A High Dynamic Range Video Codec Optimized by Large Scale Testing
A HIGH DYNAMIC RANGE VIDEO CODEC OPTIMIZED BY LARGE-SCALE TESTING Gabriel Eilertsen? Rafał K. Mantiuky Jonas Unger? ? Media and Information Technology, Linkoping¨ University, Sweden y Computer Laboratory, University of Cambridge, UK ABSTRACT 2. BACKGROUND While a number of existing high-bit depth video com- With recent advances in HDR imaging, we are now at a stage pression methods can potentially encode high dynamic range where high-quality videos can be captured with a dynamic (HDR) video, few of them provide this capability. In this range of up to 24 stops [1, 2]. However, storage and distri- paper, we investigate techniques for adapting HDR video bution of HDR video still mostly rely on formats for static for this purpose. In a large-scale test on 33 HDR video se- images, neglecting the inter-frame relations that could be ex- quences, we compare 2 video codecs, 4 luminance encoding plored. Although the first steps are being taken in standard- techniques (transfer functions) and 3 color encoding meth- izing HDR video encoding, where MPEG recently released a ods, measuring quality in terms of two objective metrics, call for evidence for HDR video coding, most existing solu- PU-MSSIM and HDR-VDP-2. From the results we design tions are proprietary and HDR video compression software is an open source HDR video encoder, optimized for the best not available on Open Source terms. compression performance given the techniques examined. The challenge in HDR video encoding, as compared to Index Terms— High dynamic range (HDR) video, HDR standard video, is in the wide range of possible pixel values video coding, perceptual image metrics and their linear floating point representation.
[Show full text]