International Journal of Molecular Sciences Article Characterization of Protocatechuate 4,5-Dioxygenase from Pseudarthrobacter phenanthrenivorans Sphe3 and In Situ Reaction Monitoring in the NMR Tube Epameinondas Tsagogiannis 1, Elpiniki Vandera 1,†, Alexandra Primikyri 2,† , Stamatia Asimakoula 1, Andreas G. Tzakos 2 , Ioannis P. Gerothanassis 2 and Anna-Irini Koukkou 1,* 1 Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
[email protected] (E.T.);
[email protected] (E.V.);
[email protected] (S.A.) 2 Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
[email protected] (A.P.);
[email protected] (A.G.T.);
[email protected] (I.P.G.) * Correspondence:
[email protected]; Tel.: +30-265-100-8371 † Equal contribution. Abstract: The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a Citation: Tsagogiannis, E.; Vandera, single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis– E.; Primikyri, A.; Asimakoula, S.; −1 Menten kinetics with Km and Vmax values of 21 ± 1.6 µM and 44.8 ± 4.0 U × mg , respectively, Tzakos, A.G.; Gerothanassis, I.P.; in pH 9.5 and at 20 ◦C. PcaA also converted gallate from a broad range of substrates tested. The Koukkou, A.-I.