Biological Complementary Therapies: a Focus on Botanical Products in Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Biological Complementary Therapies: a Focus on Botanical Products in Diabetes In Brief to Practice Research From / Complementary & Integrative Medicine Several botanical and biological products claim to lower blood glucose or decrease complications of diabetes, and some of these are being used by peo- ple with diabetes. Products thought to lower blood glucose include gymnema, fenugreek, bitter melon, ginseng, and nopal. Claims have also been made for aloe, bilberry, and milk thistle, but there is less evidence in support of these. Botanical products thought to decrease diabetes complications include ␥- linolenic acid, ginkgo biloba, and garlic. A vitamin-like substance, ␣-lipoic acid, has been used to treat neuropathic complications. Biological Complementary Therapies: A Focus on Botanical Products in Diabetes No one has thoroughly determined concerns about possible side effects3 how many patients with diabetes use and drug interactions.4 Patients using complementary therapies. A recent complementary therapies have experi- Laura Shane-McWhorter, PharmD, survey of diabetes educators in the enced many serious side effects; in BCPS, FASCP, CDE, BC-ADM western half of the United States1 eval- some cases, they may attribute these uated the most frequently recom- effects to another medication. Because mended and used alternative thera- patients often take medications to pies. These included physical activity, treat their diabetes, concomitant use self-help groups, lifestyle diets, laugh- of complementary therapies may also ter and humor, relaxation therapy, result in toxicity secondary to exag- prayer, imagery/visualization, medita- gerated effects or sub-therapeutic tion, massage, and music therapy. effects of their conventional medica- Although botanical products were tions. included in the survey, they were not Another concern relates to the vari- frequently recommended or used. ability of products. Botanical products Another survey of alternative treat- are available in capsules and tablets, ments used by patients with diabetes2 as well as in other forms, such as did indicate that herbal treatments are water extracts (also called decoctions used along with other modalities. In or infusions), tinctures (hydroalco- some cases, patients used these treat- holic extracts), and glycerites (glyc- ments instead of conventional medica- erin-extracted preparations that are tions, and severe complications, alcohol-free). All vary in potency. In including increased hospitalizations, addition, product quality may depend ketoacidosis, and acute hyperglycemia, on what part of the plant was used, occurred. how it was stored, how long it was Technically, an herbal product is stored, the processing technique, and made from the leaves and roots of a how the extract was prepared.3 plant, whereas a botanical product Some products are available in a includes parts or pieces from the form standardized for pharmacologi- whole plant. However, these terms are cal activity. This should guarantee often used interchangeably in discus- that there is consistency from batch to sions of complementary therapies. batch and that the active ingredients are stable.5 However, standardization CONCERNS ABOUT BIOLOGICAL is not simple because, for many OR BOTANICAL THERAPIES botanicals, the active constituents are unknown. A product may be stan- As with conventional medicines, the dardized for one or more biologically use of complementary therapies raises active compounds, but that com- 199 Diabetes Spectrum Volume 14, Number 4, 2001 pound may not be the active ingredi- tions may occur from the additive along with other legumes.9,10 The ent. Pharmacological action may effects when used concomitantly with plant grows in India, Egypt, and the come from the additive or synergistic hypoglycemic agents. Middle East.9 effects of several ingredients, none of Clinical studies. There are only a Fenugreek has also been used as a which separately has the same activity few human studies, and these do not medicinal agent to treat diabetes, con- as the whole plant.6 Furthermore, report important design details, such stipation, and hyperlipidemia.10 It has active constituents in extracts or dried as blinding or randomization. been used topically to treat inflamma- botanicals may vary secondary to geo- One study14 was conducted in type tion, and it has been used postpartum graphical or soil differences, differ- 1 diabetic patients on insulin, 27 of with a substance called jaggery to pro- ences in exposure to sunlight or rain- whom took 200-mg gymnema cap- mote lactation. Because its taste and fall, differences in the time of harvest, sules after breakfast and supper and odor resemble maple syrup, it has and differences in the methods of dry- 37 of whom took insulin only for a been used to mask the taste of medi- ing, storing, and processing. All of period of 6–30 months. After 6–8 cines.9 these variables may affect pharmaco- months, mean HbA1c decreased in the Chemical constituents of the plant logical activity.7 gymnema group from a baseline of include saponins, many of which are Other factors involve potential 12.8 to 9.5% (P < 0.001). After glycosides of diosgenin.9 The seeds misidentification, mislabeling, and 16–18 months, 22 patients remaining also contain the alkaloids trigonelline, possible addition of unnatural toxic on gymnema had a mean HbA1c of gentianine, and carpaine compounds. substances, such as adulteration with 9% (P values not given). At the end of Other components of the seeds heavy metals or steroids and contami- 26–30 months, six patients remaining include several C-glycosides. The nation with microbes, pesticides, on gymnema had a mean HbA1c of seeds contain up to 50% mucilagi- fumigants, and radioactive products.7 8.2% (P values not given). nous fiber.9 Other seed constituents Mean fasting blood glucose (FBG) include 4-hydroxyisoleucine, an BOTANICAL PRODUCTS THAT also decreased from a baseline of 232 amino acid, and fenugreekine. MAY LOWER BLOOD GLUCOSE to 177 mg/dl after 6–8 months 150 Proposed mechanism of action. LEVELS mg/dl after 16–18 months, and 152 Fenugreek is thought to delay gastric mg/dl after 20–24 months (P values emptying, slow carbohydrate absorp- Gymnema not given). The mean insulin dose tion, and inhibit glucose transport.16 It A member of the milkweed family, decreased from a baseline of 60 to 45 has been shown to increase erythro- gymnema (Gymnema sylvestra) is a units/day after 6–8 months and to 30 cyte insulin receptors and improve woody plant found in tropical forests units/day at 26–30 months (P values peripheral glucose utilization, thus of India and Africa.8–10 For more than not given). Patients on placebo had no showing potential pancreatic as well 2,000 years, people have chewed its significant changes from baseline. as extrapancreatic effects.17 leaves to treat “madhu meha” (“honey Another study15 was conducted in Various components of the seeds urine”).9 Used in Ayurvedic medicine, patients with type 2 diabetes on sul- have varying activities. For example, it is thought to destroy a person’s abil- fonylureas; 22 took 400 mg/day of the component called fenugreekine, a ity to discriminate sweet taste; hence, gymnema capsules in addition to sul- steroidal sapogenin peptide ester, may it is often called “gurmar” or “sugar fonylurea treatment, and 25 took a have hypoglycemic properties.10 destroyer.”8 placebo and sulfonylureas for a peri- Trigonelline, another component, may Chemical constituents of the plant od of 18–20 months. Mean HbA1c exert hypoglycemic effects in healthy include the gymnemic acids (gym- decreased from a baseline of 11.9 to patients without diabetes,10 but other nemosides), saponins, stigmasterol, 8.48% (P < 0.001). Mean FBG studies have shown that fenugreek has quercitol, and the amino acid deriva- decreased from 174 to 124 mg/dl no effect on fasting or postprandial tives betaine, choline, and trimethy- after 18–20 months (P < 0.001). Five blood glucose levels in nondiabetic lamine.8 Gymnema has been used for patients were able to discontinue sul- subjects.18 centuries to treat diabetes.10 fonylureas. In this study, lipids also Side effects and drug interactions. Proposed mechanism of action. decreased significantly. Patients on The main side effects are flatulence and Although the exact mechanism is placebo had no significant changes in diarrhea, which subside after a few unknown, there are a variety of theo- HbA1c, FBG, or lipids. days. However, fenugreek also has rized mechanisms. Besides impairing Clinical notes. Because of the pos- uterotonic properties.10 Hypersensitivity the ability to discriminate sweet taste, sibility of hypoglycemia when gymne- reactions have also been reported,10 gymnema increases the enzyme activi- ma is used with insulin or other dia- including rhinorrhea, wheezing, and ty responsible for glucose uptake and betes agents, doses for existing dia- fainting after inhalation of the fenu- utilization.11 It may stimulate ␤-cell betes therapies may have to be adjust- greek-seed powder. Wheezing and function, increase ␤-cell number, ed with the addition of gymnema. facial angioedema after application of a and/or increase insulin release by This product should not be used with- topical fenugreek paste for dandruff increasing cell permeability to out medical supervision. A typical was reported in a patient with chronic insulin.8,12 In pancreatectomized ani- dose is 400 mg/day standardized to asthma.19 mals, it has no hypoglycemic effect, contain 24% gymnemic acids.8,10 Because fenugreek is a member of indicating that its effect may require the Leguminosae family, which in- some residual ␤-cell function.13 Fenugreek cludes peanuts,9 it is theoretically pos- Side effects and drug interactions. Fenugreek (Trigonella foenum-grae- sible for someone with a peanut allergy No side effects have been reported sec- cum) has been used as a cooking spice to react to fenugreek. However, this ondary to gymnema use. Hypoglycemia and flavoring agent for centuries.9 It is reaction has never been reported. is a potential side effect;10 drug interac- a member of the Leguminosae family, All of fenugreek’s side effects may 200 Diabetes Spectrum Volume 14, Number 4, 2001 10 occur in infants of nursing mothers Clinical notes.
Recommended publications
  • The Use of Plants in the Traditional Management of Diabetes in Nigeria: Pharmacological and Toxicological Considerations
    Journal of Ethnopharmacology 155 (2014) 857–924 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations Udoamaka F. Ezuruike n, Jose M. Prieto 1 Center for Pharmacognosy and Phytotherapy, Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom article info abstract Article history: Ethnopharmacological relevance: The prevalence of diabetes is on a steady increase worldwide and it is Received 15 November 2013 now identified as one of the main threats to human health in the 21st century. In Nigeria, the use of Received in revised form herbal medicine alone or alongside prescription drugs for its management is quite common. We hereby 26 May 2014 carry out a review of medicinal plants traditionally used for diabetes management in Nigeria. Based on Accepted 26 May 2014 the available evidence on the species' pharmacology and safety, we highlight ways in which their Available online 12 June 2014 therapeutic potential can be properly harnessed for possible integration into the country's healthcare Keywords: system. Diabetes Materials and methods: Ethnobotanical information was obtained from a literature search of electronic Nigeria databases such as Google Scholar, Pubmed and Scopus up to 2013 for publications on medicinal plants Ethnopharmacology used in diabetes management, in which the place of use and/or sample collection was identified as Herb–drug interactions Nigeria. ‘Diabetes’ and ‘Nigeria’ were used as keywords for the primary searches; and then ‘Plant name – WHO Traditional Medicine Strategy accepted or synonyms’, ‘Constituents’, ‘Drug interaction’ and/or ‘Toxicity’ for the secondary searches.
    [Show full text]
  • Nuclear Magnetic Resonance Metabolomics Approach for the Analysis of Major Legume Sprouts Coupled to Chemometrics
    molecules Article Nuclear Magnetic Resonance Metabolomics Approach for the Analysis of Major Legume Sprouts Coupled to Chemometrics Mohamed A. Farag 1,2,* , Mohamed G. Sharaf El-Din 3, Mohamed A. Selim 1,4 , Asmaa I. Owis 5 , Sameh F. Abouzid 5, Andrea Porzel 6 , Ludger A. Wessjohann 6,* and Asmaa Otify 1 1 Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt; [email protected] (M.A.S.); [email protected] (A.O.) 2 Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt 3 Pharmacognosy Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; [email protected] 4 Pharmacognosy Department, Faculty of Pharmacy, Misr University for Science & Technology (MUST), 6th October City 12566, Egypt 5 Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt; [email protected] (A.I.O.); [email protected] (S.F.A.) 6 Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany; [email protected] * Correspondence: [email protected] (M.A.F.); [email protected] (L.A.W.) Abstract: Legume sprouts are a fresh nutritive source of phytochemicals of increasing attention worldwide owing to their many health benefits. Nuclear magnetic resonance (NMR) was utilized for the metabolite fingerprinting of 4 major legume sprouts, belonging to family Fabaceae, to be exploited for quality control purposes. Thirty-two metabolites were identified belonging to different Citation: Farag, M.A.; Sharaf El-Din, classes, i.e., fatty acids, sugars, amino acids, nucleobases, organic acids, sterols, alkaloids, and M.G.; Selim, M.A.; Owis, A.I.; isoflavonoids.
    [Show full text]
  • Substantial Depletion of Vicine, Levodopa, and Tyramine in a Fava Bean Protein-Based Nutritional Product
    Hindawi International Journal of Food Science Volume 2021, Article ID 6669544, 10 pages https://doi.org/10.1155/2021/6669544 Research Article Substantial Depletion of Vicine, Levodopa, and Tyramine in a Fava Bean Protein-Based Nutritional Product Paul W. Johns and Steven R. Hertzler Abbott Laboratories, Abbott Nutrition Division, 3300 Stelzer Road, Columbus, OH, USA 43219 Correspondence should be addressed to Paul W. Johns; [email protected] Received 5 November 2020; Revised 1 January 2021; Accepted 16 January 2021; Published 30 January 2021 Academic Editor: Chaowalit Monton Copyright © 2021 Paul W. Johns and Steven R. Hertzler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A commercial fava bean protein isolate and a liquid nutritional product formulated with it were tested by validated HPLC methods for the favism-associated pyrimidine glycoside vicine, the dopamine precursor levodopa, and the biogenic amine tyramine. The vicine, levodopa, and tyramine concentrations in the protein isolate—306, 13.3, and <0.5 mg/kg, respectively—when expressed on a protein basis—34, 1.5, and <0.06 mg/100 g protein, respectively—were at least 96% lower than the vicine, levodopa, and tyramine (protein-based) concentrations reported for fava beans (≥900, ~200, and ~4 mg/100 g protein, respectively). This was also true for the vicine (13 mg/kg or 22 mg/100 g protein), levodopa (≤0.17 mg/kg or ≤0.3 mg/100 g protein), and tyramine (0.08 mg/kg or 0.14 mg/100 g protein) concentrations in the nutritional product.
    [Show full text]
  • Degradation of Vicine, Convicine and Their Aglycones During Fermentation of Faba Bean Flour
    www.nature.com/scientificreports OPEN Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour Received: 07 March 2016 Carlo Giuseppe Rizzello1, Ilario Losito2,3, Laura Facchini2, Kati Katina4, Accepted: 08 August 2016 Francesco Palmisano2,3, Marco Gobbetti1 & Rossana Coda4 Published: 31 August 2016 In spite of its positive repercussions on nutrition and environment, faba bean still remains an underutilized crop due to the presence of some undesired compounds. The pyrimidine glycosides vicine and convicine are precursors of the aglycones divicine and isouramil, the main factors of favism, a genetic condition which may lead to severe hemolysis after faba bean ingestion. The reduction of vicine and convicine has been targeted in several studies but little is known about their degradation. In this study, the hydrolysis kinetics of vicine and convicine and their derivatives during fermentation with L. plantarum DPPMAB24W was investigated. In particular, a specific HPLC method coupled to ESI-MS and MS/MS analysis, including the evaluation procedure of the results, was set up as the analytical approach to monitor the compounds. The degradation of the pyrimidine glycosides in the fermented flour was complete after 48 h of incubation and the aglycone derivatives could not be detected in any of the samples. The toxicity of the fermented faba bean was established through ex-vivo assays on human blood, confirming the experimental findings. Results indicate that mild and cost effective bioprocessing techniques can be applied to detoxify faba bean also for industrial applications. Faba bean (Vicia faba L.) is a leguminous plant belonging to the Fabaceae family, able to grow in different cli- mates1.
    [Show full text]
  • MOLECULAR BASIS of GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY in CAPE COAST, GHANA by Dan Osei Mensah Bonsu, B.Sc. Human Biolo
    MOLECULAR BASIS OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY IN CAPE COAST, GHANA by Dan Osei Mensah Bonsu, B.Sc. Human Biology (Hons) A thesis submitted to the Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Biochemistry and Biotechnology College of Science February, 2013 MOLECULAR BASIS OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY IN CAPE COAST, GHANA February, 2013 DECLARATION I hereby declare that except for references to other people’s work, which have been duly acknowledged, this thesis is the result of my own research. Neither all nor parts of this thesis have been presented for another degree elsewhere. DAN OSEI MENSAH BONSU (M.Sc. CANDIDATE) SIGNATURE DATE DR. FAREED K. N. ARTHUR (SUPERVISOR) SIGNATURE DATE DR. PETER TWUMASI (SUPERVISOR) SIGNATURE DATE PROF. (MRS) IBOK ODURO (HEAD OF DEPARTMENT) SIGNATURE DATE i ABSTRACT Glucose-6-phosphate dehydrogenase (G6PD) is a cytoplasmic enzyme that is essential for a cell’s capacity to withstand oxidant stress. G6PD-deficiency is the commonest enzymopathy of humans with a worldwide distribution. The geographical correlation of its distribution with the historical endemicity of malaria suggests that the defect has risen in frequency through natural selection by malaria. This study was carried out to ascertain the molecular basis of G6PD-deficiency in Cape Coast in the Central Region of Ghana. Two hundred (200) unrelated persons (82 males and 118 females), all visiting the Out Patients Department (OPD) of the Central Regional Hospital, Cape Coast, were screened for G6PD-deficiency using the methaemoglobin reduction test.
    [Show full text]
  • Occurrence of Vicine and Convicine in Faba Bean and Their Removal by Hydrolysis
    Helsingin yliopisto Elintarvike- ja ravitsemustieteiden osasto University of Helsinki Department of Food and Nutrition EKT-sarja 1885 EKT-series 1885 Occurrence of vicine and convicine in faba bean and their removal by hydrolysis Marjo Pulkkinen ACADEMIC DISSERTATION To be presented, with the permission of the Faculty of Agriculture and Forestry, University of Helsinki, for public examination in lecture hall B3, Viikki, on June 7th 2019, at 12 noon. Helsinki 2019 Custos: Professor Vieno Piironen Department of Food and Nutrition University of Helsinki, Helsinki, Finland Supervisors: Professor Vieno Piironen Department of Food and Nutrition University of Helsinki, Helsinki, Finland Docent Anna-Maija Lampi Department of Food and Nutrition University of Helsinki, Helsinki, Finland Reviewers: Dr Juana Frías Institute of Food Science, Technology and Nutrition, The Spanish National Research Council (ICTAN-CSIC) Madrid, Spain Principal scientist, Dr Anne Pihlanto Natural Resources Institute Finland (Luke) Jokioinen, Finland Opponent: Associate professor Michael Murkovic Institute of Biochemistry Graz University of Technology Graz, Austria ISBN 978-951-51-5270-1 (paperback) ISBN 978-951-51-5271-8 (PDF; http://ethesis.helsinki.fi) ISSN 0355-1180 Unigrafia Helsinki 2019 Abstract Legumes are a sustainable source of plant protein, and their production could be increased in Europe. The use of faba bean (Vicia faba L.) is limited in part due to the presence of the pyrimidine glycosides vicine and convicine. Vicine and convicine, and particularly their aglycones, can cause a form of haemolytic anaemia called favism in individuals who have genetic deficiency in the glucose-6-phosphate dehydrogenase (G6PD) enzyme. Different processing methods have reduced the vicine and convicine contents to varying levels, but the formation of the aglycones have not been studied.
    [Show full text]
  • BIOCHEMICAL EFFECT of VICINE and DIVICINE EXTRACTED from FAVA BEANS (VICIA FABA) in RATS Hussein Abd El-Maksoud1, Mohammed A
    BENHA VETERINARY MEDICAL JOURNAL (2013) 24: 98-110 BENHA UNIVERSITY FACULTY OF VETERINARY MEDICINE BIOCHEMICAL EFFECT OF VICINE AND DIVICINE EXTRACTED FROM FAVA BEANS (VICIA FABA) IN RATS Hussein Abd El-Maksoud1, Mohammed A. Hussein*2, Anwar Kassem1 1Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Qalioubeya, Egypt. 2Biochemistry Department, Faculty of Pharmacy, October 6th University, October 6th city, Egypt A B S T R A C T Vicine and its aglycone Divicine are two natural phenolics extracted from the tropical plant Fava bean (Vicia faba; broad bean, horse bean). In our study, Divicine was obtained by acid hydrolysis of Vicine. Structural elucidation of the extracted compound Vicine and its aglycon Divicine was proven using elemental analysis, infra-red and mass spectral data. Both the phenolic compounds were tested for their ability to inhibit peroxidation induced by free radicals, named; Fe2+, superoxide, hydrogen peroxide and hydroxyl radicals. In addition, the results were compared with natural and synthetic antioxidants, such as α- tocopherol, ascorbic acid, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) and trolox. Vicine and Divicine exhibited a strong reducing power, chelating activity on Fe2+, free radical-, hydrogen peroxide- and hydroxyl radical scavenging activities. All the mentioned spectral data and structural conditions explain that, O-deglycosylation of Vicine to give its aglycone, Divicine and increase its ability to inhibit peroxidation and reaction with peroxyl radicals. Key words: Vicine, Divicine, Fava bean, antioxidants proper, free radicals scavenging. (BVMJ 24: 98-110; 2013) 1. INTRODUCTION especially in the developing countries [29] . Faba bean (Vicia faba) (broad bean, horse xidative stress is a widely accepted bean) is an important member of the legume participant in the development and family with highly useful characteristics.
    [Show full text]
  • Subject Index*
    SUBJECT INDEX* Italicized configurational prefixes (as glycero-) are used as main entries, whereas other italicized prefixes (as scyllo-) are listed under the stem name. A Acetoacetic ester, 240 Absolute configuration, 15 synthesis of DL-mannitol, 250 Acacia species, 685, 510 reactions with sugars, 240 gum arabic, 685 Acetobacter species, Acetaldehyde, see also Ethylidene de- A. acetigenum, 708 rivatives, 235 cellulose synthesis, 708 Acetals, see also Alkylidene derivatives, A. suboxydans, 98, 133, 365 individual aldehydes and ke- action on inositols, 282 tones, individual sugars, and preparation of Anhydro sugars, 1,6-labeled ketoses, 136 acetal type, 227 planteobiose, 501 alkali labile, 390 A. xylinum, 98, 102, 132, 365 definition, 188 cellulose synthesis, 707 preparation, 157, 288 Acetohalogeno sugars, see O-Acetylgly- Acetamide derivatives, 408 cosyl halides; also Acetates and Acetates, see also Acetylation, Es- individual sugars ters, Esterification, Orthoace- Acetolysis, tates and individual compounds, anhydro compounds, 394 139 anhydro sugars, acetal type, 223 ΑΓ-acetyl groups méthylène groups, 232 hydrolysis, 650 polysaccharides, 702 resistance to alkali, 463 Acetone derivatives, see Isopropylidene acetyl migration, 147, 408 Acetylation, see also Acetates, Ortho- acyclic, 139, 142, 144 acetates, and individual com- aldehydo, 139, 142 pounds, 139 anomerization, 141, 483, 495 aminodeoxy sugars, 471 distinction between N- and O-acetyl anomeric ratio, conditions affecting, 140 as analytical procedure, 140 groups, 410 catalysts, 139,
    [Show full text]
  • Eliminating Vicine and Convicine, the Main Anti-Nutritional Factors Restricting Faba Bean Usage
    Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage Article Published Version Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 Open access Khazaei, H., Purves, R. W., Hughes, J., Link, W., O'Sullivan, D. M., Schulman, A. H., Björnsdotter, E., Geu-Flores, F., Nadzieja, M., Andersen, S. U., Stougaard, J., Vandenberg, A. and Stoddard, F. L. (2019) Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage. Trends in Food Science & Technology, 91. pp. 549-556. ISSN 09242244 doi: https://doi.org/10.1016/j.tifs.2019.07.051 Available at http://centaur.reading.ac.uk/88530/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.1016/j.tifs.2019.07.051 To link to this article DOI: http://dx.doi.org/10.1016/j.tifs.2019.07.051 Publisher: Elsevier All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Trends in Food Science & Technology 91 (2019) 549–556 Contents lists available at ScienceDirect Trends in Food Science & Technology journal homepage: www.elsevier.com/locate/tifs Review Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage T ∗ Hamid Khazaeia, , Randy W.
    [Show full text]
  • Reference Substances
    Reference Substances 2020/2021 Contents | 3 Contents Page Welcome 4 Our Services 5 Reference Substances 6 Index I: Alphabetical List of Reference Substances and Synonyms 168 Index II: CAS Registry Numbers 190 Index III: Substance Classification 200 Our Reference Substance Team 212 Distributors & Area Representatives 213 Ordering Information 216 Order Form 226 4 | Welcome Welcome to our new 2020 / 2021 catalogue! PhytoLab proudly presents the new for all reference substances are available Index I contains an alphabetical list of 2020/2021 catalogue of phyproof® for download. all substances and their synonyms. It Reference Substances. The eighth edition provides information which name of a of our catalogue now contains well over We very much hope that our product reference substance is used in this 1400 natural products. As part of our portfolio meets your expectations. The catalogue and guides you directly to mission to be your leading supplier of list of substances will be expanded even the correct page. herbal reference substances PhytoLab further in the future, based upon current has characterized them as primary regulatory requirements and new Index II contains a list of the CAS registry reference substances and will supply scientific developments. The most recent numbers for each reference substance. them together with the comprehensive information will always be available on certificates of analysis you are familiar our web site. However, if our product list Finally, in Index III we have sorted all with. does not include the substance you are reference substances by structure based looking for please do not hesitate to get on the class of natural compounds that Our phyproof® Reference Substances will in touch with us.
    [Show full text]
  • The Chemistry of Vicia Sativa L. Selection
    UN' 3*Lr -qì THE CHEMISTRY OF Vicia sativa SELECTION Ian Delaere, BSc (Hons) A thesis submitted in fulf,rlment of the requirements for the degree of Doctor of Philosophy Department of Plant Science The University of Adelaide December 1996 ¿¿ l3lr ¡¿¡: ¡iÍi A NEEDLE IN A HAYSTACK TABLE OF CONTENTS ABSTRACT vüi DECLARATION rx ACKNOWLEDGEMENTS x PUBLICATIONS ARISING FROM THIS TI{ESIS xi Chapter One Introduction and aims of the study 1.0 Introduction 1 1.1 Aims of this study I Chapter Two Literature review 2.0 Introduction 4 2.1 Human consumption of common vetch 4 2.2 Taxonomy 5 2.3 Anti-nutritional factors found in common vetch 6 2.4 The biochemistry of anti-nutritional factors found in common vetch 8 2.4.1 Cyanogenic glycosides 8 2.4.1.1 Biosynthesis 8 2.4.1.2 Genetic variation l0 2.4.1.3 Animal Toxicology 10 2.4.2 p-D-glucopyranosyl glycosides l0 2.4.2.1 Biosynthesis 11 2.4.2.2 Genetic variation 1l ) a) ? Animal Toxicity 11 2.4.3 Cyanoalanine non-protein amino acids T2 \ 2.4.3.1 Biosynthesis t4 2.4.3.2 Genetic variation l4 2.4.3.3 Animal Toxicity l6 2.4.3.3.1 The glutathione model for the toxicity of common vetch t7 ) aaa) Biological signifi cance of cyanoalanine induced glutathione deficiency 18 2.5 Conclusion 19 Chapter Three A Solid Picture 3.0 Introduction 20 3.1 Purification 20 3.1.1 Isol ation and purification of y- glutamyl- B -cyanoalanine 20 3.t.2 Purification of 1-glutamyl-S-ethenyl-cysteine 2l ?) Characterisation 2t 3.2.r Elemental analysis 2I 3.2.2 Optical rotation 22 3.2.3 Infrared spectroscopy 22 3.2.3.1 Apparatus 22 3.2.3.2
    [Show full text]
  • The Saponin Composition of Common Canadian Pulses by Beiyi Shen A
    The Saponin Composition of Common Canadian Pulses By Beiyi Shen A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science In Food Science and Technology Department of Agricultural, Food and Nutritional Science University of Alberta © Beiyi Shen, 2020 Abstract Pulses are high in nutritional value but are underutilized as foods due to their undesirable flavor attributes. These include bitterness, which may in part due to their saponin content. In this research, a simple and rapid method using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and requiring the minimum sample preparation was developed for the identification and quantification of saponins. This was applied to 8 common Canadian pulses including 3 pea varieties, 4 faba bean varieties, pinto beans, black bean, kidney beans, chickpeas, and green and red lentils. The method was validated according to linearity, accuracy, detection limit, quantification limit, inter- and intra-day precision. The calibration curve for a soyasaponin Bb standard with added internal standard (ginsenoside Rb1) showed correlation coefficients of 0.994 and a linear range of 0.2-5 g/mL. Saponin recoveries from the extraction method applied to faba bean samples ranged from 95 -105%, with n= 6 and RSD <12%. Saponin composition and content varies depending on the pulse type and variety. Four types of group B saponins including DDMP-conjugated soyasaponin g and g, and non- DDMP- conjugated soyasaponin Bb and Ba were identified in several pulse samples by HPLC-MS according to their relative retention times, and their molecular and fragment ions, as compared to standards and literature.
    [Show full text]