Algebraic Operation of Fuzzy Ideals of a Ring

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Operation of Fuzzy Ideals of a Ring © 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162) Algebraic Operation of Fuzzy Ideals of a Ring Dr.D.Sivakumar 1 , Dr.S.Anjal Mose 2 , Mrs.R.Padma Priya 3 1 Professor, Department of Mathematics, Annamalai University,Annamalainagar-608002. 2, 3 Assistant Professor, PG & Research Department of Mathematics, St.Joseph’s College of Arts & Science (Autonomous) , Cuddalore-607001 ABSTRACT Fuzzy Sets and Systems[5], R. Kellil using fuzzy numbers On 2-Absorbing Fuzzy Ideals to prove In this paper we introduce a generalization of a some property[6], R. Kellil introduced an New fuzzy ideal in rings. We have obtain necessary approaches on some fuzzy algebraic and sufficient condition for a fuzzy ideal of a ring structures[7].presently J. Jacas, J. Recasens to be a maximal fuzzy ideal. We have also obtain worked on Fuzzy numbers and equality relations the condition for a fuzzy set P defined on the ring [8]. M.Demirci used fuzzy numbers in Fuzzy of integers Z to be fuzzy prime ideal on Z. functions and their fundamental properties[9], Key words: Fuzzy ideals, Algebraic operation, D.Boixader, J. Jacas, J. Recasens said about Triangular fuzzy number, Ring. Fuzzy equivalence relations and the uses[10] and J. M. Anthony, H. Sherwood formed a new 1. INTRODUCTION definition for Fuzzy group redefined[1]. Here we Fuzzy mathematics is one of the subset of used triangular fuzzy number to used some of mathematics; it has divided into two section uncertain algebraic operation are used in some namely fuzzy logic and fuzzy set theory. Fuzzy algebraic properties like sum and product of mathematics is faster growth in research and commutative, associative , etc. development of real life problems with mathematics. In 1965 L.A. Zadeh introduced 2. PRELIMINARIES fuzzy logic,it is used in many application where In this preliminaries section some of few ever uncertainty is used then fuzzy can be applied important definitions related to this paper and well in that area. In 1971 Zadeh used Similarity known properties related with our given topics are relations and fuzzy orderings[1], D. S. Malik, J. used in the following N. Mordeson deals with Fuzzy maximal, radical, Definition 2.1 Fuzzy set: and primary ideals of a ring[2]. A. Rosenfeld used A fuzzy set is considered by a membership fuzzy numbers in Fuzzy groups [3] and W. J. Liu function mapped into a domain space (i.e) applied the new idea for Fuzzy invariant mapping connecting universe of discourse X to subgroups and fuzzy ideals, Fuzzy Sets and the unit period [0, 1] given by A x,()/ x x X Systems [4]. T. Kuraoka, N. Kuroki worked On A fuzzy quotient rings induced by fuzzy ideals, JETIR1905H82 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 511 © 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162) .Here : X 0,1 is said the degree of dA()() dA A Here (i )12 0, 0 , 0,0.5 dd membership function of the fuzzy set A. dA () dA () (ii )2 0,3 0 , 0.5,1 Definition 2.2 Normal fuzzy set: dd X is called a normal fuzzy set if a fuzzy set A of With the condition 1 It is expressed as the universe of discourse then if there exits at- , least one xX such that ()x =1 AAAA 1( ), 2 ( ), 3 ( ) ; , 0,1 A Definition 2.3 Height of a fuzzy set: (l2 l 1 ) l 1 , 0,0.5 Hence A (l l ) l , 0.5, 1 The leading membership position obtained by 3 2 3 some element in the fuzzy set and it is given by Definition 2.7 Let (G, ⋆) be a group and e its h( A ) sup ( x ) A uniqueness. A fuzzy subset of G is a fuzzy Definition 2.4 Convex fuzzy set: subgroup of G iff A fuzzy set A x,()/A x x X is said to be convex iff for any x12, x X , the membership 1. (e) = 1, function of A satisfies the condition AAA x1(1 ) x 2 min ( x 1 ), ( x 2 ) , [0,1] 2. (l1 ⋆ l2) ≥ min{ ( l1), ( l2)}; Definition2.5 Triangular Fuzzy number: ∀ l1; l2 ∈ G, i -1 A TFN Ap is a subset of in R with following 3. For all l1 ∈ G; ( l1) = ( l1 ). membership function as follows: It is called normal if in addition xl 1 , l x l ()ll 12 −1 21 ( l1⋆ l2 ⋆ l1 ) = (l2), ∀ l1 ∈ G. lx3 i (),x l23 x l Ap ()ll 32 3. OPERATIONS ON FUZZY SETS 0, otherwise Definition 3.1. A fuzzy function on a set S is a mapping f: S × S × S → [0, 1] such that, for x, y Where l1 l 2 l 3 ∈ S there exists a Z∈ S satisfying f(x, y, z) = 1. Definition 2.6: Arithmetic operation of TFN If f is a fuzzy operation on a set S, then f is based on () cuts 1. Commutative If A i is a TFN, then () cuts is given by p 2. Associative A( ),A ( ) for 0,0.5 14 3. Identity A A23( ),A ( ) for 0.5,1 JETIR1905H82 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 512 © 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162) Results 3.1. If E has an identity e for f and e) = f(a′, a, e) = f(a, a′′, e) = f(a′′, a, e) = 1 f(x, e, x) = 1, ∀x ∈ S, then this identity is and so f(a, a′, e) = f(a, a′′, e) = 1 which unique. implies the equality a′ = a′′. For the right symmetry the proof is trivial. Proof: Here we take two identity of the set S for f, then 1 = f(e′, e, e′) = f(e, e′, e′) and 1 = f(e, e′, e) = f(e′, e, e) and so f(e′, e, e′) = f(e′, e, e) = 1. 4. FUZZY IDEALS ′ But a unique element x such that f(e , e, x) = In this section we can recall the important ′ 1. Subsequently, e = e . basic definition related to fuzzy ideals Definition 3.2 Let f : S×S×S → [0, 1] be a Definition4.1: Classical definition fuzzy operation on a set S and e be the unique Let (R, + ×) be a ring and 0 its identity for +. identity of S for f . An element a ∈ S is symmetric R A fuzzy subset of R is called a fuzzy ideal of if f(a, a′, e) = f(a′, a, e) for some a′ ∈ S. R if Definition 3.3 Let f : S ×S × S → [0, 1] be a fuzzy operation on a set S and e be the unique 1. (0R) = 1, identity of S for f . An element a′ ∈ S if it 2. (a) = (−a), exists such that 3. (a + b) ≥ min { (a), (b)}, f(a, a′, e) = f(a′, a, e) = 1 ∀a, b ∈ R, 4. (a × b) ≥ max { (a), (b)}, is called a symmetric element of a ∈ E. ∀a, b ∈ R. By altering the last state in the above Definition 3.4 Let f : S×S×S→ [0, 1] be a fuzzy operation on a set S. An element a∈S is definition we get a new definition of a fuzzy left (resp. right) regular or cancellable if for ideal of a ring as follows any elements x, y, z ∈S, the equality f(a, x, z) = f(a, y, z) (resp. f(x, a, z) = f(y, a, z)) implies x = Definition4.2: y. It is regular or cancellable if it is left and New definition right regular. Let (R, +, ×) be a ring and 0R its Results 3.2 If f a fuzzy operation on S has an identity for +, a fuzzy subset of R identity e. Any left (resp. right) regular element has is a right fuzzy ideal of R if atmost one symmetric element. 1. (0R) = 1, Proof. 2. (a) = (−a), Suppose that x is left regular and has two symmetric elements a′ and a′′. Then f(a, a′, 3. (a + b) ≥ min { (a), (b)}, JETIR1905H82 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 513 © 2019 JETIR May 2019, Volume 6, Issue 5 www.jetir.org (ISSN-2349-5162) ∀a, b ∈ R, fuzzy ideal different from the characteristic 4. (a) > 0 =⇒ (a × b) > 0, function of R such that B is a fuzzy ideal of R and A ⊂ B ⊆ χR ⇒ B = χR Instead they approached ∀a, b ∈ R. the notion of fuzzy maximal ideals through fuzzy maximal left [and right] ideals. It is called proper if (1) = 0. 5.1.Theorem. Let A be a fuzzy set on R. Then A Proposition: 1 is a fuzzy maximal ideal of R if, and only if, there exist a maximal ideal M of R and a dual atom α ∈ If is a proper fuzzy ideal of R, then for all θ ∈ L such that A(x) = 1, if x ∈ M, and = α, otherwise [0, 1] the set I = {x ∈ R | (x) ≥ θ} is an ideal of the ring (R, +, ×). In addition, if ∀a, b ∈ R, a × b ∈ Remark. 1 The above theorem says that there is a 1-1 correspondence between fuzzy maximal ideals I implies (a × b) = (a). (b), then I is a prime ideal of the ring R. Let us give an example of R and pairs (M, α) where M is a maximal ideal of a fuzzy prime ideal which is not maximal. of R and α is a dual atom in L, if L = [0,1], then there is no dual atom in L.
Recommended publications
  • Data Envelopment Analysis with Fuzzy Parameters: an Interactive Approach
    International Journal of Operations Research and Information Systems, 2(3), 39-53, July-September 2011 39 Data Envelopment Analysis with Fuzzy Parameters: An Interactive Approach Adel Hatami-Marbini, Universite Catholique de Louvain, Belgium Saber Saati, Islamic Azad University, Iran Madjid Tavana, La Salle University, USA ABSTRACT Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of deci- sion making units (DMUs) that use multiple inputs to produce multiple outputs. In the conventional DEA, all the data assume the form of specific numerical values. However, the observed values of the input and output data in real-life problems are sometimes imprecise or vague. Previous methods have not considered the preferences of the decision makers (DMs) in the evaluation process. This paper proposes an interactive evaluation process for measuring the relative efficiencies of a set of DMUs in fuzzy DEA with consideration of the DMs’ preferences. The authors construct a linear programming (LP) model with fuzzy parameters and calculate the fuzzy efficiency of the DMUs for different α levels. Then, the DM identifies his or her most preferred fuzzy goal for each DMU under consideration. A modified Yager index is used to develop a ranking order of the DMUs. This study allows the DMs to use their preferences or value judgments when evaluating the performance of the DMUs. Keywords: Data Envelopment Analysis, Efficiency Evaluation, Fuzzy Mathematical Programming, Interactive Solution, Preference Modeling INTRODUCTION efficiency. A DMU is considered efficient when no other DMU can produce more outputs using The changing economic conditions have chal- an equal or lesser amount of inputs.
    [Show full text]
  • Fuzzy Integer Linear Programming with Fuzzy Decision Variables
    Applied Mathematical Sciences, Vol. 4, 2010, no. 70, 3493 - 3502 Fuzzy Integer Linear Programming with Fuzzy Decision Variables C. Sudhagar1 Department of Mathematics and Applied Sciences Middle East College of Information Technology, Muscat, Oman [email protected] K. Ganesan Department of Mathematics, SRM University, Chennai, India gansan [email protected] Abstract In this paper a new method for dealing with Fuzzy Integer Linear Programming Problems (FILPP) has been proposed. FILPP with fuzzy variables model was taken for solution. This solution method is based on the fuzzy ranking method. The proposed method can serve deci- sion makers by providing the reasonable range of values for the fuzzy variable, which is comparatively better than the currently available solu- tions. Numerical examples demonstrate the effectiveness and accuracy of the proposed method. Mathematics Subject Classification: 65K05, 90C10, 90C70, 90C90 Keywords: Fuzzy numbers, Ranking, Fuzzy integer linear programming 1 Introduction Linear Programming Problems(LPP) have an outstanding relevance in the field of Decision making, Artificial intelligence, Control theory, Management sciences, Job placement interventions etc. In many practical applications the available information in the system under consideration are not precise. In such situations, it is more appropriate to use the fuzzy LPP. 1Corresponding author 3494 C. Sudhagar and K. Ganesan The concept of fuzzy linear programming problems was first introduced by Tanaka et al.,[13, 12] After his work, several kinds of fuzzy linear programming problems have appeared in the literature and different methods have been proposed to solve such problems. Numerous methods for comparison of fuzzy numbers have been suggested in the literature. In Campos Verdegay paper[2] linear programming problems with fuzzy constraints and fuzzy coefficients in both matrix and right hand side of the constraint set are considered.
    [Show full text]
  • Connes on the Role of Hyperreals in Mathematics
    Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V.
    [Show full text]
  • Decision Analysis in the UK Energy Supply Chain Risk Management: Tools Development and Application
    Decision Analysis in the UK Energy Supply Chain Risk Management: Tools Development and Application by Amin Vafadarnikjoo Registration number: 100166891 Thesis submitted to The University of East Anglia for the Degree of Doctor of Philosophy (PhD) August 2020 Norwich Business School “This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution.” 1 Abstract Large infrastructures like electricity supply networks are widely presumed to be crucial for the functioning of societies as they create conditions for essential economic activities. There has always been a continuing concern and complexity around risks in the field of energy security and particularly power grids within energy supply chain. Drawing on this complexity and a need for useful tools, this research contributes to developing and utilising proper decision-making tools (i.e. methods and models) to deal with the risk identification and mitigation in the UK energy supply chain as a compound networked system. This thesis is comprised of four study phases (Figure I.A.). It is aimed at developing decision-making tools for risk identification, risk interdependency analysis, risk prioritisation, and long-term risk mitigation strategy recommendations. The application of the tools has focused on the UK power supply chain. The five new tools which are introduced and applied in this thesis are: (1) Proposed Expert Selection Model (ESM) and its application under hesitant fuzzy environment (i.e.
    [Show full text]
  • Global Journal of Science Frontier Research: F Mathematics & Decision Sciences
    Online ISSN : 2249-4626 Print ISSN : 0975-5896 DOI : 10.17406/GJSFR SolvingGraphFunctionProblem ModulestotheApplicationAreas FuzzyNumbersDescriptorSystems CliffordianHamiltonianFormulation VOLUME20ISSUE1VERSION1.0 Global Journal of Science Frontier Research: F Mathematics & Decision Sciences Global Journal of Science Frontier Research: F Mathematics & Decision Sciences Volume 20 Issue 1 (Ver. 1.0) Open Association of Research Society Global Journals Inc. © Global Journal of Science (A Delaware USA Incorporation with “Good Standing”; Reg. Number: 0423089) Frontier Research. 2020 . Sponsors:Open Association of Research Society Open Scientific Standards All rights reserved. This is a special issue published in version 1.0 Publisher’s Headquarters office of “Global Journal of Science Frontier Research.” By Global Journals Inc. Global Journals ® Headquarters All articles are open access articles distributed 945th Concord Streets, under “Global Journal of Science Frontier Research” Framingham Massachusetts Pin: 01701, Reading License, which permits restricted use. United States of America Entire contents are copyright by of “Global USA Toll Free: +001-888-839-7392 Journal of Science Frontier Research” unless USA Toll Free Fax: +001-888-839-7392 otherwise noted on specific articles. No part of this publication may be reproduced Offset Typesetting or transmitted in any form or by any means, electronic or mechanical, including G lobal Journals Incorporated photocopy, recording, or any information storage and retrieval system, without written 2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey, permission. Pin: CR9 2ER, United Kingdom The opinions and statements made in this book are those of the authors concerned. Packaging & Continental Dispatching Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.
    [Show full text]
  • Fuzzy Sets, Fuzzy Logic and Their Applications • Michael Gr
    Fuzzy Sets, Fuzzy Logic and Their Applications • Michael Gr. Voskoglou • Michael Gr. Fuzzy Sets, Fuzzy Logic and Their Applications Edited by Michael Gr. Voskoglou Printed Edition of the Special Issue Published in Mathematics www.mdpi.com/journal/mathematics Fuzzy Sets, Fuzzy Logic and Their Applications Fuzzy Sets, Fuzzy Logic and Their Applications Special Issue Editor Michael Gr. Voskoglou MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Special Issue Editor Michael Gr. Voskoglou Graduate Technological Educational Institute of Western Greece Greece Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special issues/Fuzzy Sets). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-520-4 (Pbk) ISBN 978-3-03928-521-1 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Preface to ”Fuzzy Sets, Fuzzy Logic and Their Applications” ...................
    [Show full text]
  • Innovative Uses of Matrices
    University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2012 Innovative Uses of Matrices Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy [email protected] Indra Venkatbabu Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Algebraic Geometry Commons, Analysis Commons, Applied Mathematics Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation W.B. Vasantha Kandasamy, F. Smarandache, I. Venkatbabu. Innovative Uses of Matrices. Ohio: Educational Publisher Inc., 2012. This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Innovative Uses of Matrices W. B. Vasantha Kandasamy Florentin Smarandache Indra Venkatbabu Educational Publisher Inc. Ohio 2012 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: 1-866-880-5373 Copyright 2012 by Educational Publisher Inc. and the Authors Peer reviewers: Professor Paul P. Wang, Ph D, Department of Electrical & Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA Prof. Catalin Barbu, V. Alecsandri National College, Mathematics Department, Bacau, Romania
    [Show full text]
  • TME Volume 7, Number 1
    The Mathematics Enthusiast Volume 7 Number 1 Article 10 1-2010 TME Volume 7, Number 1 Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation (2010) "TME Volume 7, Number 1," The Mathematics Enthusiast: Vol. 7 : No. 1 , Article 10. Available at: https://scholarworks.umt.edu/tme/vol7/iss1/10 This Full Volume is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. The Montana Mathematics Enthusiast ISSN 1551-3440 VOL. 7, NO.1, January 2010, pp.1-174 Editor-in-Chief Bharath Sriraman, The University of Montana Associate Editors: Lyn D. English, Queensland University of Technology, Australia Simon Goodchild, University of Agder, Norway Brian Greer, Portland State University, USA Luis Moreno-Armella, Cinvestav-IPN, México International Editorial Advisory Board Mehdi Alaeiyan, Iran University of Science and Technology, Iran Miriam Amit, Ben-Gurion University of the Negev, Israel Ziya Argun, Gazi University, Turkey Ahmet Arikan, Gazi University, Turkey. Astrid Beckmann, University of Education, Schwäbisch Gmünd, Germany Raymond Bjuland, University of Stavanger, Norway Morten Blomhøj, Roskilde University, Denmark Robert Carson, Montana State University- Bozeman, USA Mohan Chinnappan, University of Wollongong,
    [Show full text]
  • A Guide to the Fuzzynumbers Package for R (Fuzzynumbers Version 0.4-6)
    A Guide to the FuzzyNumbers Package for R (FuzzyNumbers version 0.4-6) Marek Gagolewski1 1 Systems Research Institute, Polish Academy of Sciences ul. Newelska 6, 01-447 Warsaw, Poland Jan Caha2 2 Institute of Geoinformatics, VŠB – Technical University of Ostrava https://cran.r-project.org/web/packages/FuzzyNumbers/ February 5, 2019 Contents 1 Getting Started 2 2 How to Create Instances of Fuzzy Numbers 3 2.1 Arbitrary Fuzzy Numbers . 3 2.1.1 Definition by Side Functions . 3 2.1.2 Definition by α-cut Bounds . 5 2.1.3 Definition with Generating Functions Omitted: Shadowed Sets . 6 2.2 Using Numeric Approximations of α-cut or Side Generators . 7 2.3 Trapezoidal Fuzzy Numbers . 8 2.4 Piecewise Linear Fuzzy Numbers . 10 2.5 Fuzzy Numbers with Sides Given by Power Functions . 14 3 Depicting Fuzzy Numbers 15 4 Basic Computations on and Characteristics of Fuzzy Numbers 18 4.1 Support and Core, and Other α-cuts . 19 4.2 Membership Function Evaluation . 19 4.3 “Typical” Value . 20 4.4 Measures of “Nonspecificity” . 21 5 Operations on Fuzzy Numbers 21 5.1 Arithmetic Operations . 21 5.2 Applying Functions . 22 5.2.1 Special Functions . 23 6 Approximation of Fuzzy Numbers 23 6.1 Metrics in the Space of Fuzzy Numbers . 24 6.2 Approximation by Trapezoidal Fuzzy Numbers . 24 6.2.1 Naïve Approximation . 24 6.2.2 L2-nearest Approximation . 25 6.2.3 Expected Interval Preserving Approximation . 26 6.2.4 Approximation with Restrictions on Support and Core . 27 1 6.3 Approximation by Piecewise Linear Fuzzy Numbers .
    [Show full text]
  • University of Alberta Neuro-Fuzzy Architecture Based on Complex
    University of Alberta Neuro-fuzzy architecture based on complex fuzzy logic by Sara Aghakhani A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Software Engineering and Intelligent Systems Department of Electrical and Computer Engineering ©Sara Aghakhani Spring 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN:978-0-494-56626-8 Our file Notre référence ISBN: 978-0-494-56626-8 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats.
    [Show full text]
  • Gradual Complex Numbers
    16th World Congress of the International Fuzzy Systems Association (IFSA) 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) Gradual Complex Numbers Emmanuelly Sousa 1 Regivan H N Santiago2 1,2Group for Logic, Language, Information, Theory and Applications - LoLITA∗ Abstract Finally, in order to achieve the results, this paper proposes a notion of distance for GCNs. This paper aims to introduce the concept of Grad- ual Complex Number (GCN) based on the ex- 2. Gradual Real Number(GCN) isting definition of gradual numbers and to show that the algebraic and polar forms, as well as some Gradual real numbers were introduced by J. Fortin, algebraic properties, of complex numbers can be di- Didier Dubois e H. Fargier in [4]. rectly extended from the crisp case. Furthermore, a kind of distance is established in order to deal with Definition 2.1 A gradual real number r˜ is de- such numbers. fined by a total assignment function Ar˜ : (0, 1] → R such that Ar˜(1) = r. Keywords: Fuzzy Numbers, Gradual Numbers, Gradual Complex Numbers. Consider R˜ as the set of all gradual real num- bers. A real number r can be seen as a gradual real 1. Introduction number r˜ such that, for all α ∈ (0, 1], ar˜(α) = r. The operations defined in R can be extended to the In 1965, Lofti Zadeh [4] introduced the concept of set R˜. It is easy to see that the operations of ad- fuzzy sets to quantify subjective linguistic terms dition and multiplication defined on R˜ inherits the such as: “approximately”, “around” etc.
    [Show full text]
  • ICIC Express Letters
    9ROXPH1XPEHU % 2FWREHU,661; I C I C International ,&,&([SUHVV/HWWHUV $Q,QWHUQDWLRQDO-RXUQDORI5HVHDUFKDQG6XUYH\V (GLWRUVLQ&KLHI -XQ]R:DWDGD:DVHGD8QLYHUVLW\-DSDQ <DQ6KL7RNDL8QLYHUVLW\-DSDQ ,QGH[HGE\ (L&RPSHQGH[ (OVHYLHU 6FRSXV (OVHYLHU ,163(& ,(7 3XEOLVKHGE\,&,&,QWHUQDWLRQDO KWWSZZZLMLFLFRUJLFLFHOKWP ICIC Express Letters Editors-in-Chief Junzo Watada, Graduate School of Information, Production & Systems, Waseda University 2-7, Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan Yan Shi, Graduate School of Science and Technology, Tokai University 9-1-1, Toroku, Kumamoto 862-8652, Japan Advisory Board Steve P. Banks, UK Tianyou Chai, China Tom Heskes, Netherlands Lakhmi C. Jain, Australia Jerry M. Mendel, USA Masaharu Mizumoto, Japan Witold Pedrycz, Canada Jeng-Shyang Pan, Taiwan Peng Shi, UK Jianrong Tan, China Takeshi Yamakawa, Japan Lotfi A. Zadeh, USA Kaiqi Zou, China Associate Editors Ramesh Agarwal, USA Jamal Ameen, UK Rawshan Basha, UAE Michael V. Basin, Mexico Yasar Becerikli, Turkey Genci Capi, Japan Ozer Ciftcioglu, Netherlands Joshua Dayan, Israel Vasile Dragan, Romania Kei Eguchi, Japan Keiichi Horio, Japan Chao-Hsing Hsu, Taiwan Xiangpei Hu, China Gerardo Iovane, Italy Karim Kemih, Algeria Dongsoo Kim, Korea Hyoungseop Kim, Japan Huey-Ming Lee, Taiwan Zuoliang Lv, China Magdi Mahmoud, Saudi Arabia Anatolii Martynyuk, Ukraine Tshilidzi Marwala, South Africa Subhas Misra, India Takuo Nakashima, Japan Nikos Nikolaidis, Greece Sing Kiong Nguang, New Zealand Pavel Pakshin, Russia Jiqing Qiu, China Chin-Shiuh Shieh, Taiwan
    [Show full text]