Open MS Thesis Mites Vieira.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
The Pennsylvania State University The Graduate School College of Engineering AN INVESTIGATION OF THE AERODYNAMICS OF MINIATURE TRAILING-EDGE EFFECTORS APPLIED TO ROTORCRAFT A Thesis in Aerospace Engineering by Bernardo Augusto de Oliveira Vieira 2010 Bernardo Augusto de Oliveira Vieira Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2010 The thesis of Bernardo Augusto de Oliveira Vieira was reviewed and approved* by the following: Mark D. Maughmer Professor of Aerospace Engineering Thesis Advisor Jacob W. Langelaan Assistant Professor of Aerospace Engineering George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT The aerodynamics of Miniature Trailing-Edge Effectors (MiTEs) is explored in many aspects with regards to their applicability to rotorcraft. MiTEs are active Gurney flaps that have the ability to modify the lift and moment characteristics of the blades around the rotor disk. MiTEs hold strong potential to be used as active devices to improve performance, reduce vibrations, and reduce noise of rotors. The present work explores the static and unsteady aerodynamic performance of MiTEs by the aid of experimental, numerical, and analytical methods. A static experimental investigation of Gurney flaps is undertaken at The Pennsylvania State University Low-Speed, Low-Turbulence Wind Tunnel. Aerodynamic results are obtained for three distinct rotorcraft airfoils equipped with Gurney flaps of various sizes and placed at different chordwise locations. The effects of Gurney flaps are found to be very dependent on the combination of their height and location, as well as on the airfoil shape. It is observed that when positioned upstream from the trailing edge, the Gurney flap can become sometimes ineffective and provide a decrease in the cl,max of the airfoil, suggesting that great care must be taken into sizing these devices. An experimental investigation of oscillating upstream-located MiTEs is conducted at the Mid-Sized Wind Tunnel at Penn State. Measured unsteady aerodynamic data prove the effectiveness of MiTEs in providing variations in the forces and moments of the airfoil. The amplitude and phase lag of the lift results are in good agreement with the trends predicted by unsteady linear theory. In some cases, however, the occurrence of non-linear effects is observed. These effects are believed to be caused by vortex shedding iv in the lower surface of the airfoil, and seem to be aggravated as the frequency of deployment increases. Analysis of available computational fluid-dynamic (CFD) predictions on upstream MiTEs indicates the formation and convection of an unsteady vortex in the lower surface of the airfoil, right after MiTE deployment. This disturbance can introduce non-harmonic components in the aerodynamic response, substantially affecting the loads and complicating the analysis. In order to account for these effects during routine helicopter performance and design studies, available CFD results are used to develop a reduced-order, less computer- intensive model based on indicial concepts. The model extends a work previously done for trailing-edge MiTEs by incorporating a vortex model to predict the unsteady lift of upstream MiTEs. A physics-based approach is adopted to minimize the number of constants and improve overall generality. The results from the unsteady-lift model are compared with CFD for different airfoils, MiTE deployment schedules, MiTE chordwise positions, and Mach numbers. Very good agreement is shown for a wide range of conditions that are typical of rotorcraft. Different model constants and correlations may have to be considered in order to improve the predictions for different airfoil shapes. v TABLE OF CONTENTS LIST OF FIGURES ................................................................................................... vii LIST OF TABLES ..................................................................................................... xiii LIST OF SYMBOLS ................................................................................................. xiv ACKNOWLEDGEMENTS ...................................................................................... xvi Chapter 1 Introduction.............................................................................................. 1 1.1 Introduction and Motivation .......................................................................... 1 1.2 MiTE Applications to Rotorcraft ................................................................... 3 1.3 Research Objectives ...................................................................................... 8 Chapter 2 Background and Literature Review ...................................................... 10 2.1 Gurney Flaps ................................................................................................. 10 2.2 MiTEs ............................................................................................................ 21 Chapter 3 Static Wind Tunnel Investigation........................................................... 33 3.1 Wind tunnel description and validation ......................................................... 34 3.2 Model description .......................................................................................... 38 3.3 Data acquisition system ................................................................................. 38 3.4 Results ........................................................................................................... 39 3.5 Conclusions ................................................................................................... 55 Chapter 4 Unsteady Wind Tunnel Investigation .................................................... 57 4.1 Previous efforts .............................................................................................. 58 4.2 Wind Tunnel Description .............................................................................. 60 4.3 Model and acquisition system ....................................................................... 61 4.4 Experimental Results ..................................................................................... 64 4.4.1 Static Verification ............................................................................... 64 4.4.2 Dynamic MiTEs ................................................................................. 68 4.5 Comparison with unsteady aerodynamic model ............................................ 79 4.6 Conclusions ................................................................................................... 84 Chapter 5 CFD Investigation .................................................................................... 86 5.1 Flow Physics .................................................................................................. 88 5.2 Overview of Results ...................................................................................... 96 5.3 Conclusions ................................................................................................... 101 vi Chapter 6 Unsteady Aerodynamic Modeling .......................................................... 103 6.1 Indicial Methods ............................................................................................ 104 6.1.1 Incompressible Flow .......................................................................... 105 6.1.2 Subsonic Compressible Flow ............................................................. 108 6.2 Unsteady Aerodynamic Model for MiTEs .................................................... 110 6.2.1 Circulatory Lift ................................................................................... 114 6.2.2 Apparent Mass Lift ............................................................................. 116 6.2.3 Vortex Lift .......................................................................................... 119 6.3 MiTE Model Results ..................................................................................... 123 6.3.1 Effect of Deployment Time ................................................................ 128 6.3.2 Effect of Mach number ....................................................................... 133 6.3.3 Retraction Cases ................................................................................. 135 6.3.4 Sinusoidal Deployments ..................................................................... 137 6.3.5 Effects of airfoil shape and MiTE position ........................................ 141 6.4 Summary ........................................................................................................ 145 Chapter 7 Conclusions ............................................................................................... 147 7.1 Summary of Results ...................................................................................... 147 7.1.1 Static Gurney Flap Experiments ......................................................... 147 7.1.2 Unsteady MiTEs Experiments ............................................................ 148 7.1.3 Unsteady Aerodynamic Modeling ...................................................... 149 7.2 Conclusions ................................................................................................... 150 7.3 Recommendations for Future Work .............................................................. 151