applied sciences Article Automatic Contraction Detection Using Uterine Electromyography Filipa Esgalhado 1,2, Arnaldo G. Batista 1,3,* , Helena Mouriño 4, Sara Russo 1, Catarina R. Palma dos Reis 5,6,Fátima Serrano 5,6, Valentina Vassilenko 1,2 and Manuel Duarte Ortigueira 1,3 1 NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
[email protected] (F.E.);
[email protected] (S.R.);
[email protected] (V.V.);
[email protected] (M.D.O.) 2 NMT, S.A., Parque Tecnológico de Cantanhede, Núcleo 04, Lote 3, 3060-197 Cantanhede, Portugal 3 Center of Technology and Systems—UNINOVA, NOVA School of Science and Technology—NOVA University Lisbon, 2829-516 Caparica, Portugal 4 Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
[email protected] 5 Maternidade Alfredo da Costa, Rua Viriato 1, 1050-170 Lisboa, Portugal;
[email protected] (C.R.P.d.R.);
[email protected] (F.S.) 6 Nova Medical School, Faculty of Medical Sciences, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal * Correspondence:
[email protected]; Tel.: +351-21-2949637 Received: 14 September 2020; Accepted: 4 October 2020; Published: 9 October 2020 Abstract: Electrohysterography (EHG) is a promising technique for pregnancy monitoring and preterm risk evaluation. It allows for uterine contraction monitoring as early as the 20th gestational week, and it is a non-invasive technique based on recording the electric signal of the uterine muscle activity from electrodes located in the abdominal surface. In this work, EHG-based contraction detection methodologies are applied using signal envelope features.