Fuzzy Sets, Fuzzy Logic and Their Applications • Michael Gr

Total Page:16

File Type:pdf, Size:1020Kb

Fuzzy Sets, Fuzzy Logic and Their Applications • Michael Gr Fuzzy Sets, Fuzzy Logic and Their Applications • Michael Gr. Voskoglou • Michael Gr. Fuzzy Sets, Fuzzy Logic and Their Applications Edited by Michael Gr. Voskoglou Printed Edition of the Special Issue Published in Mathematics www.mdpi.com/journal/mathematics Fuzzy Sets, Fuzzy Logic and Their Applications Fuzzy Sets, Fuzzy Logic and Their Applications Special Issue Editor Michael Gr. Voskoglou MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Special Issue Editor Michael Gr. Voskoglou Graduate Technological Educational Institute of Western Greece Greece Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special issues/Fuzzy Sets). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-520-4 (Pbk) ISBN 978-3-03928-521-1 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Preface to ”Fuzzy Sets, Fuzzy Logic and Their Applications” .................... ix Yu-Cheng Wang and Tin-Chih Toly Chen A Partial-Consensus Posterior-Aggregation FAHP Method—Supplier Selection Problem as an Example Reprinted from: Mathematics 2019, 7, 179, doi:10.3390/math7020179 ................. 1 Lingqiang Li p-Topologicalness—A Relative Topologicalness in -Convergence Spaces Reprinted from: Mathematics 2019, 7, 228, doi:10.3390/math7030228 ................. 17 Michael Gr. Voskoglou Methods for Assessing Human–Machine Performance under Fuzzy Conditions Reprinted from: Mathematics 2019, 7, 230, doi:10.3390/math7030230 ................. 35 Huarong Zhang and Minxia Luo The “Generator” of Int-Soft Filters on Residuated Lattices Reprinted from: Mathematics 2019, 7, 236, doi:10.3390/math7030236 ................. 57 Chiranjibe Jana and Madhumangal Pal On (α,β)-US Sets in BCK/BCI-Algebras Reprinted from: Mathematics 2019, 7, 252, doi:10.3390/math7030252 ................. 67 Qiu Jin, Lingqiang Li and Guangming Lang Reprinted from: Mathematics 2019, 7, 370, doi:10.3390/math7040370 ................. 85 Hui-Chin Tang and Shen-Tai Yang Counterintuitive Test Problems for Distance-Based Similarity Measures Between Intuitionistic Fuzzy Sets Reprinted from: Mathematics 2019, 7, 437, doi:10.3390/math7050437 ................. 99 Cen Zuo, Anita Pal and Arindam Dey New Concepts of Picture Fuzzy Graphs with Application Reprinted from: Mathematics 2019, 7, 470, doi:10.3390/math7050470 .................109 Songsong Dai, Lvqing Bi and Bo Hu Distance Measures between the Interval-Valued Complex Fuzzy Sets Reprinted from: Mathematics 2019, 7, 549, doi:10.3390/math7060549 .................127 Adil Baykaso˘glu and Ilker˙ G¨olcuk ¨ An Interactive Data-Driven (Dynamic) Multiple Attribute Decision Making Model via Interval Type-2 Fuzzy Functions Reprinted from: Mathematics 2019, 7, 584, doi:10.3390/math7070584 .................139 Qiu Jin, Lingqiang Li and Jing Jiang Fuzzy Counterparts of Fischer Diagonal Condition in -Convergence Spaces Reprinted from: Mathematics 2019, 7, 685, doi:10.3390/math7080685 .................171 v Zhenyu Xiu and Qinghua Li Degrees of L-Continuity for Mappings between L-Topological Spaces Reprinted from: Mathematics 2019, 7, 1013, doi:10.3390/math7111013 ................189 Hamed Nozari, Esmaeil Najafi, Mohammad Fallah and Farhad Hosseinzadeh Lotfi Quantitative Analysis of Key Performance Indicators of Green Supply Chain in FMCG Industries Using Non-Linear Fuzzy Method Reprinted from: Mathematics 2019, 7, 1020, doi:10.3390/math7111020 ................205 Jeong-Gon Lee, Kul Hur Bipolar Fuzzy Relations Reprinted from: Mathematics 2019, 7, 1044, doi:10.3390/math7111044 ................225 Marc Sanchez-Roger, Mar´ıa Dolores Oliver-Alfonso and Carlos Sanch´ıs-Pedregosa Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises Reprinted from: Mathematics 2019, 7, 1091, doi:10.3390/math7111091 ................243 Guangwang Su, Taixiang Sun On ω-Limit Sets of Zadeh’s Extension of Nonautonomous Discrete Systems on an Interval Reprinted from: Mathematics 2019, 7, 1116, doi:10.3390/math7111116 ................265 Tin-Chih Toly Chen, Yu-Cheng Wang, Yu-Cheng Lin, Hsin-Chieh Wu and Hai-Fen Lin A Fuzzy Collaborative Approach for Evaluating the Suitability of a Smart Health Practice Reprinted from: Mathematics 2019, 7, 1180, doi:10.3390/math7121180 ................273 Suizhi Luo and Lining Xing Picture Fuzzy Interaction Partitioned Heronian Aggregation Operators for Hotel Selection Reprinted from: Mathematics 2020, 8, 3, doi:10.3390/math8010003 ..................293 Qianli Zhou, Hongming Mo and Yong Deng A New Divergence Measure of Pythagorean Fuzzy Sets Based on Belief Function and Its Application in Medical Diagnosis Reprinted from: Mathematics 2020, 8, 142, doi:10.3390/math8010142 .................317 Mabruka Ali, Adem Kılı¸cman and Azadeh Zahedi Khameneh Separation Axioms of Interval-Valued Fuzzy Soft Topology via Quasi-Neighborhood Structure Reprinted from: Mathematics 2020, 8, 178, doi:10.3390/math8020178 .................337 vi About the Special Issue Editor Michael Gr. Voskoglou (B.S., M.S., M.Phil. , Ph.D. in Mathematics) is currently an Emeritus Professor of Mathematical Sciences at the Graduate Technological Educational Institute of Western Greece. He was a Visiting Researcher at the Bulgarian Academy of Sciences (1997–2000), a Visiting Professor at the University of Warsaw (2009), of Applied Sciences of Berlin (2010), and at the National Institute of Technology of Durgapur, India (2016). Prof. Voskoglou is the author of 16 books (9 in Greek and 7 in English) and of more than 500 papers published in reputed mathematical journals and proceedings of international conferences of about 30 countries in the five continents (2018 Google Scholar Citations: 2401, H-idex 24). He is also the Editor in Chief of the International Journal of Applications of Fuzzy Sets and Artificial Intelligence (ISSN 2241-1240), reviewer of the AMS and member of the Editorial Board or referee in many mathematical journals. His research interests include algebra, fuzzy sets, Markov chains, artificial intelligence, and mathematics education. vii Preface to ”Fuzzy Sets, Fuzzy Logic and Their Applications” A few decades ago, probability theory used to be the unique tool in the hands of the experts for handling situations of uncertainty appearing in problems of science, technology, and in everyday life. Probability, which is based on the principles of traditional bivalent logic, is sufficient for tackling problems of uncertainty connected to randomness, but not those connected with imprecise or vague information. However, with the development of fuzzy set theory introduced by Zadeh in 1965 and of fuzzy logic which is based on that theory, things have changed. These new mathematical tools gave scientists the ability to model under conditions that are vague or not precisely defined, thus succeeding to mathematically solve problems whose statements are expressed in our natural language. As a result, the spectrum of their applications has rapidly extended, covering all the physical sciences; economics and management; expert systems like financial planners, diagnostic, meteorological, information retrieval, control systems, etc.; industry; robotics; decision making; programming; medicine; biology; humanities; education and almost all the other sectors of te human activity, including human reasoning. The first major commercial application of fuzzy logic was in cement kiln control (Zadeh, 1983), followed by a navigation system for automatic cars, a fuzzy controller for automatic operation of trains, laboratory level controllers, controllers for robot vision, graphics, controllers for automated police sketchers, and many others. Fuzzy mathematics has also significantly developed at the theoretical level, providing important insights even into branches of classical mathematics, like algebra, analysis, and geometry. The present book contains 20 papers collected from amongst 53 manuscripts submitted for the Special Issue “Fuzzy Sets, Fuzzy Logic and Their Applications” of the MDPI journal Mathematics. These papers appear in the book in the series in which they were accepted, and published in Volumes 7 (2019) and 8 (2020) of the journal and cover a wide range of topics and applications of fuzzy systems and fuzzy logic and their extensions and generalizations. This range includes, among others, management of uncertainty in a fuzzy environment, fuzzy assessment methods of human–machine performance, fuzzy graphs, fuzzy topological and convergence spaces, bipolar fuzzy relations, type-2 fuzzy sets, as well as intuitionistic, interval-valued, complex, picture and Pythagorean fuzzy sets, soft sets, and algebras. The applications presented are oriented to finance, fuzzy
Recommended publications
  • Computing Degrees of Subsethood and Similarity for Interval-Valued Fuzzy Sets: Fast Algorithms Hung T
    University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 8-1-2008 Computing Degrees of Subsethood and Similarity for Interval-Valued Fuzzy Sets: Fast Algorithms Hung T. Nguyen Vladik Kreinovich University of Texas at El Paso, [email protected] Follow this and additional works at: http://digitalcommons.utep.edu/cs_techrep Part of the Computer Engineering Commons Comments: Technical Report: UTEP-CS-08-27a Published in Proceedings of the 9th International Conference on Intelligent Technologies InTech'08, Samui, Thailand, October 7-9, 2008, pp. 47-55. Recommended Citation Nguyen, Hung T. and Kreinovich, Vladik, "Computing Degrees of Subsethood and Similarity for Interval-Valued Fuzzy Sets: Fast Algorithms" (2008). Departmental Technical Reports (CS). Paper 94. http://digitalcommons.utep.edu/cs_techrep/94 This Article is brought to you for free and open access by the Department of Computer Science at DigitalCommons@UTEP. It has been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. Computing Degrees of Subsethood and Similarity for Interval-Valued Fuzzy Sets: Fast Algorithms Hung T. Nguyen Vladik Kreinovich Department of Mathematical Sciences Department of Computer Science New Mexico State University University of Texas at El Paso Las Cruces, NM 88003, USA El Paso, TX 79968, USA [email protected] [email protected] Abstract—Subsethood A ⊆ B and set equality A = B are Thus, for two fuzzy sets A and B, it is reasonable to define among the basic notions of set theory. For traditional (“crisp”) degree of subsethood and degree of similarity.
    [Show full text]
  • A Philosophical Treatise on the Connection of Scientific Reasoning
    mathematics Review A Philosophical Treatise on the Connection of Scientific Reasoning with Fuzzy Logic Evangelos Athanassopoulos 1 and Michael Gr. Voskoglou 2,* 1 Independent Researcher, Giannakopoulou 39, 27300 Gastouni, Greece; [email protected] 2 Department of Applied Mathematics, Graduate Technological Educational Institute of Western Greece, 22334 Patras, Greece * Correspondence: [email protected] Received: 4 May 2020; Accepted: 19 May 2020; Published:1 June 2020 Abstract: The present article studies the connection of scientific reasoning with fuzzy logic. Induction and deduction are the two main types of human reasoning. Although deduction is the basis of the scientific method, almost all the scientific progress (with pure mathematics being probably the unique exception) has its roots to inductive reasoning. Fuzzy logic gives to the disdainful by the classical/bivalent logic induction its proper place and importance as a fundamental component of the scientific reasoning. The error of induction is transferred to deductive reasoning through its premises. Consequently, although deduction is always a valid process, it is not an infallible method. Thus, there is a need of quantifying the degree of truth not only of the inductive, but also of the deductive arguments. In the former case, probability and statistics and of course fuzzy logic in cases of imprecision are the tools available for this purpose. In the latter case, the Bayesian probabilities play a dominant role. As many specialists argue nowadays, the whole science could be viewed as a Bayesian process. A timely example, concerning the validity of the viruses’ tests, is presented, illustrating the importance of the Bayesian processes for scientific reasoning.
    [Show full text]
  • Data Envelopment Analysis with Fuzzy Parameters: an Interactive Approach
    International Journal of Operations Research and Information Systems, 2(3), 39-53, July-September 2011 39 Data Envelopment Analysis with Fuzzy Parameters: An Interactive Approach Adel Hatami-Marbini, Universite Catholique de Louvain, Belgium Saber Saati, Islamic Azad University, Iran Madjid Tavana, La Salle University, USA ABSTRACT Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of deci- sion making units (DMUs) that use multiple inputs to produce multiple outputs. In the conventional DEA, all the data assume the form of specific numerical values. However, the observed values of the input and output data in real-life problems are sometimes imprecise or vague. Previous methods have not considered the preferences of the decision makers (DMs) in the evaluation process. This paper proposes an interactive evaluation process for measuring the relative efficiencies of a set of DMUs in fuzzy DEA with consideration of the DMs’ preferences. The authors construct a linear programming (LP) model with fuzzy parameters and calculate the fuzzy efficiency of the DMUs for different α levels. Then, the DM identifies his or her most preferred fuzzy goal for each DMU under consideration. A modified Yager index is used to develop a ranking order of the DMUs. This study allows the DMs to use their preferences or value judgments when evaluating the performance of the DMUs. Keywords: Data Envelopment Analysis, Efficiency Evaluation, Fuzzy Mathematical Programming, Interactive Solution, Preference Modeling INTRODUCTION efficiency. A DMU is considered efficient when no other DMU can produce more outputs using The changing economic conditions have chal- an equal or lesser amount of inputs.
    [Show full text]
  • Fuzzy Integer Linear Programming with Fuzzy Decision Variables
    Applied Mathematical Sciences, Vol. 4, 2010, no. 70, 3493 - 3502 Fuzzy Integer Linear Programming with Fuzzy Decision Variables C. Sudhagar1 Department of Mathematics and Applied Sciences Middle East College of Information Technology, Muscat, Oman [email protected] K. Ganesan Department of Mathematics, SRM University, Chennai, India gansan [email protected] Abstract In this paper a new method for dealing with Fuzzy Integer Linear Programming Problems (FILPP) has been proposed. FILPP with fuzzy variables model was taken for solution. This solution method is based on the fuzzy ranking method. The proposed method can serve deci- sion makers by providing the reasonable range of values for the fuzzy variable, which is comparatively better than the currently available solu- tions. Numerical examples demonstrate the effectiveness and accuracy of the proposed method. Mathematics Subject Classification: 65K05, 90C10, 90C70, 90C90 Keywords: Fuzzy numbers, Ranking, Fuzzy integer linear programming 1 Introduction Linear Programming Problems(LPP) have an outstanding relevance in the field of Decision making, Artificial intelligence, Control theory, Management sciences, Job placement interventions etc. In many practical applications the available information in the system under consideration are not precise. In such situations, it is more appropriate to use the fuzzy LPP. 1Corresponding author 3494 C. Sudhagar and K. Ganesan The concept of fuzzy linear programming problems was first introduced by Tanaka et al.,[13, 12] After his work, several kinds of fuzzy linear programming problems have appeared in the literature and different methods have been proposed to solve such problems. Numerous methods for comparison of fuzzy numbers have been suggested in the literature. In Campos Verdegay paper[2] linear programming problems with fuzzy constraints and fuzzy coefficients in both matrix and right hand side of the constraint set are considered.
    [Show full text]
  • Machine Learning in Scientometrics
    DEPARTAMENTO DE INTELIGENCIA ARTIFICIAL Escuela Tecnica´ Superior de Ingenieros Informaticos´ Universidad Politecnica´ de Madrid PhD THESIS Machine Learning in Scientometrics Author Alfonso Iba´nez˜ MS Computer Science MS Artificial Intelligence PhD supervisors Concha Bielza PhD Computer Science Pedro Larranaga˜ PhD Computer Science 2015 Thesis Committee President: C´esarHerv´as Member: Jos´eRam´onDorronsoro Member: Enrique Herrera Member: Irene Rodr´ıguez Secretary: Florian Leitner There are no secrets to success. It is the result of preparation, hard work, and learning from failure. Acknowledgements Ph.D. research often appears a solitary undertaking. However, it is impossible to maintain the degree of focus and dedication required for its completion without the help and support of many people. It has been a difficult long journey to finish my Ph.D. research and it is of justice to cite here all of them. First and foremost, I would like to thank Concha Bielza and Pedro Larra~nagafor being my supervisors and mentors. Without your unfailing support, recommendations and patient, this thesis would not have been the same. You have been role models who not only guided my research but also demonstrated your enthusiastic research attitudes. I owe you so much. Whatever research path I do take, I will be prepared because of you. I would also like to express my thanks to all my friends and colleagues at the Computa- tional Intelligence Group who provided me with not only an excellent working atmosphere and stimulating discussions but also friendships, care and assistance when I needed. My special thank-you goes to Rub´enArma~nanzas,Roberto Santana, Diego Vidaurre, Hanen Borchani, Pedro L.
    [Show full text]
  • Application of Fuzzy Query Based on Relation Database Dongmei Wei Liangzhong Yi Zheng Pei
    Application of Fuzzy Query Based on Relation Database Dongmei Wei Liangzhong Yi Zheng Pei School of Mathematics & Computer Engineering, Xihua University, Chengdu 610039, China Abstract SELECT <list of ¯elds> FROM <list of tables> ; The traditional query in relation database is unable WHERE <attribute> in <multi-valued attribute> to satisfy the needs for dealing with fuzzy linguis- tic values. In this paper, a new data query tech- SELECT <list of ¯elds> FROM <list of tables>; nique combined fuzzy theory and SQL is provided, WHERE NOT <condition> and the query can be implemented for fuzzy linguis- tic values query via a interface to Microsoft Visual SELECT <list of ¯elds> FROM <list of tables>; Foxpro. Here, we applied it to an realism instance, WHERE <subcondition> AND <subcondition> questions could be expressed by fuzzy linguistic val- ues such as young, high salary, etc, in Employee SELECT <list of ¯elds> FROM <list of tables>; relation database. This could be widely used to WHERE <subcondition> OR <subcondition> realize the other fuzzy query based on database. However, the Complexity is limited in precise data processing and is unable to directly express Keywords: Fuzzy query, Relation database, Fuzzy fuzzy concepts of natural language. For instance, theory, SQL, Microsoft visual foxpro in employees relation database, to deal with a query statement like "younger, well quali¯ed or better 1. Introduction performance ", it is di±cult to construct SQL be- cause the query words are fuzzy expressions. In Database management systems(DBMS) are ex- order to obtain query results, there are two basic tremely useful software products which have been methods of research in the use of SQL Combined used in many kinds of systems [1]-[3].
    [Show full text]
  • On Fuzzy and Rough Sets Approaches to Vagueness Modeling⋆ Extended Abstract
    From Free Will Debate to Embodiment of Fuzzy Logic into Washing Machines: On Fuzzy and Rough Sets Approaches to Vagueness Modeling⋆ Extended Abstract Piotr Wasilewski Faculty of Mathematics, Informatics and Mechanics University of Warsaw Banacha 2, 02-097 Warsaw, Poland [email protected] Deep scientific ideas have at least one distinctive property: they can be applied both by philosophers in abstract fundamental debates and by engineers in concrete practi- cal applications. Mathematical approaches to modeling of vagueness also possess this property. Problems connected with vagueness have been discussed at the beginning of XXth century by philosophers, logicians and mathematicians in developing foundations of mathematics leading to clarification of logical semantics and establishing of math- ematical logic and set theory. Those investigations led also to big step in the history of logic: introduction of three-valued logic. In the second half of XXth century some mathematical theories based on vagueness idea and suitable for modeling vague con- cepts were introduced, including fuzzy set theory proposed by Lotfi Zadeh in 1965 [16] and rough set theory proposed by Zdzis¸saw Pawlak in 1982 [4] having many practical applications in various areas from engineering and computer science such as control theory, data mining, machine learning, knowledge discovery, artificial intelligence. Concepts in classical philosophy and in mathematics are not vague. Classical the- ory of concepts requires that definition of concept C hast to provide exact rules of the following form: if object x belongs to concept C, then x possess properties P1,P2,...,Pn; if object x possess properties P1,P2,...,Pn, then x belongs to concept C.
    [Show full text]
  • Research Hotspots and Frontiers of Product R&D Management
    applied sciences Article Research Hotspots and Frontiers of Product R&D Management under the Background of the Digital Intelligence Era—Bibliometrics Based on Citespace and Histcite Hongda Liu 1,2, Yuxi Luo 2, Jiejun Geng 3 and Pinbo Yao 2,* 1 School of Economics & Management, Tongji University, Shanghai 200092, China; [email protected] or [email protected] 2 School of Management, Shanghai University, Shanghai 200444, China; [email protected] 3 School of Management, Shanghai International Studies University, Shanghai 200333, China; [email protected] * Correspondence: [email protected] Abstract: The rise of “cloud-computing, mobile-Internet, Internet of things, big-data, and smart-data” digital technology has brought a subversive revolution to enterprises and consumers’ traditional patterns. Product research and development has become the main battlefield of enterprise compe- Citation: Liu, H.; Luo, Y.; Geng, J.; tition, facing an environment where challenges and opportunities coexist. Regarding the concepts Yao, P. Research Hotspots and and methods of product R&D projects, the domestic start was later than the international ones, and Frontiers of Product R&D many domestic companies have also used successful foreign cases as benchmarks to innovate their Management under the Background management methods in practice. “Workers must first sharpen their tools if they want to do their of the Digital Intelligence jobs well”. This article will start from the relevant concepts of product R&D projects and summarize Era—Bibliometrics Based on current R&D management ideas and methods. We combined the bibliometric analysis software Citespace and Histcite. Appl. Sci. Histcite and Citespace to sort out the content of domestic and foreign literature and explore the 2021, 11, 6759.
    [Show full text]
  • The State of the Art in Developing Fuzzy Ontologies: a Survey
    The State of the Art in Developing Fuzzy Ontologies: A Survey Zahra Riahi Samani1, Mehrnoush Shamsfard2, 1Faculty of Computer Science and Engineering, Shahid Beheshti University Email:[email protected] 1Faculty of Computer Science and Engineering, Shahid Beheshti University Email:[email protected] Abstract Conceptual formalism supported by typical ontologies may not be sufficient to represent uncertainty information which is caused due to the lack of clear cut boundaries between concepts of a domain. Fuzzy ontologies are proposed to offer a way to deal with this uncertainty. This paper describes the state of the art in developing fuzzy ontologies. The survey is produced by studying about 35 works on developing fuzzy ontologies from a batch of 100 articles in the field of fuzzy ontologies. 1. Introduction Ontology is an explicit, formal specification of a shared conceptualization in a human understandable, machine- readable format. Ontologies are the knowledge backbone for many intelligent and knowledge based systems [1, 2]. However, in some domains, real world knowledge is imprecise or vague. For example in a search engine one may be interested in ”an extremely speedy, small size, not expensive car”. Classical ontologies based on crisp logic are not capable of handling this kind of knowledge. Fuzzy ontologies were proposed as a combination of fuzzy theory and ontologies to tackle such problems. On the topic of fuzzy ontology, we studied about 100 research articles which can be categorized into four main categories. The first category includes the research works on applying fuzzy ontologies in a specific domain- application to improve the performance of the application such as group decision making systems [3] or visual video content analysis and indexing [4].The ontology development parts of the works in this category were done manually or were not of much concentration.
    [Show full text]
  • Connes on the Role of Hyperreals in Mathematics
    Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V.
    [Show full text]
  • Download (Accessed on 30 July 2016)
    data Article Earth Observation for Citizen Science Validation, or Citizen Science for Earth Observation Validation? The Role of Quality Assurance of Volunteered Observations Didier G. Leibovici 1,* ID , Jamie Williams 2 ID , Julian F. Rosser 1, Crona Hodges 3, Colin Chapman 4, Chris Higgins 5 and Mike J. Jackson 1 1 Nottingham Geospatial Science, University of Nottingham, Nottingham NG7 2TU, UK; [email protected] (J.F.R.); [email protected] (M.J.J.) 2 Environment Systems Ltd., Aberystwyth SY23 3AH, UK; [email protected] 3 Earth Observation Group, Aberystwyth University Penglais, Aberystwyth SY23 3JG, UK; [email protected] 4 Welsh Government, Aberystwyth SY23 3UR, UK; [email protected] 5 EDINA, University of Edinburgh, Edinburgh EH3 9DR, UK; [email protected] * Correspondence: [email protected] Received: 28 August 2017; Accepted: 19 October 2017; Published: 23 October 2017 Abstract: Environmental policy involving citizen science (CS) is of growing interest. In support of this open data stream of information, validation or quality assessment of the CS geo-located data to their appropriate usage for evidence-based policy making needs a flexible and easily adaptable data curation process ensuring transparency. Addressing these needs, this paper describes an approach for automatic quality assurance as proposed by the Citizen OBservatory WEB (COBWEB) FP7 project. This approach is based upon a workflow composition that combines different quality controls, each belonging to seven categories or “pillars”. Each pillar focuses on a specific dimension in the types of reasoning algorithms for CS data qualification.
    [Show full text]
  • A Class of Fuzzy Theories*
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 85, 409-451 (1982) A Class of Fuzzy Theories* ERNEST G. MANES Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 Submitted by L. Zadeh Contenfs. 0. Introduction. 1. Fuzzy theories. 2. Equality and degree of membership. 3. Distributions as operations. 4. Homomorphisms. 5. Independent joint distributions. 6. The logic of propositions. 7. Superposition. 8. The distributional conditional. 9. Conclusions. References. 0. INTR~DUCTTON At the level of syntax, a flowchart scheme [25, Chap. 41 decomposes into atomic pieces put together by the operations of structured programming [ 11. Our definition of “fuzzy theory” is motivated solely by providing the minimal machinery to interpret loop-free schemes in a fuzzy way. Indeed, a fuzzy theory T = (T, e, (-)“) is defined in Section 1 by the data (A, B, C). For each set X there is given a new set TX of “distributions on X” or “vague specifications (A) of elements of X.” For each set X there is given a distinguished function e, : X-+ TX, “a crisp 03) specification is a special case of a vague one.” For each “fuzzy function” a: X-, TY there is given a distinguished “extension” (Cl a#: TX-+ TY. The data are all subject to three axioms. This definition is motivated by the flowchart scheme l.E. Some fundamental examples are crisp set theory: TX = X, CD) fuzzy set theory: TX = [0, llx, (E) * The research reported in this paper was supported in part by the National Science Foun- dation under Grant MCS76-84477. 409 0022-247X/82/020409-43$02.0010 Copyright 0 1982 by Academic Press, Inc.
    [Show full text]