommendation 32-33/1 Code 6-1 Category DEC Agenda Item 6 – Salmon and sea trout including HELCOM Recommendation 32-33/1 Submission date 9.4.2018 Submitted by Secretariat Background FISH 7-2017 considered the 2017 reporting of implementation of HELCOM Recommendation 32-33/1 based on the national reports of the Contracting Parties (document 6-2 of FISH 7) and agreed that the CPS can provide clarifications by 29 November and that after incorporating comments the Secretariat circulates the report for final endorsement by Fish. The meeting agreed that in the next reporting round of the Recommendation 32-33/1 (2020) the data needed to assess the implementation of this Recommendation, as included in document 6-2 Annex 3, should be explicitly included in the reporting request from the Secretariat. No clarifications were received by the Secretariat to the 2017 reporting since FISH 7-2017. The attached document contains the final report for the 2017 reporting of implementation of HELCOM Recommendation 32-33/1. Action requested The Contracting Parties are invited to submit clarifications to the still open issues and the Meeting is invited to endorse the 2017 reporting of Recommendation 32-33/1. Page 1 of 1 FISH 8-2018, 6-1 Report on implementation of HELCOM Recommendation 32-33/1 “Conservation of Baltic salmon (salmo salar) and sea trout (salmo trutta) populations by the restoration of their river habitats and management of river fisheries” (To be reported to the Commission every 3 years, starting in January 2012) 0.
    [Show full text]
  • Burns Bog Ecological Conservancy Area Management Plan May 2007
    Burns Bog Ecological Conservancy Area Management Plan May 2007 BURNS BOG ECOLOGICAL CONSERVANCY AREA MANAGEMENT PLAN TABLE OF CONTENTS 1.0 INTRODUCTION................................................................................................... 1 1.1 Public Acquisition and Management of Lands........................................... 1 1.2 Planning Process....................................................................................... 2 2.0 BACKGROUND .................................................................................................... 3 2.1 Formation of Burns Bog............................................................................. 3 2.2 Significance of Burns Bog ......................................................................... 4 2.3 Cultural History .......................................................................................... 4 2.4 Recent Bog History.................................................................................... 5 3.0 MANAGEMENT CONTEXT .................................................................................. 5 4.0 THE BOG LANDS AND THE GVRD .................................................................... 7 5.0 VISION AND OBJECTIVES.................................................................................. 7 5.1 Vision – 100 Year Timeframe .................................................................... 7 5.2 Mission ...................................................................................................... 8 5.3 Management
    [Show full text]
  • Typology of Polish Marine Waters
    G. Schernewski & M. Wielgat (eds.): Baltic Sea Typology Coastline Reports 4 (2004), ISSN 0928-2734 39 - 48 Typology of Polish marine waters Wlodzimierz Krzyminski1, Lidia Kruk-Dowgiallo2, Elzbieta Zawadzka-Kahlau2, Rajmund Dubrawski2, Magdalena Kaminska1, Elzbieta Lysiak-Pastuszak1 1 Institute of Meteorology and Water Management - Maritime Branch, Poland 2 Maritime Institute, ul. Abrahama 1, 80-307 Gdansk, Poland Abstract The article presents results of expert work carried out within the frame of a contract between the Polish Ministry of Environment and the consortium of four scientific Institutes . The Maritime Branch of the Institute of Mete-orology and Water Management (IMWM MB) from Gdynia and Maritime Institute (MI) from Gdansk have been responsible for the typology of Polish marine wa- ters. The analysis of data collected mainly during more than forty years of oceanographic activity of the IMWM MB allowed to discern the following water categories: - transitional waters including the entire areas of the Szczecin Lagoon, Vistula Lagoon and a part of the Gulf of Gdansk – the internal Puck Bay, called Puck Lagoon, as well as parts of the Gulf of Gdansk and Pomeranian Bay under significant influence of riverine plumes; - coastal waters comprising a band of water defined according to the article 2, par. 7, and tak- ing into account art.2, par.1, of the Water Framework Directive (WFD), excluding the areas of transitional waters; - modified waters comprising waters within the rivers mouth areas along the central Polish coast and corresponding to the issue of internal marine waters in the Polish legislation on ma- rine areas. 1 Introduction Following the request of the Polish Ministry of Environment regarding the implementation of the EU Water Framework Directive, a consortium of four scientific Institutes has been formed in Poland to elaborate the typology of the Polish surface and ground-waters.
    [Show full text]
  • Lowland Raised Bog (UK BAP Priority Habitat Description)
    UK Biodiversity Action Plan Priority Habitat Descriptions Lowland Raised Bog From: UK Biodiversity Action Plan; Priority Habitat Descriptions. BRIG (ed. Ant Maddock) 2008. This document is available from: http://jncc.defra.gov.uk/page-5706 For more information about the UK Biodiversity Action Plan (UK BAP) visit http://www.jncc.defra.gov.uk/page-5155 Please note: this document was uploaded in November 2016, and replaces an earlier version, in order to correct a broken web-link. No other changes have been made. The earlier version can be viewed and downloaded from The National Archives: http://webarchive.nationalarchives.gov.uk/20150302161254/http://jncc.defra.gov.uk/page- 5706 Lowland Raised Bog The definition of this habitat remains unchanged from the pre-existing Habitat Action Plan (https://webarchive.nationalarchives.gov.uk/20110303150026/http://www.ukbap.org.uk/UKPl ans.aspx?ID=20, a summary of which appears below. Lowland raised bogs are peatland ecosystems which develop primarily, but not exclusively, in lowland areas such as the head of estuaries, along river flood-plains and in topographic depressions. In such locations drainage may be impeded by a high groundwater table, or by low permeability substrata such as estuarine, glacial or lacustrine clays. The resultant waterlogging provides anaerobic conditions which slow down the decomposition of plant material which in turn leads to an accumulation of peat. Continued accrual of peat elevates the bog surface above regional groundwater levels to form a gently-curving dome from which the term ‘raised’ bog is derived. The thickness of the peat mantle varies considerably but can exceed 12m.
    [Show full text]
  • Instytut Meteorologii I Gospodarki Wodnej - Państwowy Instytut Badawczy Biuro Prognoz Hydrologicznych W Gdyni, Wydział Prognoz I Opracowań Hydrologicznych W Gdyni
    Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy Biuro Prognoz Hydrologicznych w Gdyni, Wydział Prognoz i Opracowań Hydrologicznych w Gdyni Komunikat hydrologiczny z dnia 16.10.2020 godz. 06 UTC Rejon: ujściowy odcinek Odry, Zalew Szczeciński, wybrzeże zachodnie, rzeki Przymorza, rzeka Ina Stan Stan Dobowa Stan Stan Stan Stan Strefy stanów Temperatura wody Wodowskaz Rzeka Województwo Ostrzega wody zmiana SNW SSW SWW Alarmowy wody [ºC] wczy [cm] stanu wody Szczecin Podjuchy Odra (Regalica) zachodniopomorskie 469 528 609 580 610 581 -23 Dolna wysokich 11.0 Szczecin Most Długi Odra zachodniopomorskie 458 515 592 570 600 570 -26 Dolna wysokich 12.6 Gryfino Odra zachodniopomorskie 466 523 602 570 600 584 -18 Dolna wysokich 11.8 Trzebież Zalew Szczeciński zachodniopomorskie 455 507 577 540 560 559 -26 Dolna wysokich 12.0 Wolin Cieśnina Dziwna zachodniopomorskie 459 506 572 560 580 554 -23 Dolna wysokich 10.8 Dziwnów Cieśnina Dziwna zachodniopomorskie 435 501 578 560 580 524 -26 Górna średnich Świnoujście Bałtyk zachodniopomorskie 416 500 599 560 580 516 -57 Górna średnich 11.7 Kołobrzeg Bałtyk zachodniopomorskie 430 502 601 570 610 508 -42 Górna średnich 10.6 Ustka Bałtyk pomorskie 440 503 593 570 600 508 -27 Górna średnich 10.2 Trzebiatów Rega zachodniopomorskie 126 196 350 350 370 166 -8 Dolna średnich 10.8 Resko Rega zachodniopomorskie 282 321 390 410 430 323 3 Górna średnich Bardy Parsęta zachodniopomorskie 185 238 372 360 400 213 2 Dolna średnich 10.4 Białogard Parsęta zachodniopomorskie 58 105 259 270 290 88 2 Dolna średnich Tychówko Parsęta zachodniopomorskie 137 163 281 320 380 155 -1 Dolna średnich Białogórzyno Radew zachodniopomorskie 63 88 167 190 210 78 0 Dolna średnich Korzybie Wieprza pomorskie 24 61 130 130 160 44 6 Górna niskich Stary Kraków Wieprza zachodniopomorskie 167 210 351 460 500 208 3 Dolna średnich 9.5 Komunikat opadowy z dnia 16.10.2020 godz.
    [Show full text]
  • Lowland Raised Bog, Duddon Mosses NNR, Cumbria
    Lowland raised bog, Duddon Mosses NNR, Cumbria. © Natural England/Jacqueline Ogden 17. Lowland raised bog Climate Change Sensitivity: Medium Climate Change Adaptation Manual Evidence to support nature conservation in a changing climate 159 Introduction An intact, fully functioning lowland raised bog is expected to be relatively resilient to projected climate change, although both changes to patterns of rainfall, including extreme events and summer warming, will place increasing pressure on the habitat. In England, however, there are no raised bogs in this condition. The impact of historic and current land management has a significant impact on the vulnerability of sites. Damage through peat cutting or drainage (both on and off-site) that alters the hydrology of sites has significant adverse impacts on the ability of the bog to withstand reduced rainfall and extreme events such as drought. Degraded bogs are also more vulnerable to climate change impacts on the quality and quantity of ground water. In England, most remaining lowland raised bog habitat is found on the central or core area of the original dome. Surrounding this is an area of degraded peatland, often now under alternative land use, making the remaining bog increasingly vulnerable to off-site impacts and land-use change. Habitat Description Lowland raised bogs are peatland ecosystems which develop primarily in lowland areas such as at the head of estuaries, along river flood-plains and in topographic depressions. In such locations drainage has been impeded by a high groundwater table or by low permeability of the substrata. The resultant water-logging provides anaerobic conditions which slow down the decomposition of plant material, which in turn leads to an accumulation of peat.
    [Show full text]
  • Life and Freshwater Fish
    LIFE NATURE | LIFE AND FRESHWATER FISH OVERCOMING RIVER BARRIERS Creating blue corridors in Poland Many fish species are highly mobile, spawning in one place and feeding in another . Some even travel thousands of kilometres, migrating from salt water to freshwater habitats or vice versa . LIFE projects in Poland are constructing so-called blue infrastructure that allows fish to keep on moving . tlantic salmon (Salmo salar) spend most of activities (e.g. road-building, development, log- Atheir adult life in the salty waters of the At- ging, etc.). The populations separated in this way lantic Ocean or the Baltic Sea. However, they return are weakened, reduced or even eliminated due to to the freshwater streams where they once hatched a lack of genetic diversity and inbreeding. Opening to spawn. Young salmon stay in their native river for up new passageways or wildlife corridors allows up to four years, before they slowly begin their jour- an exchange of individuals between populations, ney back to the ocean. There they feed and grow strengthening them and moderating the effects of into adults that, once they are ready to spawn, re- habitat fragmentation. turn to their native river to begin the cycle anew. The project teams are also building fish passes to For spawning, salmon need large stretches of clear migration routes along the Ina and Rega rivers gravel beds where they can dig out nests (“redds”) and their major tributaries. Although there are good and bury their eggs; and the young salmon need natural spawning sites further upstream, the fish clear, cool, well-oxygenated and fast-flowing rivers cannot currently reach them, as they are hampered and streams to develop and grow.
    [Show full text]