Eurordis Summer School Alumni 2008 to 2015 By

Total Page:16

File Type:pdf, Size:1020Kb

Eurordis Summer School Alumni 2008 to 2015 By EURORDIS SUMMER SCHOOL ALUMNI 2008 TO 2015 BY COUNTRY For the the complete list of EURORDIS members: www.eurordis.org/membership Name Last name Association Year Armenia Albert Matevosyan "Neuroheditary diseases" Charity Association 2008/2010 Austria Ulrike Holzer Selbsthilfe Gruppe Ektodermale Dysplasie EV 2014 Rainer Riedl DEBRA Austria/ DEBRA International Pro Rare Austria 2012 Claas Röhl NF Kinder 2015 Barbara Dissauer DEBRA Austria 2013 Belgium Lutgarde De Baere Belgian Organisation for Metabolic Diseases (BOKS) 2008/2010 Greetje Goossens Belgian Myeloma Patient Organisation 2008 Ingrid Jageneau DEBRA Belgium 2011 Yvonne Jousten Association Belge du Syndrome de Marfan (ABSM) 2008 Flaminia Macchia EURORDIS 2012 Luc Matthysen HTAP Belgique Asbl 2013 Roberta Savli European Federation of Allergy and Airways Diseases 2013 Patients Org Jonathan Ventura RaDiOrg 2012 Bulgaria Ivan Ivanov Thalassaemics Organisation in Bulgaria 2011 Lyubomir Naydenov Bulgarian Society of Patients with Pulmonary Hypertension 2013 Vladimir Tomov National Alliance of People with Rare Diseases 2011 Canada Yolaine Dupont PVNH Support and Awareness 2013 Durhane Wong-Rieger Canadian Organisation for Rare Diseases 2009/2010 China Xun JI Chinese Organisation for Rare Disorders 2015 Croatia Vlasta Zmazek Croatian Epidermolysis Bullosa Association 2008/2010 Anja Kladar Croatian Alliance for Rare Diseases 2015 Czech Republic Anna Arellanesova Czech Association for Rare Diseases 2015 Vladimir Dolejs Czech Society of Haemophilia 2008 Ivo Dostal Klub Nemocnych Cystichou Fibrozou 2014 Jana Dvorackova Czech Haemophilia organisation 2011 Jiri Hruda Czech Huntington Association 2011 Jan Mihule Czech CF Association 2011 Anastassiya Zidkova Czech Society of Haemophilia 2015 Denmark Stephanie Joker Neilsen Rare Disorder Denmark 2014 Anne-Grethe Lauridsen European Gaucher Disease 2015 Dorthe Lykke Foreningen for Ataksi/HSP 2011 Annelise Roennow Fed European Scleroderma Association 2013 Estonia Pille-Katrin Levin Union of Estonian MS Societies 2013 Reet Paloson Prader Willi Assoc of Estonia 2013 Finland Anna Meriluoto Fabry Internation Network, Finnish Fabry Association 2011 France Karen Aiach Sanfillipo 2009 Zoe Alahouzou EURORDIS 2013 Sharon Ashton EURORDIS 2011 Claudie Baleydier French Association against Friedrich Ataxia (AFAF) 2008/2010 Philip Bloom Association Française des Malades de Myeloma Multiple 2012 Anne-Mary Bodin EURORDIS 2011 Jill Bonjean EURORDIS 2011 Lara Chappell EURORDIS 2015 Denis Costello EURORDIS 2009 Monica Ensini EURORDIS 2013 Katharine Foda Association for Parents of Children with Cancer (ISIS) 2008 Corinne Fourrier Association Nationale du Syndrome Xfragile "Le Goeland" 2009/2010 Sylvie Genet Association Française contre les Myopathies 2012 Francoise Germain Association Huntington France 2011 Rachel Hansen Prader-Willi France 2012 Anne Hugon Association Francophone des glycogenoses 2013 Anna Kole EURORDIS 2009 Shane Lynam EURORDIS 2009 Gerard Nguyen Rett Syndrome Europe 2008/2010 Olivia Niclas AFDE - Dysplasies Ectodermiques 2009 Christel Nourissier EURORDIS 2008 Martine Pergent IPOPI - Primary Immunodeficiencies 2009 Marie-Odile Perrousseaux Association Huntington France 2009/2010 Patrice Régnier EURORDIS 2009 Daniel Renault AIRG France FEDERG 2013 Thomas Sannié Association Française des Hémophiles (AFH) 2008 Christian Seguin Association pour aider et informer les syringomyelique 2009 Europeen Reunis (APAISER) Juliette Senecat EURORDIS 2013 Jacques Walch Association Pemphigus - Pemphigoide France 2009 Alain Weill Association Francaise des Hemophiles 2009 Ariane Weinman EURORDIS 2008 Lenja Wiehe EURORDIS 2015 Mathieu Boudes EURORDIS 2014 Guy Bouguet Lymphome Espoir 2014 Marcelle Bousbaci Association HNPCC Syndrome de Lynch 2014 Raquel Castro EURORDIS 2014 Olivia Romero Lux Association Française des hémophiles 2014 Tania Webster EURORDIS 2014 Georgia Oleg Kvlividze Georgian Foundation for Genetic and Rare Diseases 2011 Lali Margvelashvili Society of Parents and Children with JIA (member of 2015 GERAD) Ketevan Saralidze Georgian Foundation of Genetic and Rare Diseases 2013 Germany Arnd Brauer Alliance for Chronic Rare Diseases ACHSE 2008 Guenter Eibel Gaucher Gesellschaft Deutschland 2009/2010 Alexander Exner German federal association of vascuular birth deformities 2013 Markus Georg Pro Retina Dutschland 2012 Natascha Kolland I.E.B. Debra Deutschland 2012 Lisa Kotschi Arbeitsgemeinschaft Plasmozytom/Multiples Myelom 2012 Mirjam Mann German National Alliance (ACHSE) 2011 Bernd Quadder Deutsche Sarkoidose 2008/2010 Holger Roloff Deutche Narkolepsie-Gesellschaft 2012 Inge Schwersenz Spinal Muscular Atrophy (SMA) within DGM 2009 Rainald Von Gizycki Retina Europe/Pro Retina 2008 Anke Widenmann-Grolig KEKS e. V and EAT e.V. 2015 Nicola de Nittis Deutsches Thalassamei Forum 2014 Norbert Eckelmann Selbsthilfegruppe Glykogenose Germany 2014 Christina Grabowski Morbus Osler Selbsthilfe e.V. 2015 Jasjote Grewal CELLS - Centre for Ethics and Law in the Life Sciences 2015 Helma Gusseck Pro Retina Dutschland 2013 Michael Längsfeld Pro Retina Deutschland ev 2014 Michael Oeschger Skleroderma Selbsthilfe e.V. 2015 Marek Parowicz Polish Alternating Haemiglegia in Children 2013 Steffen Suchert Faun Stiftung 2014 Greece Dimitris Athanasiou MDA Hella 2014 Stamatina Manolias Association of people with Genetic disorders 2008 Hungary Beata Barna HUFERDIS - and Williams Syndrome Association 2009 Borbala Keszthelyi Hungarian Haemophilia Society 2011 Gabor Pogany Rare Diseases Hungary (HUFERDIS) 2008/2010 Dragomir Slavev Thalassaemics' Organaisation in Bulgaria 2011 Danijela Szili Hungarian Federation of Rare Diseases 2011 Gabor Varga Hungarian Haemophilia Society 2009/2010 Gergely Meszaros Tudoer Egylet PHA Hungary 2014 Iceland Fridrik Fridriksson Unique Children 2014 Sigurdur Johannesson Alternating Hemiplegia association of Iceland (AHCAI) 2012 Bryndis Maria Leifsdottir Unique Children 2014 Gudrun Ruth Vidarsdottir Hypoparathyroidism Europe 2008 Ireland Ann Kennedy Federation of European Scleroderma Associations 2011 Maria Panza Irish Fragile X Society 2014 Larry Warren Alfa Europe and Alpha One Foundation (Ireland) 2008 Avril Daly Genetic Rare Disorders Organisation 2015 Italy Marzia Abenante Tuberous Sclerosis Italian Association 2012 Lucia Bartoloni Associazione Italiana Kartagener 2008 Simona Bellagambi UNIAMO 2011 Agnese Bonfiglio A.Ma.Po 2012 Edward Callus Associazione Italiana dei Cardiopatici Congeniti Adulti 2012 (AICCA) Antonella Celano People Assocation with rheumatic diseases (APMAR) 2012 Maria Daniela Corvo Associazione Italiana Sindrome e Malattia de Behçet 2008 (SIMBA) Antonella Cravero Associazione Sclerosi Tuberous (AST) 2011 Antonella Esposito Angeli Noonan Italian Association for Noonan Syndrome 2009 Ouarda Fareh SIMBA (Behcet) 2009 Carla Fladrowski Associazione Sclerosi Tuberosa (AST Onlus) 2009/2010 Andrea Gressani Associazione Immunodeficienze Primitive ONLUS 2011 Michele Lipucci di Paola Associazione Veneta Lotta Talassemia (AVLT) 2008/2010 Flavio Minelli Unione Italiana Ittiosi (UNITI) 2008 Diana Vitali SOD Italia 2012 Paola Zinzi European Huntington Association 2011 Renza Barbon UNIAMO 2015 Sara Carrabba Aisac Onlus 2014 Claudia Crocione HHT Onlus Teleagiectasie Emorragica Ereditria 2014 Elisabetta Fortunati 2015 Elisabetta Gecchele Acondroplasia Insieme per Crescere Onlus 2013 Mario Ricciardi Cystic Fibrosis Europe 2015 Latvia Ieva Plume PHA Latvia 2015 Lithuania Vida Augustiniene Lithuanian Diabetes Association 2012 Aldona Droseikiene Lithuanian Multiple Schlerosis Union 2013 Anastasija Kovaliova Plautine hipertenzija 2015 Malta Antoinette Attard Breast Care Support Group Europa Donna 2012 Netherland s Leo Andeweg St. Klankboard 2012 Eglantine Barents Diabetesvereniging Nederland 2012 Manon Bosch Byniervereniging NVACP 2013 Brigitte Bosman Lung cancer Netherlands 2012 Anke Groenen Dutch Association for neuromuscular diseases 2014 Patrick Heijne Dutch Association for Addison and Cushing 2011 Margreet Jonker Breast Cancer Society 2012 Carmen Miranda Kleinegris NET groep Foundation 2013 Henk-Willem Laan Marshall Smith Syndrome Research Foundation 2011 Anke Lanser Spierziekten Nederland VSN 2013 Melanie Meniar European Waldenström's Macroglobulinemia Network 2015 Marieke Mol Coeliac Association 2012 Chinar Rahmattulla Vasculitis Foundation 2014 Balthasar Schaap ADCA vereniging Nederland Euro-ataxia, EFNA 2011 Erica Schenk Fabry International Network 2009/2010 Elja van der Veer Association for Muscle Diseases Netherlands 2011 Marieke Van Meel European Care for Nephrotic Syndrome 2011 Mary Lynne Van Poelgeest- ICP Netherlands Interstitial Cystitis/ Painful bladder 2013 Pomfret syndrome, chronic pelvic pain Ellen Van Veldhuizen Dutch Federation for Addison and Cushing patients 2009/2010 Peter Verhoeven Friedrich Wegener Stichtin 2012 Elizabeth Vroom Duchenne Parent Project 2014 Rob Collin Radboudumc 2015 Lesnik Oberstein LUMC Netherlands 2015 Norway Ingunn Westerheim Norwegian Association for Osteogenesis 2015 Poland Katarzyna Jesionkowska Child's Heart Foundation 2011 Joanna Jesionkowska Dina Radziwillowa Child's Heart Foundation 2010 Hanna Milczarek Dina Radziwillowa Child's Heart Foundation 2009 Joanna Swacha Foundation UMIEC POAMAGAC - Mucopolysaccharoidosis 2012 (all types) Portugal Joao Salazar EMP- European Myeloma Platform 2009 Raquel Silva Associacao Portuguesa de Leucemias e Linfoma 2011 Micaela Rosenberg European Tuberous Sclerosis Association 2015 Isabel Sebastiao-Vieira Rarssimas Associacao nacional de deficiecias mentais 2014 eraras
Recommended publications
  • Williams Syndrome Specialized Health Needs Interagency Collaboration
    SHNIC Factsheet: Williams Syndrome Specialized Health Needs Interagency Collaboration What is it? Williams syndrome (WS) is a random genetic mutation disorder that presents at birth, affecting both boys and girls equally. WS is caused by the deletion of genetic material from a specific region of chromosome 7. This disease is characterized by an array of medical problems that can range in severity and age of onset. However, all cases are characterized by dysmorphic facial features, cardiovascular disease, and developmental delay. These disabilities occur in conjunction with striking verbal abilities, highly social personalities, and an affinity for music. What are characteristics? Heart and blood vessel problems Low muscle tone and joint laxity Reflux Dental abnormalities Hypercalcemia Developmental Delays Hearing sensitivity Characteristic facial features: Kidney problems small upturned nose Hernias wide mouth Facial characteristics full lips Chronic ear infection small chin puffiness around the eyes Suggested school accommodations Most children with Williams Syndrome have some form of learning difficulties but they can significant- ly vary. As they age, you may notice the child struggling with concepts like spatial relations, numbers and abstract reasoning. Many children with WS appear scattered in their level of abilities across do- mains. Although a child with WS may be very social, remember to monitor their support systems and social interactions as they often have a difficult time understanding social cues. Physical/Medical
    [Show full text]
  • Williams Syndrome (WS): Recent Research on Music and Sound
    American Music Therapy Association 8455 Colesville Rd., Ste. 1000 • Silver Spring, Maryland 20910 Tel. (301) 589-3300 • Fax (301) 589-5175 • www.musictherapy.org Williams Syndrome (WS): Recent Research on Music and Sound STATEMENT OF PURPOSE Description: Music Therapy (MT) is the clinical and evidence-based use of music interventions to accomplish individualized goals within a therapeutic relationship by a credentialed professional who has completed an approved music therapy program. Although WS is a rare disease, MTs may have more contact with these clients since many people with WS have a strong affinity for music, melody and song. Parents of children with WS express a strong interest in adaptive music programs for their children. The aim of therapy is to help people with WS to optimize their talents and musical affinity in order to address multiple potential outcomes. MT sessions may include the use of active music making, singing, interactive music play, and improvisational techniques. MT may include both individual and group therapy. STANDARDIZATION: MT sessions are documented in a treatment plan and delivered in accordance with standards of practice. Music selections and certain active music making activities are modified for client preferences and individualized needs (i.e., song selection, musical instruments, and music may vary). REPLICATION: Yes; MT and music special education has been used with different settings, providers, and populations. Research replication in the area of music response and WS is growing. OUTCOMES: Improved global state, enhanced learning, general functioning, improved social functioning, and enhanced leisure time. OVERVIEW OF RESEARCH The prevalence rate for WS is estimated at 0.01% or about 36,266 people in the United States.
    [Show full text]
  • Preimplantation Genetic Screening and Diagnosis
    Lab Management Guidelines v2.0.2019 Preimplantation Genetic Screening and Diagnosis MOL.CU.119.P v2.0.2019 Description Preimplantation Genetic Diagnosis (PGD) and Preimplantation Genetic Screening (PGS) are used to detect genetic conditions, chromosome abnormalities, and fetal sex during assisted reproduction with in vitro fertilization (IVF). PGD refers to embryo testing that is performed when one or both parents have a known genetic abnormality. This includes single-gene mutations and chromosome rearrangements. PGS refers to screening an embryo for aneuploidy when both parents are chromosomally normal. Genetic testing is performed on cells from the developing embryo prior to implantation. Only those embryos not affected with a genetic condition are implanted. PGD may allow at-risk couples to avoid a pregnancy affected with a genetic condition. The Society for Assisted Reproductive Technology and the American Society for Reproductive Medicine have published joint practice committee opinions to address the safety, accuracy, and overall efficacy of PGD and PGS.1,2 This guideline does not include prenatal or preconception carrier screening. Please refer to Genetic Testing for Carrier Status for that purpose. This guideline does not include prenatal genetic testing. Please see Genetic Testing for Prenatal Screening and Diagnostic Testing for genetic testing done during pregnancy. Criteria Criteria: General coverage guidance Preimplantation genetic diagnosis may be considered when ALL of the following conditions are met: Technical and clinical validity: The test must be accurate, sensitive and specific, based on sufficient, quality scientific evidence to support the claims of the test. In the case of PGD, the mutation(s) or translocation(s) to be tested in the embryo should first be well-characterized in the parent(s) AND the embryonic test results must be demonstrated to be highly accurate.
    [Show full text]
  • The Behavioural Phenotype of Angelman Syndrome
    The behavioural phenotype of Angelman syndrome. Horsler, K. and Oliver, C. Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham Please use this reference when citing this work: Horsler, K. and Oliver, C. (2006). The behavioural phenotype of Angelman syndrome. Journal of Intellectual Disability Research , 50 , 33-53. The Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT Website: www.cndd.Bham.ac.uk E-mail : [email protected] 1 ABSTRACT Background. The purpose of this review is to examine the notion of a behavioural phenotype for Angelman syndrome and identify methodological and conceptual influences on the accepted presentation. Method. Studies examining the behavioural characteristics associated with Angelman syndrome are reviewed and methodology is described. Results. Potential bias in the description of the phenotype emerges with the use of case and cohort studies with the absence of comparison groups. A trend in the literature from a direct gene effect to a socially mediated effect on laughter is evident. Conclusion. Evidence for a behavioural phenotype of Angelman syndrome has begun to emerge. However, by adopting the concept of a ‘behavioural phenotype’, attention may become biased towards the underlying biological basis of the syndrome, with developmental and environmental factors being overlooked. 2 INTRODUCTION Angelman described three children in 1965 who all presented with intellectual disability
    [Show full text]
  • 7Q Deletions Proximal Interstitial FTNW
    7q deletions proximal interstitial rarechromo.org A 7q deletion A 7q deletion is a chromosome disorder . A chromosome disorder is a change in chromosome number or structure which results in a set of features or symptoms. People with a 7q deletion have lost a small but variable amount of genetic material from one of their 46 chromosomes. Chromosomes and genes Chromosomes are made up of DNA and are the structure in the nucleus of the body’s cells that carry genetic information (known as genes), telling the body how to develop and function. They come in 23 pairs, one from each parent. Twenty-two of the pairs are numbered 1- 22 according to size, from the largest to the smallest. In addition to these 44 chromosomes, each person has another pair of chromosomes, called the sex chromosomes. Girls have two Xs (XX), whereas boys have an X and a Y chromosome (XY). Each chromosome has a short (p) arm (at the top in the diagram on the next page) and a long (q) arm (the bottom part of the chromosome). For healthy development, chromosomes should contain just the right amount of material – not too much and not too little. People with a 7q deletion have one intact chromosome 7, but the other chromosome is missing a piece. This means that there is only one copy instead of the usual two of a number of genes. As chromosome 7 is a medium-sized chromosome, the genes on it represent about 4-6 per cent of the total number of genes in the human genome.
    [Show full text]
  • The Fragile X Syndrome–Autism Comorbidity: What Do We Really Know?
    REVIEW ARTICLE published: 16 October 2014 doi: 10.3389/fgene.2014.00355 The fragile X syndrome–autism comorbidity: what do we really know? Leonard Abbeduto 1,2*, Andrea McDuffie 1,2 and Angela John Thurman 1,2 1 MIND Institute, University of California, Davis, Sacramento, CA, USA 2 Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA Edited by: Autism spectrum disorder (ASD) is a common comorbid condition in people with fragile Anne C. Wheeler, Carolina Institute X syndrome (FXS). It has been assumed that ASD symptoms reflect the same underlying for Developmental Disabilities; University of North Carolina at psychological and neurobiological impairments in both FXS and non-syndromic ASD, which Chapel Hill, USA has led to the claim that targeted pharmaceutical treatments that are efficacious for core Reviewed by: symptoms of FXS are likely to be beneficial for non-syndromic ASD as well. In contrast, we Molly Losh, Northwestern present evidence from a variety of sources suggesting that there are important differences University, USA in ASD symptoms, behavioral and psychiatric correlates, and developmental trajectories Dejan Budimirovic, Kennedy Krieger Institute/The Johns Hopkins between individuals with comorbid FXS and ASD and those with non-syndromic ASD. We University, USA also present evidence suggesting that social impairments may not distinguish individuals *Correspondence: with FXS with and without ASD. Finally, we present data that demonstrate that the Leonard Abbeduto, MIND Institute, neurobiological substrates of the behavioral impairments, including those reflecting core University of California, Davis, 2825 ASD symptoms, are different in FXS and non-syndromic ASD. Together, these data suggest 50th Street, Sacramento, CA 95817, USA that there are clinically important differences between FXS and non-syndromic ASD e-mail: leonard.abbeduto@ucdmc.
    [Show full text]
  • A Comparison of Down Syndrome and Williams Syndrome
    ndrom Sy es tic & e G n e e n G e f T o Vicari et al., J Genet Syndr Gene Ther 2016, 7:1 Journal of Genetic Syndromes h l e a r n a DOI: 10.4172/2157-7412.1000279 r p u y o J & Gene Therapy ISSN: 2157-7412 Research Article Open Access Detecting Psychiatric Profile in Genetic Syndromes: A Comparison of Down Syndrome and Williams Syndrome Stefano Vicari1*, Floriana Costanzo1, Marco Armando1, Giovanni Carbonara1, Pamela Varvara1, Cristina Caciolo1, Chiara Gagliardi2, Tiziana Gianesini3, Paolo Alfieri1, Rossella Capolino1 and Deny Menghini1 1Bambino Gesù Children’s Hospital, Rome, Neuroscience Department, Italy 2Eugenio Medea Institute, Neurorehabilitation Unit, Bosisio Parini, Lecco 3AGBD Down Syndrome Association, Physical Medicine and Rehabilitation Clinic, Marzana, Verona Abstract The occurrence and co-occurrence of psychiatric disorders have been more frequently reported in people with Intellectual Disability (ID) than in the general population. The present study was aimed at verifying whether the psychiatric profile of individuals with ID is just a consequence of ID or derives from a specific genotype. The psychiatric profile of 112 individuals with Down syndrome (DS) and 85 with Williams syndrome (WS) was examined. The interactions between psychiatric symptom clusters and the effect of age were also investigated. Participants with WS had higher rates of psychiatric disorders, and, specifically, of Anxiety disorders and Psychosis than DS. However, the psychiatric profile changed by age, since Anxiety disorder was higher in individuals with WS compared to DS in young age, while Psychosis in old age. A relation between the occurrence of disorders, as Anxiety disorder and Mood Disorder, was found only in participants with WS.
    [Show full text]
  • Determining the Genetic Contributions of the Williams Syndrome Critical Region to Behavior Using Mouse Models and Human Genetics
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Summer 8-15-2019 Determining the Genetic Contributions of the Williams Syndrome Critical Region to Behavior Using Mouse Models and Human Genetics Nathan David Kopp Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Genetics Commons, and the Neuroscience and Neurobiology Commons Recommended Citation Kopp, Nathan David, "Determining the Genetic Contributions of the Williams Syndrome Critical Region to Behavior Using Mouse Models and Human Genetics" (2019). Arts & Sciences Electronic Theses and Dissertations. 1779. https://openscholarship.wustl.edu/art_sci_etds/1779 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Human and Statistical Genetics Dissertation Examination Committee: Joseph Dougherty, Chair Yehuda Ben-Shahar Don Conrad Harrison Gabel Christina Gurnett Beth Kozel Determining the Genetic Contributions of the Williams Syndrome Critical Region to Behavior Using Mouse Models and Human Genetics by Nathan Kopp A dissertation presented to
    [Show full text]
  • Neurological Syndromes
    Neurological Syndromes J. Gordon Millichap Neurological Syndromes A Clinical Guide to Symptoms and Diagnosis J. Gordon Millichap, MD., FRCP Professor Emeritus of Pediatrics and Neurology Northwestern University Feinberg School of Medicine Chicago, IL, USA Pediatric Neurologist Ann & Robert H. Lurie Children’s Hospital of Chicago Chicago , IL , USA ISBN 978-1-4614-7785-3 ISBN 978-1-4614-7786-0 (eBook) DOI 10.1007/978-1-4614-7786-0 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013943276 © Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae PERSONAL INFORMATION Carmelo Rizzari WORK EXPERIENCE June 1999- Present Head of the Pediatric Hematology-Oncology Unit University of Milano Bicocca, Hospital S. Gerardo of Monza (Italy) Pediatric Hematology Oncology June 2002-June 2009 Staff Associate Member - High Specialization University of Milano Bicocca, Hospital S. Gerardo of Monza (Italy) Pediatric Hematology Oncology October 1990-June 2002 Staff Assistant Member University of Milano Bicocca, Hospital S. Gerardo of Monza (Italy) Pediatric Hematology-Oncology March 1989-October 1990 Pediatrician Cinisello Balsamo, Milano (Italy) Pediatrics July 1988-September 1988 Medical Service in the public area of care continuity Italian Health Service (Italy) Pediatrics January 1988-May 1988 Medical activity of substitution for General Practitioners or Pediatricians Italian Health Service (Italy) Internal and Emergency Medicine May 1986-September 1988 Permanent Member of the 23rd Commission (ASL Catania) for the evaluation of Civil Invalidity ASL Catania (Italy) Legal medicine and Forensic Sciensces April 1984-October 1985 Medical Officer Italian Military Navy (Italy) Military and Emergency Medicine EDUCATION AND TRAINING November 1977-July 1983 Degree in Medicine and Surgery (Mentor: Prof. G. Russo, Catania) 110/110 cum laude Univerisyt of Catania, School of Medicine and Surgery (Italy) Medicine and Surgery July 1983-November 1983 National abilitation to professional medical activities University of Catania, School of Medicine (Italy) Medicine and Surgery July 1984-August
    [Show full text]
  • What Is 22Q11.2 Deletion Syndrome? 22Q11.2 Deletion Syndrome Is a Genetic Condition That Affects Learning, Health, and Physical Traits
    What is 22q11.2 Deletion Syndrome? 22q11.2 deletion syndrome is a genetic condition that affects learning, health, and physical traits. It occurs in males and females of all racial and ethnic backgrounds. 22q11.2 deletion syndrome occurs in about 1 in 4,000 to 6,000 people. It is sometimes known as Velocardiofacial or DiGeorge syndrome. How may the syndrome affect my child? Michigan Resources & Support Learning: There is a range of abilities. often noticed only by a medical Some children with 22q11.2 deletion professional. Short stature is also a Children’s Special Health Care may have normal learning, while others common trait. Services Family Phone Line have a developmental delay, learning Toll-free: 1-800-359-3722 disability or severe lifelong learning Medical: Heart defects are very E-mail: [email protected] problems. common. They can be mild or severe www.michigan.gov/cshcs enough to need surgery. Many Behavior: Mental (psychiatric) children have palate abnormalities. Early On® Michigan illnesses including depression, bipolar These include an opening in the roof Toll-free: 1-800-EARLY ON disorder and schizophrenia have been of the mouth (cleft palate) and a www.1800earlyon.org reported in some people with 22q11.2 change in the way the throat closes deletion syndrome. (velopharyngeal incompetence). Michigan Birth Defects Program Other medical problems can include Nurse Follow-up Coordinator Physical: Children with 22q11.2 kidney abnormalities, problems with Toll-free: 1-866-852-1247 deletion syndrome may have certain the immune system and low calcium E-mail: [email protected] facial features, such as a prominent levels.
    [Show full text]
  • Hashimoto's Thyroiditis and Graves' Disease in Genetic Syndromes In
    G C A T T A C G G C A T genes Review Hashimoto’s Thyroiditis and Graves’ Disease in Genetic Syndromes in Pediatric Age Celeste Casto, Giorgia Pepe , Alessandra Li Pomi, Domenico Corica , Tommaso Aversa and Malgorzata Wasniewska * Department of Human Pathology of Adulthood and Childhood, Unit of Pediatrics, University of Messina, 98124 Messina, Italy; [email protected] (C.C.); [email protected] (G.P.); [email protected] (A.L.P.); [email protected] (D.C.); [email protected] (T.A.) * Correspondence: [email protected]; Tel.: +39-328-6522425 Abstract: Autoimmune thyroid diseases (AITDs), including Hashimoto’s thyroiditis (HT) and Graves’ disease (GD), are the most common cause of acquired thyroid disorder during childhood and adolescence. Our purpose was to assess the main features of AITDs when they occur in association with genetic syndromes. We conducted a systematic review of the literature, covering the last 20 years, through MEDLINE via PubMed and EMBASE databases, in order to identify studies focused on the relation between AITDs and genetic syndromes in children and adolescents. From the 1654 references initially identified, 90 articles were selected for our final evaluation. Turner syndrome, Down syndrome, Klinefelter syndrome, neurofibromatosis type 1, Noonan syndrome, 22q11.2 deletion syndrome, Prader–Willi syndrome, Williams syndrome and 18q deletion syndrome were evaluated. Our analysis confirmed that AITDs show peculiar phenotypic patterns when they occur in association with some genetic disorders, especially chromosomopathies. To improve clinical practice and healthcare in children and adolescents with genetic syndromes, an accurate screening and monitoring of thyroid function and autoimmunity should be performed.
    [Show full text]