Effects of Gurney Flap on Supercritical and Natural Laminar Flow Transonic Aerofoil Performance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Annual Activity Report 2014
Final Annual Activity Report 2014 This report is provided in accordance with Articles 8 (k) and 20 (1) of the Statutes of the Clean Sky 2 Joint Undertaking annexed to the Council Regulation (EU) No 558/2014 and with Article 20 of the Financial Rules of Clean Sky 2 Joint Undertaking. ~ Page intentionally left blank ~ CS-GB-2015-06-23 Doc9 Final AAR 2014 2 Table of Contents 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 7 3. KEY OBJECTIVES AND ASSOCIATED RISKS 10 3.1 CLEAN SKY PROGRAMME - ACHIEVEMENT OF OBJECTIVES 10 3.2 CLEAN SKY 2 PROGRAMME - ACHIEVEMENT OF OBJECTIVES 16 4. RISK MANAGEMENT 18 4.1 GENERAL APPROACH TO RISK MANAGEMENT 18 4.2 JU LEVEL RISKS 19 4.3 CLEAN SKY PROGRAMME LEVEL RISKS 23 4.4 CLEAN SKY 2 PROGRAMME LEVEL RISKS 24 5. GOVERNANCE 26 5.1 GOVERNING BOARD 26 5.2 EXECUTIVE DIRECTOR 28 5.3 STEERING COMMITTEES 28 5.4 SCIENTIFIC AND TECHNICAL ADVISORY BOARD/ SCIENTIFIC COMMITTEE 28 5.5 STATES REPRESENTATIVES GROUP 29 6. RESEARCH ACTIVITIES 31 6.1 CLEAN SKY PROGRAMME - REMINDER OF RESEARCH OBJECTIVES 31 6.1.1 General information 32 6.1.2 SFWA - Smart Fixed Wing Aircraft ITD 34 6.1.3 GRA – Green Regional Aircraft ITD 40 6.1.4 GRC – Green Rotorcraft ITD 47 6.1.5 SAGE – Sustainable and Green Engine 52 6.1.6 SGO – Systems for Green Operations ITD 55 6.1.7 ECO – Eco-Design ITD 60 6.1.8 TE – Technology Evaluator 64 6.2 CLEAN SKY 2 PROGRAMME – REMINDER OF RESEARCH OBJECTIVES 70 6.2.1 General information 74 6.2.2 LPA – Large Passenger Aircraft IADP 75 6.2.3 REG – Regional Aircraft IADP 79 6.2.4 FRC – Fast Rotorcraft IADP 82 6.2.5 AIR– Airframe ITD 86 6.2.6 ENG – Engines ITD 91 6.2.7 SYS – Systems ITD 95 6.2.8 SAT – Small Air Transport Transverse Activity 99 6.2.9 ECO – Eco Design Transverse Activity 100 6.2.10 TE – Technology Evaluator 100 7. -
Wake Vortex Alleviation Using Rapidly Actuated Segmented Gurney Flaps
WAKE VORTEX ALLEVIATION USING RAPIDLY ACTUATED SEGMENTED GURNEY FLAPS by Claude G. Matalanis and John K. Eaton Prepared with support from the The Stanford Thermal and Fluid Sciences Affiliates and the Office of Naval Research Report No. 102 Flow Physics and Computation Division Department of Mechanical Engineering Stanford University Stanford, CA 94305-3030 January 2007 c Copyright 2007 by Claude G. Matalanis All Rights Reserved ii Abstract All bodies that generate lift also generate circulation. The circulation generated by large commercial aircraft remains in their wake in the form of trailing vortices. These vortices can be hazardous to following aircraft due to their strength and persistence. To account for this, airports abide by spacing rules which govern the frequency with which aircraft can take-off and land from their runways when operating in instrument flight rules. These spacing rules have become the limiting factor on increasing airport capacity, and with the increases in air travel predicted for the near future, the problem is becoming more urgent. One way of approaching this problem is active wake alleviation. The basic idea is to actively embed perturbations in the trailing vortex system of an aircraft which will excite natural instabilities in the wake. The instabilities should result in a wake which is benign to following aircraft in less time than would normally be required, allowing for a reduction in current spacing rules. The main difficulty with such an approach is in achieving perturbations large enough to excite instability without significantly degrading aircraft performance. Rapidly actuated segmented Gurney flaps, also known as Miniature Trailing Edge Ef- fectors (MiTEs), have shown great potential in solving various aerodynamic problems. -
SBM20-322 2015 June 23 Temporary
MOONEY INTERNATIONAL CORPORATION SERVICE BULLETIN 165 Al Mooney Road North Kerrville, Texas 78028 SERVICE BULLETIN M20-322 Date: June 23, 2015 THIS BULLETIN IS FAA APPROVED FOR ENGINEERING DESIGN SUBJECT: Temporary Replacement of Icing System Stall Strip MODELS/ SN Mooney Aircraft with Known Icing System Installed AFFECTED: TIME OF AS SOON AS PRACTICABLE COMPLIANCE: INTRODUCTION: For instances involving missing icing system stall strips, airplanes are grounded. To remedy this situation, a temporary non-icing system stall strip can be installed in place of the icing stall strip to allow the aircraft to operate as a “Not Certified for Flight in Known Icing Conditions” aircraft until the icing strip can be installed. This Service Bulletin is to provide instructions for installing the temporary stall strip. The attached compliance card needs to be filled out and returned to Mooney International Corporation upon completion of this Service Bulletin M20-322. WARNING: Flight into known icing conditions and the use of the aircraft’s icing system is prohibited until the permanent icing system stall strip can be installed. This Service Bulletin only allows for a temporary non-icing stall strip to be installed for temporary flight until the permanent icing stall strip can be obtained. INSTRUCTIONS: Read entire procedures before beginning work. INSTALLING TEMPORARY STALL STRIP: 1.1. Disable and secure circuit breaker to prevent accidental operation of icing system. 1.2. Remove all old sealant and thoroughly clean the porous surface of the wing where the temporary stall strip is to be installed. Acceptable cleaning solvents are listed below. NOTE: The primary factor affecting the adhesion of the stall strip is absolute cleanliness of the porous panel. -
Numerical Investigation for the Enhancement of the Aerodynamic Characteristics of an Aerofoil by Using a Gurney Flap
International Journal of GEOMATE, June, 2017, Vol.12 Issue 34, pp. 21-27 Geotec., Const. Mat. & Env., ISSN:2186-2990, Japan, DOI: http://dx.doi.org/10.21660/2017.34.2650 NUMERICAL INVESTIGATION FOR THE ENHANCEMENT OF THE AERODYNAMIC CHARACTERISTICS OF AN AEROFOIL BY USING A GURNEY FLAP Julanda Al-Mawali1 and *Sam M Dakka2 1,2Department of Engineering and Math, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK *Corresponding Author, Received: 13 May 2016, Revised: 17 July 2016, Accepted: 28 Nov. 2016 ABSTRACT: Numerical investigation was carried out to determine the effect of a Gurney Flap on NACA 0012 aerofoil performance with emphasis on Unmanned Air Vehicles applications. The study examined different configurations of Gurney Flaps at high Reynolds number of 푅푒 = 3.6 × 105 in order to determine the optimal configuration. The Gurney flap was tested at different heights, locations and mounting angles. Compared to the clean aerofoil, the study found that adding the Gurney Flap increased the maximum lift coefficient by19%, 22%, 28%, 40% and 45% for the Gurney Flap height of 1%C, 1.5%C, 2%C, 3%C and 4%C respectively, C represents the chord of the aerofoil. However, it was also found that increasing the height of the gurney beyond 2%C leads to a decrease in the overall performance of the aerofoil due to the significant increase in drag penalty. Thus, the optimal height of the Gurney flap for the NACA 0012 aerofoil was found to be 2%C as it improves the overall performance of the aerofoil by 21%. -
General Aviation Aircraft Design
Contents 1. The Aircraft Design Process 3.2 Constraint Analysis 57 3.2.1 General Methodology 58 1.1 Introduction 2 3.2.2 Introduction of Stall Speed Limits into 1.1.1 The Content of this Chapter 5 the Constraint Diagram 65 1.1.2 Important Elements of a New Aircraft 3.3 Introduction to Trade Studies 66 Design 5 3.3.1 Step-by-step: Stall Speed e Cruise Speed 1.2 General Process of Aircraft Design 11 Carpet Plot 67 1.2.1 Common Description of the Design Process 11 3.3.2 Design of Experiments 69 1.2.2 Important Regulatory Concepts 13 3.3.3 Cost Functions 72 1.3 Aircraft Design Algorithm 15 Exercises 74 1.3.1 Conceptual Design Algorithm for a GA Variables 75 Aircraft 16 1.3.2 Implementation of the Conceptual 4. Aircraft Conceptual Layout Design Algorithm 16 1.4 Elements of Project Engineering 19 4.1 Introduction 77 1.4.1 Gantt Diagrams 19 4.1.1 The Content of this Chapter 78 1.4.2 Fishbone Diagram for Preliminary 4.1.2 Requirements, Mission, and Applicable Regulations 78 Airplane Design 19 4.1.3 Past and Present Directions in Aircraft Design 79 1.4.3 Managing Compliance with Project 4.1.4 Aircraft Component Recognition 79 Requirements 21 4.2 The Fundamentals of the Configuration Layout 82 1.4.4 Project Plan and Task Management 21 4.2.1 Vertical Wing Location 82 1.4.5 Quality Function Deployment and a House 4.2.2 Wing Configuration 86 of Quality 21 4.2.3 Wing Dihedral 86 1.5 Presenting the Design Project 27 4.2.4 Wing Structural Configuration 87 Variables 32 4.2.5 Cabin Configurations 88 References 32 4.2.6 Propeller Configuration 89 4.2.7 Engine Placement 89 2. -
Pilot´S Operating Handbook
PILOT´S OPERATING HANDBOOK Document Number: AS-POH-10-487 Date of Issue: 07. 05. 2019 Aircraft Model: WT9 Dynamic LSA / Club Aircraft Serial Number: DY-487/2013 LSA Aircraft Registration Number: F-HVXC THIS HANDBOOK INCLUDES THE INFORMATION REQUIRED TO BE FURNISHED TO THE PILOT BY REGULATIONS AND ADDITIONAL INFORMATION PROVIDED BY THE AIRCRAFT MANUFACTURER – AEROSPOOL, SPOL. S R. O. PAGES MARKED AS “EASA APPROVED” ARE APPROVED BY EUROPEAN AVIATION SAFETY AGENCY. THIS AIRCRAFT MUST BE OPERATED IN COMPLIANCE WITH THE INFORMATION AND LIMITATIONS STATED IN THIS MANUAL. This page is left blank intentionally RECORD OF REVISIONS Any revision of the present manual, except actual weight data, must be recorded in the following table, and in the case of approved chapters, endorsed by the responsible airworthiness authority. The new or amended text in the revised pages will be indicated by a black vertical line in the page margin, and the revision will be shown on the bottom side of the page. Revision Date Description of Revision Approved by Initial issue 07. 05. 2019 New issue. Initial issue Page A This page is left blank intentionally Page B Initial issue LIST OF EFFECTIVE PAGES Chapter Page Status Chapter Page Status Title page Initial issue 3 3-1 Initial issue Page Initial issue EASA Approved 3-2 Initial issue Page A Initial issue EASA Approved 3-3 Initial issue Page B Initial issue EASA Approved 3-4 Initial issue Page C Initial issue EASA Approved 3-5 Initial issue Page D Initial issue EASA Approved 3-6 Initial issue Page E Initial issue EASA -
Unusual Attitudes and the Aerodynamics of Maneuvering Flight Author’S Note to Flightlab Students
Unusual Attitudes and the Aerodynamics of Maneuvering Flight Author’s Note to Flightlab Students The collection of documents assembled here, under the general title “Unusual Attitudes and the Aerodynamics of Maneuvering Flight,” covers a lot of ground. That’s because unusual-attitude training is the perfect occasion for aerodynamics training, and in turn depends on aerodynamics training for success. I don’t expect a pilot new to the subject to absorb everything here in one gulp. That’s not necessary; in fact, it would be beyond the call of duty for most—aspiring test pilots aside. But do give the contents a quick initial pass, if only to get the measure of what’s available and how it’s organized. Your flights will be more productive if you know where to go in the texts for additional background. Before we fly together, I suggest that you read the section called “Axes and Derivatives.” This will introduce you to the concept of the velocity vector and to the basic aircraft response modes. If you pick up a head of steam, go on to read “Two-Dimensional Aerodynamics.” This is mostly about how pressure patterns form over the surface of a wing during the generation of lift, and begins to suggest how changes in those patterns, visible to us through our wing tufts, affect control. If you catch any typos, or statements that you think are either unclear or simply preposterous, please let me know. Thanks. Bill Crawford ii Bill Crawford: WWW.FLIGHTLAB.NET Unusual Attitudes and the Aerodynamics of Maneuvering Flight © Flight Emergency & Advanced Maneuvers Training, Inc. -
Vestas Annual Report 2015 · Group Performance VESTAS FACTS
Technology “ The introduction of the V136-3.45 MW™ turbine as well as various other upgrades once again proves our ability to develop very competitive offerings based on our existing product portfolio – and with a time-to-market consistent with our customers’ needs.” Anders Vedel Executive Vice President & CTO Vestas’ technology strategy During 2015, the 3 MW variants have increased their potential and Being the global wind leader requires a long-term line of sight in tech- were upgraded to a higher wind class. Also included was an upgrade nology development. Vestas continuously strives to bring commercially of standard rating to 3.45 MW, power modes of up to 3.6 MW (except relevant products to the market in a profitable way. The Vestas technol- on the V136-3.45 MW™), tower heights of up to 166 metres and the ogy strategy derives its strength from a market-driven product devel- introduction of a next-generation advanced control system. The new opment and extensive testing at Vestas’ test facility in Denmark – the control system is significantly faster, and available input/output sig- largest test facility in the wind power industry. This enables Vestas to nals are significantly increased to secure availability to meet future continuously innovate new and integrate proven technologies to cre- requirements. ate high-performing products and services in pursuit of the over-riding objective: lowering the cost of energy. V136-3.45 MW™ turbine introduced In September 2015, Vestas introduced the V136-3.45 MW™ turbine, By building on existing platforms – the 2 MW and 3 MW – and using the latest and as yet largest addition to the 3 MW wind turbine family, standardised and modularised “building blocks”, it has been possible demonstrating the strong technological capabilities of the platform to offer energy-effective solutions for a wide variety of wind regimes and how far Vestas has come in utilising the advantages of standardi- across the global wind energy markets, but with minimal additional sation and modularisation. -
THE GURNEY FLAP by Sergio Montes
THE GURNEY FLAP by Sergio Montes Gurney flaps are bent strips attached to the trailing edge of an airfoil, normally no larger than about 2 to 5% of the chord. They have a profound effect on the lift but in many cases a surprisingly small effect on drag. They defy what conventional wisdom would recommend as good aerodynamic practice. The name of this flap derives from American car driver Dan Gurney, who sought to increase the downward force of a wing fitted at the rear of his Indy car in the 1960's. He thought that he could get even more down-force by blocking the flow on the top of the wing with a dam at the trailing edge. Aerodynamicists who heard of this idea were not supportive, fearing that this dam might act like a spoiler and reduce the downward force rather than increase it. One of the considerations in the Circulation Theory of Lift is that the flow from the upper and lower surfaces of the trailing edge must smoothly merge in the wake. It seemed reasonable to expect that the Gurney flap would interfere with this requirement. However, a very similar scheme called the "split flap" was used on airplanes as far back as the 1930's. This is a fairly simple device consisting of a hinged plate covering the last 20% of chord on the bottom of the trailing edge. The device is deployed during landings. In the 1940's, NACA ran many two-dimensional wind tunnel tests of airfoils with and without split flaps. -
Safe Flight Aoa Manual
Page 3 of 28 Sym A . Dwg. 56201-2 . PROPRIETARY NOTICE This document contains proprietary information and covers equipment in which Safe Flight has proprietary rights. No data contained herein may be duplicated, used, or disclosed, in whole or in part, for any purpose, without the express written permission of Safe Flight Instrument Corporation. Safe Flight Instrument Corporation expressly reserves all rights, including all rights of patent and copyright protection. © SAFE FLIGHT INSTRUMENT CORPORATION 2016 Page 4 of 28 Sym B . Dwg. 56201-2 . TABLE OF CONTENTS Para. Description Page None Title Page ...................................................................................................................... 1 None Revision Notice ............................................................................................................. 2 None Proprietary Notice ......................................................................................................... 3 None Table of Contents .......................................................................................................... 4 1.0 System Description ....................................................................................................... 5 1.1 SCc................................................................................................................................ 5 1.2 System Components ..................................................................................................... 5 1.3 Theory of Operation ..................................................................................................... -
The Development and Improvement of Instructions
WIND TUNNEL AND FLIGHT TESTING OF ACTIVE FLOW CONTROL ON A UAV A Thesis by YOGESH BABBAR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2010 Major Subject: Aerospace Engineering WIND TUNNEL AND FLIGHT TESTING OF ACTIVE FLOW CONTROL ON A UAV A Thesis by YOGESH BABBAR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Othon K. Rediniotis John Valasek Committee Member, Mark T. Holtzapple Head of Department, Dimitris C. Lagoudas May 2010 Major Subject: Aerospace Engineering iii ABSTRACT Wind Tunnel and Flight Testing of Active Flow Control on a UAV. (May 2010) Yogesh Babbar, B.E., Punjab Engineering College, Chandigarh, India Co-Chairs of Advisory Committee: Dr. Othon K. Rediniotis Dr. John Valasek Active flow control has been extensively explored in wind tunnel studies but successful in-flight implementation of an active flow control technology still remains a challenge. This thesis presents implementation of active flow control technology on- board a 33% scale Extra 330S ARF aircraft, wind tunnel studies and flight testing of fluidic actuators. The design and construction of the pulsed blowing system for stall suppression (LE actuator) and continuous blowing system for roll control (TE actuator) and pitch control have been presented. Full scale wind tunnel testing in 7’×10’ Oran W. Nicks low speed wind tunnel shows that the TE actuators are about 50% effective as the conventional ailerons. -
Numerical Investigation of an Airfoil with a Gurney Flap
Numerical investigation of an airfoil with a Gurney flap Cory S. Jang�, James C. Ross�, Russell M. Cummings� � California Polytechnic State University, San Luis Obispo, CA 93407, USA � NASA Ames Research Center, Moffett Field, CA 94035, USA Abstract A two-dimensional numerical investigation was performed to determine the effect of a Gurney flap on a NACA 4412 airfoil. A Gurney flap is a flat plate on the order of 1—3% of the airfoil chord in length, oriented perpendicular to the chord line and located on the airfoil windward side at the trailing edge. The flowfield around the airfoil was numerically predicted using INS2D, an incompressible Navier—Stokes solver, and the one-equation turbulence model of Baldwin and Barth. Gurney flap sizes of 0.5%, 1.0%, 1.25%, 1.5%, 2.0%, and 3.0% of the airfoil chord were studied. Computational results were compared with available experi mental results. The numerical solutions show that some Gurney flaps increase the airfoil lift coefficient with only a slight increase in drag coefficient. Use of a 1.5% chord length Gurney flap increases the airfoil lift � + coefficient by C� 0.3 and decreases the angle of attack required to obtain a given lift coefficient by �� '! ��� 3°. The numerical solutions show the details of the flow structure at the trailing edge and provide a possible explanation for the increased aerodynamic performance. Nomenclature c airfoil reference chord e, f inviscid flux terms in x, y directions, respectively " C� sectional drag coefficient ( d/q�c) e�, f� viscous flux terms in x, y directions, respectively