Double Domination Number of Some Families of Graph
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Super Domination Number of Graphs
On the super domination number of graphs Douglas J. Klein1, Juan A. Rodr´ıguez-Vel´azquez1,2, Eunjeong Yi1 1Texas A&M University at Galveston Foundational Sciences, Galveston, TX 77553, United States 2Universitat Rovira i Virgili, Departament d’Enginyeria Inform`atica i Matem`atiques Av. Pa¨ısos Catalans 26, 43007 Tarragona, Spain Email addresses: [email protected], [email protected],[email protected] April 24, 2018 Abstract The open neighbourhood of a vertex v of a graph G is the set N(v) consisting of all vertices adjacent to v in G. For D ⊆ V (G), we define D = V (G) \ D. A set D ⊆ V (G) is called a super dominating set of G if for every vertex u ∈ D, there exists v ∈ D such that N(v) ∩ D = {u}. The super domination number of G is the minimum cardinality among all super dominating sets in G. In this article, we obtain closed formulas and tight bounds for the super domination number of G in terms of several invariants of G. Furthermore, the particular cases of corona product graphs and Cartesian product graphs are considered. Keywords: Super domination number; Domination number; Cartesian product; Corona product. AMS Subject Classification numbers: 05C69; 05C70 ; 05C76 1 Introduction arXiv:1705.00928v2 [math.CO] 23 Apr 2018 The open neighbourhood of a vertex v of a graph G is the set N(v) consisting of all vertices adjacent to v in G. For D ⊆ V (G), we define D = V (G) \ D. A set D ⊆ V (G) is dominating in G if every vertex in D has at least one neighbour in D, i.e., N(u) ∩ D =6 ∅ for every u ∈ D. -
Merging Peg Solitaire in Graphs
Marquette University e-Publications@Marquette Mathematics, Statistics and Computer Science Mathematics, Statistics and Computer Science, Faculty Research and Publications Department of (-2019) 7-17-2017 Merging Peg Solitaire in Graphs John Engbers Marquette University, [email protected] Ryan Weber Marquette University Follow this and additional works at: https://epublications.marquette.edu/mscs_fac Part of the Computer Sciences Commons, Mathematics Commons, and the Statistics and Probability Commons Recommended Citation Engbers, John and Weber, Ryan, "Merging Peg Solitaire in Graphs" (2017). Mathematics, Statistics and Computer Science Faculty Research and Publications. 629. https://epublications.marquette.edu/mscs_fac/629 INVOLVE 11:1 (2018) :-msp dx.doi.org/10.2140/involve.2018.11.53 Merging peg solitaire on graphs John Engbers and Ryan Weber (Communicated by Anant Godbole) Peg solitaire has recently been generalized to graphs. Here, pegs start on all but one of the vertices in a graph. A move takes pegs on adjacent vertices x and y, with y also adjacent to a hole on vertex z, and jumps the peg on x over the peg on y to z, removing the peg on y. The goal of the game is to reduce the number of pegs to one. We introduce the game merging peg solitaire on graphs, where a move takes pegs on vertices x and z (with a hole on y) and merges them to a single peg on y. When can a confguration on a graph, consisting of pegs on all vertices but one, be reduced to a confguration with only a single peg? We give results for a number of graph classes, including stars, paths, cycles, complete bipartite graphs, and some caterpillars. -
Decomposition of Wheel Graphs Into Stars, Cycles and Paths
Malaya Journal of Matematik, Vol. 9, No. 1, 456-460, 2021 https://doi.org/10.26637/MJM0901/0076 Decomposition of wheel graphs into stars, cycles and paths M. Subbulakshmi1 and I. Valliammal2* Abstract Let G = (V;E) be a finite graph with n vertices. The Wheel graph Wn is a graph with vertex set fv0;v1;v2;:::;vng and edge-set consisting of all edges of the form vivi+1 and v0vi where 1 ≤ i ≤ n, the subscripts being reduced modulo n. Wheel graph of (n + 1) vertices denoted by Wn. Decomposition of Wheel graph denoted by D(Wn). A star with 3 edges is called a claw S3. In this paper, we show that any Wheel graph can be decomposed into following ways. 8 (n − 2d)S ; d = 1;2;3;::: if n ≡ 0 (mod 6) > 3 > >[(n − 2d) − 1]S3 and P3; d = 1;2;3::: if n ≡ 1 (mod 6) > <[(n − 2d) − 1]S3 and P2; d = 1;2;3;::: if n ≡ 2 (mod 6) D(Wn) = . (n − 2d)S and C ; d = 1;2;3;::: if n ≡ 3 (mod 6) > 3 3 > >(n − 2d)S3 and P3; d = 1;2;3::: if n ≡ 4 (mod 6) > :(n − 2d)S3 and P2; d = 1;2;3;::: if n ≡ 5 (mod 6) Keywords Wheel Graph, Decomposition, claw. AMS Subject Classification 05C70. 1Department of Mathematics, G.V.N. College, Kovilpatti, Thoothukudi-628502, Tamil Nadu, India. 2Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India. *Corresponding author: [email protected]; [email protected] Article History: Received 01 November 2020; Accepted 30 January 2021 c 2021 MJM. -
Arxiv:2106.16130V1 [Math.CO] 30 Jun 2021 in the Special Case of Cyclohedra, and by Cardinal, Langerman and P´Erez-Lantero [5] in the Special Case of Tree Associahedra
LAGOS 2021 Bounds on the Diameter of Graph Associahedra Jean Cardinal1;4 Universit´elibre de Bruxelles (ULB) Lionel Pournin2;4 Mario Valencia-Pabon3;4 LIPN, Universit´eSorbonne Paris Nord Abstract Graph associahedra are generalized permutohedra arising as special cases of nestohedra and hypergraphic polytopes. The graph associahedron of a graph G encodes the combinatorics of search trees on G, defined recursively by a root r together with search trees on each of the connected components of G − r. In particular, the skeleton of the graph associahedron is the rotation graph of those search trees. We investigate the diameter of graph associahedra as a function of some graph parameters. It is known that the diameter of the associahedra of paths of length n, the classical associahedra, is 2n − 6 for a large enough n. We give a tight bound of Θ(m) on the diameter of trivially perfect graph associahedra on m edges. We consider the maximum diameter of associahedra of graphs on n vertices and of given tree-depth, treewidth, or pathwidth, and give lower and upper bounds as a function of these parameters. Finally, we prove that the maximum diameter of associahedra of graphs of pathwidth two is Θ(n log n). Keywords: generalized permutohedra, graph associahedra, tree-depth, treewidth, pathwidth 1 Introduction The vertices and edges of a polyhedron form a graph whose diameter (often referred to as the diameter of the polyhedron for short) is related to a number of computational problems. For instance, the question of how large the diameter of a polyhedron arises naturally from the study of linear programming and the simplex algorithm (see, for instance [27] and references therein). -
Coalition Graphs of Paths, Cycles, and Trees
Discussiones Mathematicae Graph Theory xx (xxxx) 1–16 https://doi.org/10.7151/dmgt.2416 COALITION GRAPHS OF PATHS, CYCLES, AND TREES Teresa W. Haynes Department of Mathematics and Statistics East Tennessee State University Johnson City, TN 37604 e-mail: [email protected] Jason T. Hedetniemi Department of Mathematics Wilkes Honors College Florida Atlantic University Jupiter, FL 33458 e-mail: [email protected] Stephen T. Hedetniemi School of Computing Clemson University Clemson, SC 29634 e-mail: [email protected] Alice A. McRae and Raghuveer Mohan Computer Science Department Appalachian State University Boone, NC 28608 e-mail: [email protected] [email protected] Abstract A coalition in a graph G =(V,E) consists of two disjoint sets of vertices V1 and V2, neither of which is a dominating set of G but whose union V1 ∪V2 is a dominating set of G. A coalition partition in a graph G of order n = |V | 2 Haynes, Hedetniemi, Hedetniemi, McRae and Mohan is a vertex partition π = {V1,V2,...,Vk} of V such that every set Vi either is a dominating set consisting of a single vertex of degree n − 1, or is not a dominating set but forms a coalition with another set Vj which is not a dominating set. Associated with every coalition partition π of a graph G is a graph called the coalition graph of G with respect to π, denoted CG(G, π), the vertices of which correspond one-to-one with the sets V1,V2,...,Vk of π and two vertices are adjacent in CG(G, π) if and only if their corresponding sets in π form a coalition. -
Ssp Structure of Some Graph Classes
International Journal of Pure and Applied Mathematics Volume 101 No. 6 2015, 939-948 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: A http://www.ijpam.eu P ijpam.eu SSP STRUCTURE OF SOME GRAPH CLASSES R. Mary Jeya Jothi1, A. Amutha2 1,2Department of Mathematics Sathyabama University Chennai, 119, INDIA Abstract: A Graph G is Super Strongly Perfect if every induced sub graph H of G possesses a minimal dominating set that meets all maximal cliques of H. Strongly perfect, complete bipartite graph, etc., are some of the most important classes of super strongly perfect graphs. Here, we analyse the other classes of super strongly perfect graphs like trivially perfect graphs and very strongly perfect graphs. We investigate the structure of super strongly perfect graph in friendship graphs. Also, we discuss the maximal cliques, colourability and dominating sets in friendship graphs. AMS Subject Classification: 05C75 Key Words: super strongly perfect graph, trivially perfect graph, very strongly perfect graph and friendship graph 1. Introduction Super strongly perfect graph is defined by B.D. Acharya and its characterization has been given as an open problem in 2006 [5]. Many analysation on super strongly perfect graph have been done by us in our previous research work, (i.e.,) we have investigated the classes of super strongly perfect graphs like strongly c 2015 Academic Publications, Ltd. Received: March 12, 2015 url: www.acadpubl.eu 940 R.M.J. Jothi, A. Amutha perfect, complete bipartite graph, etc., [3, 4]. In this paper we have discussed some other classes of super strongly perfect graphs like trivially perfect graph, very strongly perfect graph and friendship graph. -
On the Threshold-Width of Graphs Maw-Shang Chang 1 Ling-Ju Hung 1 Ton Kloks Sheng-Lung Peng 2
Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 15, no. 2, pp. 253–268 (2011) On the Threshold-Width of Graphs Maw-Shang Chang 1 Ling-Ju Hung 1 Ton Kloks Sheng-Lung Peng 2 1Department of Computer Science and Information Engineering National Chung Cheng University Min-Hsiung, Chia-Yi 621, Taiwan 2Department of Computer Science and Information Engineering National Dong Hwa University Shoufeng, Hualien 97401, Taiwan Abstract For a graph class G, a graph G has G-width k if there are k independent sets N1,..., Nk in G such that G can be embedded into a graph H ∈G such that for every edge e in H which is not an edge in G, there exists an i such that both endpoints of e are in Ni. For the class TH of threshold graphs we show that TH-width is NP-complete and we present fixed-parameter algorithms. We also show that for each k, graphs of TH-width at most k are characterized by a finite collection of forbidden induced subgraphs. Submitted: Reviewed: Revised: Accepted: September 2010 January 2011 March 2011 April 2011 Final: Published: May 2011 July 2011 Article type: Communicated by: Regular paper D. Wagner This research was supported by the National Science Council of Taiwan, under grants NSC 98– 2218–E–194–004 and NSC 98–2811–E–194–006. Ton Kloks is supported by the National Science Council of Taiwan, under grants the National Science Council of Taiwan, under grants NSC 99–2218–E–007–016 and NSC 99–2811–E–007–044. -
Graphic Sequences with a Realization Containing a Generalized Friendship Graph ∗
Graphic Sequences with a Realization Containing a Generalized Friendship Graph ∗ Jian-Hua Yina,† Gang Chenb, John R. Schmittc aDepartment of Applied Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, P.R. China bDepartment of Mathematics, Ningxia University, Yinchuan 750021, P.R. China cDepartment of Mathematics, Middlebury College, Middlebury, VT, USA Abstract: Gould, Jacobson and Lehel (Combinatorics, Graph Theory and Algorithms, Vol.I (1999) 451–460) considered a variation of the classical Tur´an-type extremal problems as follows: for any simple graph H, determine the smallest even integer σ(H, n) such that every n-term graphic sequence π = (d1, d2, . , dn) with term sum σ(π) = d1 + d2 + ··· + dn ≥ σ(H, n) has a realization G containing H as a subgraph. Let Ft,r,k denote the generalized friendship graph on kt − kr + r vertices, that is, the graph of k copies of Kt meeting in a common r set, where Kt is the complete graph on t vertices and 0 ≤ r ≤ t. In this paper, we determine σ(Ft,r,k, n) for k ≥ 2, t ≥ 3, 1 ≤ r ≤ t − 2 and n sufficiently large. Keywords: degree sequence, potentially Ft,r,k-graphic sequence, generalized friendship graph. 2000 MR Subject Classification: 05C35, 05C07. 1. Introduction The set of all sequences π = (d1, d2, . , dn) of non-negative, non-increasing integers with d1 ≤ n − 1 is denoted by NSn. A sequence π ∈ NSn is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π. -
The Classification of B-Perfect Graphs
The classification of B-perfect graphs Stephan Dominique Andres Department of Mathematics and Computer Science, FernUniversit¨at in Hagen, Germany Key words: game chromatic number, game-perfectness, trivially perfect, graph colouring game 1 Introduction Consider the following game, played on an (initially uncolored) graph G = (V, E) with a color set C. The players, Alice and Bob, move alternately. A move consists in coloring a vertex v ∈ V with a color c ∈ C in such a way that adjacent vertices receive distinct colors. If this is not possible any more, the game ends. Alice wins if every vertex is colored in the end, otherwise Bob wins. This type of game was introduced by Bodlaender [2]. He considers a variant, which we will call game g, in which Alice must move first and passing is not allowed. In order to obtain upper and lower bounds for a parameter associated with game g, two other variants are useful. In the game B Bob may move first. He may also miss one or several turns, but Alice must always move. In the other variant, game A, Alice may move first and miss one or several turns, but Bob must move. So in game B Bob has some advantages, whereas in game A Alice has some advantages with respect to Bodlaender’s game. For any variant G∈{B,g,A}, the smallest cardinality of a color set C, so that Alice has a winning strategy for the game G is called G-game chromatic number χG(G) of G. Email address: [email protected] (Stephan Dominique Andres). -
Math.RA] 25 Sep 2013 Previous Paper [3], Also Relying in Conceptually Separated Tools from Them, Such As Graphs and Digraphs
Certain particular families of graphicable algebras Juan Núñez, María Luisa Rodríguez-Arévalo and María Trinidad Villar Dpto. Geometría y Topología. Facultad de Matemáticas. Universidad de Sevilla. Apdo. 1160. 41080-Sevilla, Spain. [email protected] [email protected] [email protected] Abstract In this paper, we introduce some particular families of graphicable algebras obtained by following a relatively new line of research, ini- tiated previously by some of the authors. It consists of the use of certain objects of Discrete Mathematics, mainly graphs and digraphs, to facilitate the study of graphicable algebras, which are a subset of evolution algebras. 2010 Mathematics Subject Classification: 17D99; 05C20; 05C50. Keywords: Graphicable algebras; evolution algebras; graphs. Introduction The main goal of this paper is to advance in the research of a novel mathematical topic emerged not long ago, the evolution algebras in general, and the graphicable algebras (a subset of them) in particular, in order to obtain new results starting from those by Tian (see [4, 5]) and others already obtained by some of us in a arXiv:1309.6469v1 [math.RA] 25 Sep 2013 previous paper [3], also relying in conceptually separated tools from them, such as graphs and digraphs. Concretely, our goal is to find some particular types of graphicable algebras associated with well-known types of graphs. The motivation to deal with evolution algebras in general and graphicable al- gebras in particular is due to the fact that at present, the study of these algebras is very booming, due to the numerous connections between them and many other branches of Mathematics, such as Graph Theory, Group Theory, Markov pro- cesses, dynamic systems and the Theory of Knots, among others. -
A Characterization of General Position Sets in Graphs
A characterization of general position sets in graphs Bijo S. Anand a Ullas Chandran S. V. b Manoj Changat c Sandi Klavˇzar d;e;f Elias John Thomas g November 16, 2018 a Department of Mathematics, Sree Narayana College, Punalur-691305, Kerala, India; bijos [email protected] b Department of Mathematics, Mahatma Gandhi College, Kesavadasapuram, Thiruvananthapuram-695004, Kerala, India; [email protected] c Department of Futures Studies, University of Kerala Thiruvananthapuram-695034, Kerala, India; [email protected] d Faculty of Mathematics and Physics, University of Ljubljana, Slovenia [email protected] e Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia f Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia g Department of Mathematics, Mar Ivanios College, Thiruvananthapuram-695015, Kerala, India; [email protected] Abstract A vertex subset S of a graph G is a general position set of G if no vertex of S lies on a geodesic between two other vertices of S. The cardinality of a largest general position set of G is the general position number gp(G) of G. It is proved that S ⊆ V (G) is a general position set if and only if the components of G[S] are complete subgraphs, the vertices of which form an in-transitive, distance-constant partition of S. If diam(G) = 2, then gp(G) is the maximum of the clique number of G and the maximum order of an induced complete multipartite subgraph of the complement of G. As a consequence, gp(G) of a cograph G can be determined in polynomial time. -
On Retracts, Absolute Retracts, and Folds In
ON RETRACTS,ABSOLUTE RETRACTS, AND FOLDS IN COGRAPHS Ton Kloks1 and Yue-Li Wang2 1 Department of Computer Science National Tsing Hua University, Taiwan [email protected] 2 Department of Information Management National Taiwan University of Science and Technology [email protected] Abstract. Let G and H be two cographs. We show that the problem to determine whether H is a retract of G is NP-complete. We show that this problem is fixed-parameter tractable when parameterized by the size of H. When restricted to the class of threshold graphs or to the class of trivially perfect graphs, the problem becomes tractable in polynomial time. The problem is also solvable in linear time when one cograph is given as an in- duced subgraph of the other. We characterize absolute retracts for the class of cographs. Foldings generalize retractions. We show that the problem to fold a trivially perfect graph onto a largest possible clique is NP-complete. For a threshold graph this folding number equals its chromatic number and achromatic number. 1 Introduction Graph homomorphisms have regained a lot of interest by the recent characteri- zation of Grohe of the classes of graphs for which Hom(G, -) is tractable [11]. To be precise, Grohe proves that, unless FPT = W[1], deciding whether there is a homomorphism from a graph G 2 G to some arbitrary graph H is polynomial if and only if the graphs in G have bounded treewidth modulo homomorphic equiv- alence. The treewidth of a graph modulo homomorphic equivalence is defined as the treewidth of its core, ie, a minimal retract.