The History of Neurosurgery and Its Relation to the Development and Refinement of the Frontotemporal Craniotomy

Total Page:16

File Type:pdf, Size:1020Kb

The History of Neurosurgery and Its Relation to the Development and Refinement of the Frontotemporal Craniotomy Neurosurg Focus 36 (4):E12, 2014 ©AANS, 2014 The history of neurosurgery and its relation to the development and refinement of the frontotemporal craniotomy D. RYAN ORMOND, M.D.,1 AND COSTAS G. HADJIPANAYIS, M.D., PH.D.2 1Department of Neurosurgery, University of Bonn, Germany; and 2Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia The history of neurosurgery is filled with descriptions of brave surgeons performing surgery against great odds in an attempt to improve outcomes in their patients. In the distant past, most neurosurgical procedures were limited to trephination, and this was sometimes performed for unclear reasons. Beginning in the Renaissance and accelerating through the middle and late 19th century, a greater understanding of cerebral localization, antisepsis, anesthesia, and hemostasis led to an era of great expansion in neurosurgical approaches and techniques. During this process, fronto- temporal approaches were also developed and refined over time. Progress often depended on the technical advances of scientists coupled with the innovative ideas and courage of pioneering surgeons. A better understanding of this history provides insight into where we originated as a specialty and in what directions we may go in the future. This review considers the historical events enabling the development of neurosurgery as a specialty, and how this relates to the development of frontotemporal approaches. (http://thejns.org/doi/abs/10.3171/2014.2.FOCUS13548) KEY WORDS • frontotemporal craniotomy • history • pterional • keyhole approach HE history of neurosurgery is filled with courageous ries witnessed great advances in anatomical knowledge, individuals who worked against great odds in an but until further developments in the areas of cerebral attempt to improve the lives of their patients. For localization, anesthesia, hemostasis, and antisepsis oc- Tcenturies, the realm of neurosurgery was considered an curred, neurosurgery remained in its infancy. arena mostly of observation and “primum non nocere,” as surgical outcomes were often worse than disease progres- sion. The Hippocratic School was the first to codify treat- Anesthesia, Antisepsis, and Hemostasis ment for head injury in De capitis vulneribus, with skull Major advances in three areas of science and medi- fractures being classified by type and the severity of in- cine—anesthesia, antisepsis, and hemostasis—dramati- jury determining the need for trephination (the worse the cally improved the safety and efficacy of surgery. One of injury, the less the need for trephination).43 Furthermore, the evolutionary changes in Western medicine occurred this work did not provide any clues that the neurological under the hands of Ambrose Paré (1510–1590) in the mid- condition of the patient made any difference in the surgi- 16th century. A Huguenot and military surgeon, Paré re- cal decision-making process.35 jected the long-held practice of boiling oil and hot cautery The Renaissance in Europe saw a dramatic improve- for hemostasis and instead found that ligatures offered su- ment in the understanding of anatomy and the develop- perior hemostasis and wound healing.75 He popularized ment of surgical techniques. Jacopo Berengario da Carpi his findings by writing in French instead of Latin and (1460–1530) was an Italian physician, surgeon, and anat- was surgeon to the European royal courts.16,35 Cautery re- omist, who was the first to publish an anatomical text sup- turned later as electrocautery devices were improved and plemented with illustrations.76 He also published a mono- popularized by William T. Bovie (1881–1958) and Harvey graph dedicated to head injury, De fractura Cranii, the Cushing (1869–1939).66 Cushing used Bovie’s device for second after Hippocrates’ work.5–8 Carpi was motivated the first time on October 1, 1926, to successfully remove to write this text shortly after treating a serious head in- a skull myeloma from the head of a 64-year-old patient, jury in Lorenzo dé Medici. He had a dream in which a which he had failed to remove previously because of its capped man with golden-winged sandals encouraged him vascularity. 66 Improved methods of hemostasis coincided to write a treatise on head injuries.35 The next few centu- with the development of safe blood transfusion. William Neurosurg Focus / Volume 36 / April 2014 1 Unauthenticated | Downloaded 10/05/21 07:07 PM UTC D. R. Ormond and C. G. Hadjipanayis Harvey (1578–1657) had discovered the circulation of helped bring us into the modern surgical era, providing blood in 1628,39 and the first successful animal transfu- patients with the analgesia and anesthesia necessary to sion between two dogs had been performed by Richard increase surgical time and complexity. Lower (1631–1691) in 1665.61 A few years later Lower Beginning in the Middle Ages, various discoveries also performed the first blood transfusion from a sheep over several centuries eventually led to the rejection of to a human (xenotransfusion) for the treatment of mental old dogma and to the development of asepsis and anti- illness in a clergyman.61 Unfortunately, difficulties with septic technique. Early on, antiseptic technique was transfusion reactions, clotting, and incompatibility were not well understood. For example, Roger of Salerno (d. not resolved until blood groups were discovered by Karl 1119), a 12th-century surgeon, promoted suppuration in Landsteiner (1868–1943) much later, in 1900.86 With the open wounds. He believed it was helpful in the healing development of better hemostasis and successful blood process.35,82 Air was later understood as the harbinger of transfusions, the stage was set for more complex surgery. the putrefactive process. As early as 1516, Magnatus de- However, surgeons needed to overcome the other major scribed “miasms” that infected everything that was open limitations to successful surgery: pain and infection. and exposed to the air.16 Surgeons then made painstaking While wine and opium have been used for their seda- efforts to prevent air from getting into wounds. Antonie tive and analgesic effects for millennia, a dramatic change van Leeuwenhoek (1632–1723) later discovered microor- in the understanding and use of anesthetic agents in the ganisms after developing his microscope and described 18th and 19th centuries enabled the surgeon to operate in his work in numerous letters to the Royal Society.16,28 patients while they remained pain free for extended peri- Unfortunately, the connection between microorganisms ods of time.7,50,79,82 Generations of physicians in the East and human disease did not truly develop until well into and the West used various herbal concoctions with some the 19th century. In the mid-19th century, surgical mor- success. Ultimately, the consistent use of anesthetic agents tality due to postoperative sepsis remained nearly 50%. in surgery occurred following the discovery of nitrous ox- While a number of individuals were involved in discov- ide, diethyl ether, and other agents during the 19th centu- eries resulting in the reduction of postoperative sepsis, a ry. The Pneumatic Institution for Inhalation Gas Therapy few key individuals stand out as pivotal in the develop- was founded in 1798 at Dowry Square in Clifton, Bristol, ment of aseptic and antiseptic surgery. In the 1840s, Ignaz England. Here, Humphry Davy (1778–1829) discovered Semmelweis (1818–1865) was working in the maternity nitrous oxide and coined the term “laughing gas.”20 Davy department of the Vienna Lying-in Hospital. After noting documented its analgesic effects and potential benefits in the difference in mortality from puerperal fever in doc- relieving pain during surgery.20 By the 1830s, “ether frol- tor’s wards versus midwives’ wards, he hypothesized that ics” were held in the northeastern United States, where this occurred because of a contagion transferred by the participants inhaled either diethyl ether or nitrous oxide interns performing autopsies around the time that they to demonstrate their mind-altering properties as a form performed deliveries. He required interns to wash their of entertainment.22 Four men participating in these events hands with a chlorinated lime solution and successfully later became instrumental in the use of these agents in decreased the mortality rate from over 10% to less than surgery: William Edward Clark (1819–1898), Crawford 1%. 84,86,92 Unfortunately, his remarkable findings went W. Long (1815–1878), Horace Wells (1815–1848), and against conventional medical “knowledge” of the day, and William T. G. Morton (1819–1868).22 As a medical stu- it would be decades before his findings would be widely dent at Berkshire Medical College in 1842, Clark gave accepted.40 In the 1860s, Louis Pasteur demonstrated diethyl ether to a Miss Hobbie while Elijah Pope per- that microorganisms cause spoilage, not “spontaneous formed a dental extraction, completing the first surgical generation” (the hypothesis that putrefaction occurred ex procedure under general anesthesia in the modern era.62 nihilo from bad air), and that microorganisms can travel That same year in the state of Georgia, Crawford Long through the air and be killed by heat.29 During this same removed a tumor from the neck of a man who was un- time, Robert Koch (1843–1910) proved the germ theory der ether anesthesia.60 Long went on to utilize ether an- of disease by describing Bacillus anthracis as the caus- esthesia as a general anesthetic for limb amputations and ative agent of anthrax.57 Building on
Recommended publications
  • Surgical Management of Parkinson's Disease
    SEMINAR PAPER DTM Chan Surgical management of Parkinson’s VCT Mok WS Poon disease: a critical review KN Hung XL Zhu ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ !"#$%&'()*+, Parkinson’s disease is a progressive disabling movement disorder that is characterised by three cardinal symptoms: resting tremor, rigidity, and bradykinesia. Before the availability of effective medical treatment with levodopa and stereotactic neurosurgery, the objective of surgical management was to alleviate symptoms such as tremor at the expense of motor deficits. Levodopa was the first effective medical treatment for Parkinson’s disease, and surgical treatment such as stereotactic thalamo- tomy became obsolete. After one decade of levodopa therapy, however, drug-induced dyskinesia had become a source of additional disability not amenable to medical treatment. Renewed interest in stereotactic functional neurosurgery to manage Parkinson’s disease has been seen since the 1980s. Local experience of deep-brain stimulation is presented and discussed in this paper. Deep-brain stimulation of the subthalamic nucleus is an effective treatment for advanced Parkinson’s disease, although evidence from randomised control trials is lacking. !"#$%&'()*+,-!./01$23456789:; Key words: !"#$%&'()*+,-./01'23456789:;< Electric stimulation; !"#$%&'()*+,-./01(23#45+6789: Globus pallidus/surgery; Parkinson disease; !"#$%&'()*+,-./012345678'9:;< Stereotactic techniques; !"#$%&'()*%+,-./0123)456789:; Subthalamic nuclei/surgery; !"#$%&'()*+,-.1980 !"#$%&'()* Thalamus/surgery !"#$%&'()*+,-./0123456789:;<=
    [Show full text]
  • Decompressive Craniectomy Following Severe Traumatic Brain Injury with an Initial Glasgow Coma Scale Score of 3 Or 4
    Case Report Clinics in Surgery Published: 03 Jul, 2019 Decompressive Craniectomy Following Severe Traumatic Brain Injury with an Initial Glasgow Coma Scale Score of 3 or 4 Afif AFIF* Department of Neurosurgery and Anatomy, Pierre Wertheimer Hospital, France Abstract Background: Decompressive craniectomy is a surgical management option for severe Traumatic Brain Injury (TBI). However, few studies have followed patients with TBI who have a Glasgow Coma Scale (GCS) score of 3 or 4 (out of 15). Decompressive craniectomy has been avoided in such patients owing to poor outcomes and poor functional recoveries in previous cases of treatment using this method. Clinical Presentation: Two patients are presented in our case series. The first suffered severe TBI following an aggression, with a GCS score of 3 and bilaterally dilated unreactive pupils. Brains CT scan showed right frontal fracture, bifrontal hematoma contusion, a fronto-temporo-parietal acute Subdural Hematoma (SDH) with a thickness of 14 mm on the right side, traumatic subarachnoid hemorrhage, with 20 mm of midline shift to the left side, and diffuses brain edema. The second presented with severe TBI following an automobile accident, with a GCS score of 4 and iso- reactive pupils. A brain CT scan showed bilateral fronto-temporal fracture, diffuse brain hematoma contusion, traumatic subarachnoid hemorrhage, right Extradural Hematoma (EDH) and bilateral fronto-temporo-parietal acute SDH that was more pronounced on the right side. Conclusion: Follow-up after the operations showed an Extended Glasgow Outcome Scale (EGOS) score of 8 and a very good functional recovery for both patients. Our case series suggests that in patients with severe TBI and a GCS score of 3 or 4; decompressive craniectomy can be performed OPEN ACCESS with good long-term neurological outcomes.
    [Show full text]
  • Awake Craniotomy for Left Insular Low-Grade Glioma Removal on a Patient with Learning Disabilities
    THIEME Techniques in Neurosurgery 41 Awake Craniotomy for Left Insular Low-Grade Glioma Removal on a Patient with Learning Disabilities Andrej Vranic1 Blaz Koritnik2 Jasmina Markovic-Bozic3 1 Department of Neurosurgery, Fondation Ophtalmologique A. de Address for correspondence Andrej Vranic, MD, PhD, Department of Rothschild, Paris, France Neurosurgery, Fondation Ophtalmologique Adolphe de Rothschild, 2 Department of Neurophysiology, University Medical Centre, 29, Rue Manin, 75019 Paris, France (e-mail: [email protected]). Ljubljana, Slovenia 3 Department of Anesthesiology, University Medical Centre, Ljubljana, Slovenia Indian J Neurosurg 2017;6:41–43. Abstract Introduction Low-grade gliomas (LGG) are slow-growing primary brain tumors in adults, with high tropism for eloquent areas. Standard approach in treatment of LGG is awake craniotomy with intraoperative cortical mapping — a method which is usually used on adult and fully cooperative patients. Case Report We present the case of a patient with learning disabilities (PLD) who Keywords was operated for left insular LGG awake craniotomy, and intraoperative cortical ► low-grade glioma mapping were performed and the tumor was gross totally removed. ► awake craniotomy Conclusion Awake surgery for left insular LGG removal is challenging; however, it ► learning disability can be performed safely and successfully on PLD. Introduction been shown that awake brain tumor surgery can be safely performed with extremely low complication and failure rates Low-grade gliomas (LGG) are slow-growing primary brain regardless of American Society of Anesthesiologists tumors in adults. For many decades, these tumors were classification, body mass index, smoking status, psychiatric or considered inoperable because of their high tropism for emotional history, seizure frequency and duration, tumor site, eloquent areas and white matter pathways.
    [Show full text]
  • Microsurgery: Free Tissue Transfer and Replantation
    MICROSURGERY: FREE TISSUE TRANSFER AND REPLANTATION John R Griffin MD and James F Thornton MD HISTORY In 1964 Nakayama and associates15 reported In the late 1890s and early 1900s surgeons began what is most likely the first clinical series of free- approximating blood vessels, both in laboratory ani- tissue microsurgical transfers. The authors brought mals and human patients, without the aid of magni- vascularized intestinal segments to the neck for cer- fication.1,2 In 1902 Alexis Carrel3 described the vical esophageal reconstruction in 21 patients. The technique of triangulation for blood vessel anasto- intestinal segments were attached by direct microvas- mosis and advocated end-to-side anastomosis for cular anastomoses in vessels 3–4mm diam. Sixteen blood vessels of disparate size. Nylen4 first used a patients had a functional esophagus on follow-up of monocular operating microscope for human ear- at least 1y. drum surgery in 1921. Soon after, his chief, Two separate articles in the mid-1960s described Holmgren, used a stereoscopic microscope for the successful experimental replantation of rabbit otolaryngologic procedures.5 ears and rhesus monkey digits.16,17 Komatsu and 18 In 1960 Jacobson and coworkers,6 working with Tamai used a surgical microscope to do the first laboratory animals, reported microsurgical anasto- successful replantation of a completely amputated moses with 100% patency in carotid arteries as digit in 1968. That same year Krizek and associ- 19 small as 1.4mm diameter. In 1965 Jacobson7 was ates reported the first successful series of experi- able to suture vessels 1mm diam with 100% patency mental free-flap transfers in a dog model.
    [Show full text]
  • Neurocognitive and Psychosocial Correlates of Ventroposterolateral Pallidotomy Surgery in Parkinson's Disease
    Neurocognitive and psychosocial correlates of ventroposterolateral pallidotomy surgery in Parkinson's disease Henry J. Riordan, Ph.D., Laura A. Flashman, Ph.D., and David W. Roberts, M.D. Department of Psychiatry and Section of Neurosurgery, Dartmouth Medical School, Dartmouth­Hitchcock Medical Center, Lebanon, New Hampshire The purpose of this study was to characterize the neuropsychological and psychosocial profile of patients with Parkinson's disease before and after they underwent unilateral left or right pallidotomy, to assess specific cognitive and personality changes caused by lesioning the globus pallidus, and to predict favorable surgical outcome based on these measures. Eighteen patients underwent comprehensive neuropsychological assessment before and after left-sided pallidotomy (10 patients) or right-sided pallidotomy (eight patients). The findings support the presence of frontosubcortical cognitive dysfunction in all patients at baseline and a specific pattern of cognitive impairment following surgery, with side of lesion being an important predictor of pattern and degree of decline. Specifically, patients who underwent left-sided pallidotomy experienced a mild decline on measures of verbal learning and memory, phonemic and semantic verbal fluency, and cognitive flexibility. Patients who underwent right-sided pallidotomy exhibited a similar decline in verbal learning and cognitive flexibility, as well as a decline in visuospatial construction abilities; however, this group also exhibited enhanced performance on a delayed facial memory measure. Lesioning the globus pallidus may interfere with larger cognitive circuits needed for processing executive information with disruption of the dominant hemisphere circuit, resulting in greater deficits in verbal information processing. The left-sided pallidotomy group also reported fewer symptoms of depression and anxiety following surgery.
    [Show full text]
  • Low Pressure Headache, Intracranial Hypotension Last Updated: May 8, 2019 ETIOPATHOPHYSIOLOGY
    INTRACRANIAL HYPOTENSION S58 (1) Low Pressure Headache, Intracranial Hypotension Last updated: May 8, 2019 ETIOPATHOPHYSIOLOGY ......................................................................................................................... 1 CLINICAL FEATURES ............................................................................................................................... 1 DIAGNOSIS................................................................................................................................................ 2 TREATMENT ............................................................................................................................................. 2 ETIOPATHOPHYSIOLOGY Causes of CSF hypotension: 1. Lumbar puncture (CSF leakage through dural puncture site) - most common cause. 2. Dural tear or avulsion of nerve root (head or back trauma, craniotomy, spinal surgery, spontaneous dural tears, pituitary tumor*). *can cause CSF rhinorrhea craniotomy and trauma also decrease CSF formation. 3. CSF shunts 4. Spontaneous intracranial hypotension: a) CSF hyperabsorption (no evidence of CSF leak) - radionuclide cisternogram shows rapid transport of isotope and rapid uptake in kidneys and bladder. b) decreased CSF production - radionuclide cisternogram shows slow isotope flow; leads to brain sagging with compression of pituitary-hypothalamic axis and further reduction in CSF production. c) TARLOV cysts - arachnoid perineural cyst found in proximal radicles of lower spinal cord; rupture of cysts can
    [Show full text]
  • Care of Patient Post Craniectomy-(No Bone Flap)
    Care of Patient Post- Craniectomy (no bone flap) The Neurosurgery and Education Outreach Network (NEON) • The Neurosurgery Education and Outreach Network (NEON) is comprised of Neurosurgical Nurse Educators (NNEs), Clinical Outreach Specialists/Advanced Practice Nurses, and hospital Administrators dedicated to the neurosurgical nursing program implementation and on-going educational and clinical support of nursing staff in the neurosurgical centers and the non-neurosurgical referral centers. • As a neurosurgical educational support program, NEON reports directly to and works in conjunction with Critical Care Services Ontario (CCSO) and the Provincial Neurosurgery Advisory Committee who support system wide improvements for Ontario’s neurosurgical services. 2 Disclosure Statement • The Neurosurgery Education and Outreach Network (NEON) and Critical Care Services Ontario (CCSO) have no financial interest or affiliation concerning material discussed in this presentation. • This presentation provides direction for how to provide nursing care to adult and paediatric patients post- craniectomy to ensure consistency within and across organizations. It was developed by a sub-group of clinical neurosurgical nurses and neurosurgical educators for Registered Nurses (RN) across Ontario. This presentation is not meant to be exhaustive and its contents are recommended but not mandated for use. RNs should use their clinical judgment and utilize other assessment parameters if determined necessary. 3 Learning Objectives • The learner will be able to: – explain the difference between craniotomy and craniectomy – describe the implications for a craniectomy – summarize the risks and complications related to craniectomy – understand the nursing intervention related to caring for a patient with a craniectomy 4 Definitions • Craniotomy defines a procedure where the cranial cavity is accessed through removal of bone to perform a variety of brain surgeries.
    [Show full text]
  • The Intraoperative Use of the High-Density-Ecog During Awake Craniotomy Karim Refaey; William Tatum DO; Anteneh M
    The Intraoperative use of the High-Density-ECoG During Awake Craniotomy Karim ReFaey; William Tatum DO; Anteneh M. Feyissa M.D.; Alfredo Quinones-Hinoja MD Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida Department of Neurology, Mayo Clinic, Jacksonville, Florida Introduction Learning Objectives Electrocorticography (ECoG) and electrical cortical stimulation (ECS) are To determine if HD-grid ECoG electrodes can facilitate the extent of often used in tandem during awake craniotomies for mapping the eloquent resection during intraoperative ECS during real-time functional brain cortex, which facilitate tumor resection at the functional margins. mapping of eloquent cortex. To establish if ECoG composed of a 64-channel Intraoperative seizures are of a concern during awake craniotomy, which high-density grid can reveal a higher yield in detecting the epileptiform local lead to limitation of the extent of resection and a significant increase in the field potentials. length of hospitalizations. Due to the manifestation of seizures with brain lesions, epileptiform discharges are of interest. To investigate the frequency References Chatrian GE, Shaw CM, Leffman H. The significance of periodic lateralized epileptiform discharges in of epileptiform discharges we evaluated high-density ECoG (HD-ECoG) EEG: an electrographic, clinical and pathological study. Electroencephalogr. Clin. Neurophysiol. during ECS to assess epileptiform abnormalities and post-surgical 1964;17:177–193. Gurer G, Yemisci M, Saygi S, Ciger A. Structural lesions in periodic lateralized epileptiform outcomes. discharges (PLEDs). Clin. EEG Neurosci. 2004;35:88–93 Snodgrass SM, Tsuburaya K, Ajmone-Marsan C. Clinical significance of periodic lateralized epileptiform discharges: relationship with status epilepticus. J Clin Neurophysiol 1989;6:159–172.
    [Show full text]
  • Intraoperative Electrocorticography
    Conference Proceeding Intraoperative electrocorticography Gabriela Alcaraz, Pirjo Manninen Abstract Intraoperative electrocorticography (ECoG) is the recording of electrophysiological activity from electrodes placed directly on the exposed surface of brain, during surgery for epilepsy and tumor resection. The ECoG is helpful in defining the seizure onset and spread within the cortical surface and delineation of the interface between epileptogenic zones and functional cortex substance of the brain. Intraoperative ECoG is an invasive procedure, it is performed during surgery mostly commonly during awake craniotomy but at times during general anaesthesia. As most anesthetic agents will affect ECoG, they should be minimized or stopped prior to any recording. Activation of intraoperative epileptiform activity may also be required if there are no spontaneous discharges. The appropriate management of the anesthetic during the time of ECoG is critical for its success. There are limitations and some controversies to all the uses of intraoperative ECoG, thus each center will set their own indications, criteria, and protocols. Key words: Electrocorticography, epilepsy, neuroanaesthesia INTRODUCTION localisation and complete removal of the epileptogenic zone.[3,4] The epileptogenic zone includes all the areas Intraoperative electrocorticography (ECoG) is the of brain that generate spontaneous epileptic seizures. recording of electrophysiological activity from Though there is some controversy, ECoG, an invasive electrodes placed directly on the exposed surface of a technique, still plays an important role in the surgical brain, most commonly during the surgical treatment treatment of patients with epilepsy. The effects of [1-4] of epilepsy. The first use of intraoperative ECoG anaesthetic agents on intraoperative ECoG is an recordings was performed by Foerster and Alternberger important consideration for the anaesthesiologist in in 1935.
    [Show full text]
  • Transcranial Doppler Ultrasonography in Neurological Surgery and Neurocritical Care
    NEUROSURGICAL FOCUS Neurosurg Focus 47 (6):E2, 2019 Transcranial Doppler ultrasonography in neurological surgery and neurocritical care Robert H. Bonow, MD,1 Christopher C. Young, MD, PhD,1 David I. Bass, MD, PhD,1 Anne Moore, BSN, RVT,1 and Michael R. Levitt, MD1–4 Departments of 1Neurological Surgery, 2Radiology, 3Mechanical Engineering, and 4Stroke and Applied Neuroscience Center, University of Washington, Seattle, Washington Transcranial Doppler (TCD) ultrasonography is an inexpensive, noninvasive means of measuring blood flow within the arteries of the brain. In this review, the authors outline the technology underlying TCD ultrasonography and describe its uses in patients with neurosurgical diseases. One of the most common uses of TCD ultrasonography is monitoring for vasospasm following subarachnoid hemorrhage. In this setting, elevated blood flow velocities serve as a proxy for vaso- spasm and can herald the onset of ischemia. TCD ultrasonography is also useful in the evaluation and management of occlusive cerebrovascular disease. Monitoring for microembolic signals enables stratification of stroke risk due to carotid stenosis and can also be used to clarify stroke etiology. TCD ultrasonography can identify patients with exhausted cerebrovascular reserve, and after extracranial-intracranial bypass procedures it can be used to assess adequacy of flow through the graft. Finally, assessment of cerebral autoregulation can be performed using TCD ultrasonography, providing data important to the management of patients with severe traumatic
    [Show full text]
  • Robotics in Neurosurgery
    The American Journal of Surgery 188 (Suppl to October 2004) 68S–75S Robotics in neurosurgery Paul B. McBeth, M.A.Sc., Deon F. Louw, M.D., Peter R. Rizun, B.A.Sc., Garnette R. Sutherland, M.D.* The Seaman Family MR Research Center, Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, 1403 29th Street N.W., Calgary, Alberta T2N 2T9, Canada Abstract Technological developments in imaging guidance, intraoperative imaging, and microscopy have pushed neurosurgeons to the limits of their dexterity and stamina. The introduction of robotically assisted surgery has provided surgeons with improved ergonomics and enhanced visualization, dexterity, and haptic capabilities. This article provides a historical perspective on neurosurgical robots, including image- guided stereotactic and microsurgery systems. The future of robot-assisted neurosurgery, including the use of surgical simulation tools and methods to evaluate surgeon performance, is discussed. Heavier-than-air flying machines are impossible. for holding and manipulating biopsy cannulae. Although the —Lord Kelvin (William Thomson), robot served only as a holder/guide, the potential value of Australian Institute of Physics, 1895 robotic systems in surgery was evident. In 1991, Drake and coworkers [3] reported the use of a PUMA robot as a Neurosurgeons, constrained by their anthropomorphic de- retraction device in the surgical management of thalamic sign, may have reached the limits of their dexterity and astrocytomas. Despite their novel application, both systems stamina. The combination of magnification of the operative lacked the proper safety features needed for widespread field and tool miniaturization has overwhelmed the spatial acceptance into neurosurgery. Beginning in 1987, Benabid resolution of the adult human hand.
    [Show full text]
  • A Brief History of Otorhinolaryngolgy Otology, Laryngology And
    Rev Bras Otorrinolaringol 2007;73(5):693-703. ARTIGO DE REVISÃO REVIEW ARTICLE Breve história da A brief history of otorrinolaringologia: otologia, otorhinolaryngolgy: otology, laringologia e rinologia laryngology and rhinology João Flávio Nogueira Júnior 1, Diego Rodrigo 2 3 Palavras-chave: história da medicina, otorrinolaringologia. Hermann , Ronaldo dos Reis Américo , Iulo Keywords: history of medicine, otorhinolaryngology. Sérgio Barauna Filho 4, Aldo Eden Cassol Stamm 5, Shirley Shizuo Nagata Pignatari 6 Resumo / Summary O nariz, a garganta e o ouvido intrigam a humanidade Ears, nose and throat have intrigued humanity since desde os períodos mais remotos. Tratamentos laringológicos, immemorial times. Treatments for the larynx, the nose rinológicos e otológicos, além de cirurgias, já eram pratica- and the ear and also surgeries were practiced by Greek, dos por médicos gregos, hindus e bizantinos. No século XX Hindu and Byzantine doctors. In the 20th century clinical inovações clínicas e cirúrgicas foram incorporadas graças às and surgical innovations were incorporated, thanks to novas técnicas anestésicas, aos antibióticos, à radiologia e às new anesthesia techniques, antibiotics, radiology and new novas tecnologias. Objetivo e Método: Mostrar a evolução technologies. Aim and method: show the evolution of desta ciência ao longo dos tempos, reconhecendo figuras this science throughout the times, recognizing important importantes da otologia, rinologia e laringologia por revisão persons in otology, rhinology and laryngology. Results and em literatura. Resultado e Conclusão: O conhecimento conclusion: Understanding the evolutions in clinical and das evoluções em anatomia, fisiologia, tratamentos clínicos surgical anatomy, physiology, treatment modalities, and the e cirúrgicos, além das personalidades que conduziram a personalities that lead to these advances is of great importance estes avanços é de grande importância para que a ciência for the evolution of medical science.
    [Show full text]