Spectral Properties of the Grounded Laplacian Matrix with Applications to Consensus in the Presence of Stubborn Agents

Total Page:16

File Type:pdf, Size:1020Kb

Spectral Properties of the Grounded Laplacian Matrix with Applications to Consensus in the Presence of Stubborn Agents Spectral Properties of the Grounded Laplacian Matrix with Applications to Consensus in the Presence of Stubborn Agents Mohammad Pirani and Shreyas Sundaram Abstract— We study linear consensus and opinion dynamics convergence rate [12], [14]–[16]. Similarly, one can consider in networks that contain stubborn agents. Previous work has the problem of leader selection problem in networks in the shown that the convergence rate of such dynamics is given presence of noise [17], where the main goal is to minimize by the smallest eigenvalue of the grounded Laplacian induced by the stubborn agents. Building on this, we define a notion the steady state error covariance of the followers [18]. of centrality for each node in the network based upon the In this paper, we continue the investigation of convergence smallest eigenvalue obtained by removing that node from the rate in continuous-time linear consensus dynamics with stub- network. We show that this centrality can deviate from other born agents. Specifically, given the key role of the grounded well known centralities. We then characterize certain properties Laplacian in this setting, we provide a characterization of of the smallest eigenvalue and corresponding eigenvector of the grounded Laplacian in terms of the graph structure and the certain spectral properties of this matrix, adding to the expected absorption time of a random walk on the graph. literature on such matrices [12]–[14], [19]. We define a natural centrality metric, termed grounding centrality, based I. INTRODUCTION on the smallest eigenvalue of the grounded Laplacian in- Collective behavior in networks of agents has been studied duced by each node. This captures the importance of the in a variety of communities including sociology, physics, node in the network via the rate of convergence it would biology, economics, computer science and engineering [1], induce in the consensus dynamics if chosen as a stubborn [2]. A topic that has received particular interest is that of agent. We show that this centrality metric can deviate from opinion dynamics and consensus in networks, where the other common centrality metrics such as closeness centrality, agents repeatedly update their opinions or states via inter- betweenness centrality and degree centrality. We then provide actions with their neighbors [3]–[5]. For certain classes of bounds on the smallest eigenvalue of the grounded Laplacian, interaction dynamics, various conditions have been provided along with certain properties of the associated eigenvector. on the network topology that guarantee convergence to a Finally, we compare the smallest eigenvalue to the maximum common state [6]–[9]. expected absorption time for a random walk on the under- Aside from providing conditions under which convergence lying graph. We provide bounds based on the deviation in occurs, the question of what value the agents converge to components of the eigenvector for the smallest eigenvalue. is also of importance. In particular, the ability of certain Our results on the spectrum of the grounded Laplacian are individual agents in the network to excessively influence the of independent interest, with applications to various settings final value can be viewed as both a benefit and a drawback, [13], [19]. depending on whether those agents are viewed as leaders The structure of the paper is as follows. In Section III or adversaries. The effect of individual agents’ initial values we introduce the mathematical formulation of the consensus on the final consensus value has been studied in [10] [11]. problem in the presence of stubborn agents, and show the When a subset of agents is fully stubborn (i.e., they refuse role of the grounded Laplacian matrix. We introduce the to update their value), it has been shown that under a certain notion of grounding centrality in Section IV. Section V in- class of linear update rules, the values of all other agents troduces some spectral properties of the grounded Laplacian asymptotically converge to a convex combination of the matrix for general graphs as well as some unique properties stubborn agent’s values [12]. for special graphs such as trees. In Section VI we make a Given the ability of individuals to influence linear opinion connection to absorbing random walks on Markov chains and dynamics by keeping their values constant, a natural metric to provide bounds on the smallest eigenvalue of the grounded consider is the speed at which the population converges to the Laplacian in terms of the spread of the components in the final value for a given set of stubborn agents or leaders. The associated eigenvector. Section VII concludes the paper. convergence rate is dictated by spectral properties of certain II. DEFINITIONS AND NOTATION matrices; in continuous-time dynamics, this is the grounded Laplacian matrix [13]. There are various recent works that We use G(V; E) to denote a weighted and undirected graph investigate the leader selection problem, where the goal is to where V is the set of vertices (or nodes) and E ⊆ V × select a set of leaders (or stubborn agents) to maximize the V is the set of edges. The neighbors of vertex vi 2 V in graph G are given by the set Ni = fvj 2 V j (vi; vj) 2 This material is based upon work supported by the Natural Sciences Eg. The weight associated with an edge connecting vertex and Engineering Research Council of Canada. The authors are with the Department of Electrical and Computer Engineering at the University of vi 2 V to vertex vj 2 V is denoted by wij. We take the Waterloo. E-mail: fmpirani, [email protected] weights to be nonnegative and symmetric (i.e., wij = wji). We define d = P w ; in unweighted graphs where agents, and that the rate of convergence is asymptotically i vj 2Ni ij each wij 2 f0; 1g, di simply denotes the degree of vertex vi. given by the smallest eigenvalue of L11 [12]. The matrix L11 We will be considering a nonempty subset of vertices S ⊂ V is called the grounded Laplacian formed by removing the to be stubborn, and assume without loss of generality that the rows and columns corresponding to the stubborn agents from stubborn agents are placed last in an ordering of the agents. L. In the rest of the paper, the grounded Laplacian formed We say a vertex vi 2 V nS is an α-vertex if Ni \S 6= ;, and by removing the rows and columns of L corresponding to say vi is a β-vertex otherwise. Vertices in V n S will also be the vertices in set S ⊂ V will be denoted by LgS, and Lgs called followers. if S = fvsg. When the set S is fixed and clear from the context, we will simply use the notation Lg to denote the III. BASIC MODELS grounded Laplacian. For any given set S, we denote the A. Consensus Model smallest eigenvalue of the grounded Laplacian matrix by Consider a network of agents described by the connected λ(LgS) or simply λ. and undirected graph G(V; E), representing the structure of Remark 1: When the graph G is connected, the grounded the system, and a set of differential equations describing the Laplacian matrix is a positive definite matrix and its inverse interactions between each pair. In the study of consensus and is a nonnegative matrix (i.e., a matrix whose elements are continuous-time opinion dynamics [7], each agent vi 2 V nonnegative) [20]. From the Perron-Frobenius (P-F) theorem, starts with an initial scalar state (or opinion) yi(t), which the eigenvector associated with the smallest eigenvalue of it continuously updates as a function of the states of its the grounded Laplacian can be chosen to be nonnegative neighbors. A commonly studied version of these dynamics (elementwise). Furthermore, when the stubborn agent is not involves a linear update rule of the form a cut vertex, the eigenvector associated with the smallest X eigenvalue can be chosen to have all elements positive. y_ (t) = w (y (t) − y (t)); (1) i ij j i There have been various recent investigations of graph vj 2Ni properties that impact the convergence rate for a given set of where wij is the weight assigned by node vi to the state of its stubborn agents, leading to the development of algorithms neighbor vj. Aggregating the state of all of the nodes into to find approximately optimal sets of stubborn agents to T the vector Y (t) = y1(t) y2(t) ··· yn(t) , equation maximize the convergence rate [12], [14], [16]. Motivated (1) can be written as by the fact that the smallest eigenvalue of the grounded Laplacian dominates the convergence rate, in the next section Y_ = −LY; (2) we define a notion of grounding centrality for each node where L is the weighted graph Laplacian defined as L = in the network, corresponding to how quickly that node D − A with degree matrix D = diag(d1; d2; : : : ; dn) and would lead the rest of the network to steady state if chosen weighted adjacency matrix A containing the weight wij in to be stubborn. We show via an example that grounding entry (i; j). centrality can deviate from other common centrality metrics For an undirected graph G with symmetric weights (i.e., in networks, and then in subsequent sections, we provide wij = wji for all i 6= j), L is a symmetric matrix with real bounds on the grounding centrality based on graph theoretic eigenvalues that can be ordered sequentially as 0 = λ1 ≤ properties. λ ≤ · · · ≤ λ ≤ 2∆ where ∆ = max P w . When 2 n i vj 2Ni ij the graph G is connected, the second smallest eigenvalue λ2 IV. GROUNDING CENTRALITY is positive and all nodes asymptotically reach consensus on cT Y (0) There are various metrics for evaluating the importance of the value yeq = T where c is the left eigenvector of L c 1 individual nodes in a network.
Recommended publications
  • Arxiv:1711.06300V1
    EXPLICIT BLOCK-STRUCTURES FOR BLOCK-SYMMETRIC FIEDLER-LIKE PENCILS∗ M. I. BUENO†, M. MARTIN ‡, J. PEREZ´ §, A. SONG ¶, AND I. VIVIANO k Abstract. In the last decade, there has been a continued effort to produce families of strong linearizations of a matrix polynomial P (λ), regular and singular, with good properties, such as, being companion forms, allowing the recovery of eigen- vectors of a regular P (λ) in an easy way, allowing the computation of the minimal indices of a singular P (λ) in an easy way, etc. As a consequence of this research, families such as the family of Fiedler pencils, the family of generalized Fiedler pencils (GFP), the family of Fiedler pencils with repetition, and the family of generalized Fiedler pencils with repetition (GFPR) were con- structed. In particular, one of the goals was to find in these families structured linearizations of structured matrix polynomials. For example, if a matrix polynomial P (λ) is symmetric (Hermitian), it is convenient to use linearizations of P (λ) that are also symmetric (Hermitian). Both the family of GFP and the family of GFPR contain block-symmetric linearizations of P (λ), which are symmetric (Hermitian) when P (λ) is. Now the objective is to determine which of those structured linearizations have the best numerical properties. The main obstacle for this study is the fact that these pencils are defined implicitly as products of so-called elementary matrices. Recent papers in the literature had as a goal to provide an explicit block-structure for the pencils belonging to the family of Fiedler pencils and any of its further generalizations to solve this problem.
    [Show full text]
  • "Distance Measures for Graph Theory"
    Distance measures for graph theory : Comparisons and analyzes of different methods Dissertation presented by Maxime DUYCK for obtaining the Master’s degree in Mathematical Engineering Supervisor(s) Marco SAERENS Reader(s) Guillaume GUEX, Bertrand LEBICHOT Academic year 2016-2017 Acknowledgments First, I would like to thank my supervisor Pr. Marco Saerens for his presence, his advice and his precious help throughout the realization of this thesis. Second, I would also like to thank Bertrand Lebichot and Guillaume Guex for agreeing to read this work. Next, I would like to thank my parents, all my family and my friends to have accompanied and encouraged me during all my studies. Finally, I would thank Malian De Ron for creating this template [65] and making it available to me. This helped me a lot during “le jour et la nuit”. Contents 1. Introduction 1 1.1. Context presentation .................................. 1 1.2. Contents .......................................... 2 2. Theoretical part 3 2.1. Preliminaries ....................................... 4 2.1.1. Networks and graphs .............................. 4 2.1.2. Useful matrices and tools ........................... 4 2.2. Distances and kernels on a graph ........................... 7 2.2.1. Notion of (dis)similarity measures ...................... 7 2.2.2. Kernel on a graph ................................ 8 2.2.3. The shortest-path distance .......................... 9 2.3. Kernels from distances ................................. 9 2.3.1. Multidimensional scaling ............................ 9 2.3.2. Gaussian mapping ............................... 9 2.4. Similarity measures between nodes .......................... 9 2.4.1. Katz index and its Leicht’s extension .................... 10 2.4.2. Commute-time distance and Euclidean commute-time distance .... 10 2.4.3. SimRank similarity measure .........................
    [Show full text]
  • Chapter 4 Introduction to Spectral Graph Theory
    Chapter 4 Introduction to Spectral Graph Theory Spectral graph theory is the study of a graph through the properties of the eigenvalues and eigenvectors of its associated Laplacian matrix. In the following, we use G = (V; E) to represent an undirected n-vertex graph with no self-loops, and write V = f1; : : : ; ng, with the degree of vertex i denoted di. For undirected graphs our convention will be that if there P is an edge then both (i; j) 2 E and (j; i) 2 E. Thus (i;j)2E 1 = 2jEj. If we wish to sum P over edges only once, we will write fi; jg 2 E for the unordered pair. Thus fi;jg2E 1 = jEj. 4.1 Matrices associated to a graph Given an undirected graph G, the most natural matrix associated to it is its adjacency matrix: Definition 4.1 (Adjacency matrix). The adjacency matrix A 2 f0; 1gn×n is defined as ( 1 if fi; jg 2 E; Aij = 0 otherwise. Note that A is always a symmetric matrix with exactly di ones in the i-th row and the i-th column. While A is a natural representation of G when we think of a matrix as a table of numbers used to store information, it is less natural if we think of a matrix as an operator, a linear transformation which acts on vectors. The most natural operator associated with a graph is the diffusion operator, which spreads a quantity supported on any vertex equally onto its neighbors. To introduce the diffusion operator, first consider the degree matrix: Definition 4.2 (Degree matrix).
    [Show full text]
  • MINIMUM DEGREE ENERGY of GRAPHS Dedicated to the Platinum
    Electronic Journal of Mathematical Analysis and Applications Vol. 7(2) July 2019, pp. 230-243. ISSN: 2090-729X(online) http://math-frac.org/Journals/EJMAA/ |||||||||||||||||||||||||||||||| MINIMUM DEGREE ENERGY OF GRAPHS B. BASAVANAGOUD AND PRAVEEN JAKKANNAVAR Dedicated to the Platinum Jubilee year of Dr. V. R. Kulli Abstract. Let G be a graph of order n. Then an n × n symmetric matrix is called the minimum degree matrix MD(G) of a graph G, if its (i; j)th entry is minfdi; dj g whenever i 6= j, and zero otherwise, where di and dj are the degrees of ith and jth vertices of G, respectively. In the present work, we obtain the characteristic polynomial of the minimum degree matrix of graphs obtained by some graph operations. In addition, bounds for the largest minimum degree eigenvalue and minimum degree energy of graphs are obtained. 1. Introduction Throughout this paper by a graph G = (V; E) we mean a finite undirected graph without loops and multiple edges of order n and size m. Let V = V (G) and E = E(G) be the vertex set and edge set of G, respectively. The degree dG(v) of a vertex v 2 V (G) is the number of edges incident to it in G. The graph G is r-regular if and only if the degree of each vertex in G is r. Let fv1; v2; :::; vng be the vertices of G and let di = dG(vi). Basic notations and terminologies can be found in [8, 12, 14]. In literature, there are several graph polynomials defined on different graph matrices such as adjacency matrix [8, 12, 14], Laplacian matrix [15], signless Laplacian matrix [9, 18], seidel matrix [5], degree sum matrix [13, 19], distance matrix [1] etc.
    [Show full text]
  • MATH7502 Topic 6 - Graphs and Networks
    MATH7502 Topic 6 - Graphs and Networks October 18, 2019 Group ID fbb0bfdc-79d6-44ad-8100-05067b9a0cf9 Chris Lam 41735613 Anthony North 46139896 Stuart Norvill 42938019 Lee Phillips 43908587 Minh Tram Julien Tran 44536389 Tutor Chris Raymond (P03 Tuesday 4pm) 1 [ ]: using Pkg; Pkg.add(["LightGraphs", "GraphPlot", "Laplacians","Colors"]); using LinearAlgebra; using LightGraphs, GraphPlot, Laplacians,Colors; 0.1 Graphs and Networks Take for example, a sample directed graph: [2]: # creating the above directed graph let edges = [(1, 2), (1, 3), (2,4), (3, 2), (3, 5), (4, 5), (4, 6), (5, 2), (5, 6)] global graph = DiGraph(Edge.(edges)) end [2]: {6, 9} directed simple Int64 graph 2 0.2 Incidence matrix • shows the relationship between nodes (columns) via edges (rows) • edges are connected by exactly two nodes (duh), with direction indicated by the sign of each row in the edge column – a value of 1 at A12 indicates that edge 1 is directed towards node 1, or node 2 is the destination node for edge 1 • edge rows sum to 0 and constant column vectors c(1, ... , 1) are in the nullspace • cannot represent self-loops (nodes connected to themselves) Using Strang’s definition in the LALFD book, a graph consists of nodes defined as columns n and edges m as rows between the nodes. An Incidence Matrix A is m × n. For the above sample directed graph, we can generate its incidence matrix. [3]: # create an incidence matrix from a directed graph function create_incidence(graph::DiGraph) M = zeros(Int, ne(graph), nv(graph)) # each edge maps to a row in the incidence
    [Show full text]
  • Two One-Parameter Special Geometries
    Two One-Parameter Special Geometries Volker Braun1, Philip Candelas2 and Xenia de la Ossa2 1Elsenstrasse 35 12435 Berlin Germany 2Mathematical Institute University of Oxford Radcliffe Observatory Quarter Woodstock Road Oxford OX2 6GG, UK arXiv:1512.08367v1 [hep-th] 28 Dec 2015 Abstract The special geometries of two recently discovered Calabi-Yau threefolds with h11 = 1 are analyzed in detail. These correspond to the 'minimal three-generation' manifolds with h21 = 4 and the `24-cell' threefolds with h21 = 1. It turns out that the one- dimensional complex structure moduli spaces for these manifolds are both very similar and surprisingly complicated. Both have 6 hyperconifold points and, in addition, there are singularities of the Picard-Fuchs equation where the threefold is smooth but the Yukawa coupling vanishes. Their fundamental periods are the generating functions of lattice walks, and we use this fact to explain why the singularities are all at real values of the complex structure. Contents 1 Introduction 1 2 The Special Geometry of the (4,1)-Manifold 6 2.1 Fundamental Period . .6 2.2 Picard-Fuchs Differential Equation . .8 2.3 Integral Homology Basis and the Prepotential . 11 2.4 The Yukawa coupling . 16 3 The Special Geometry of the (1,1)-Manifold(s) 17 3.1 The Picard-Fuchs Operator . 17 3.2 Monodromy . 19 3.3 Prepotential . 22 3.4 Integral Homology Basis . 23 3.5 Instanton Numbers . 24 3.6 Cross Ratios . 25 4 Lattice Walks 27 4.1 Spectral Considerations . 27 4.2 Square Lattice . 28 1. Introduction Detailed descriptions of special geometries are known only in relatively few cases.
    [Show full text]
  • Seidel Signless Laplacian Energy of Graphs 1. Introduction
    Mathematics Interdisciplinary Research 2 (2017) 181 − 191 Seidel Signless Laplacian Energy of Graphs Harishchandra S. Ramane?, Ivan Gutman, Jayashri B. Patil and Raju B. Jummannaver Abstract Let S(G) be the Seidel matrix of a graph G of order n and let DS (G) = diag(n − 1 − 2d1; n − 1 − 2d2; : : : ; n − 1 − 2dn) be the diagonal matrix with di denoting the degree of a vertex vi in G. The Seidel Laplacian matrix of G is defined as SL(G) = DS (G) − S(G) and the Seidel signless Laplacian + matrix as SL (G) = DS (G) + S(G). The Seidel signless Laplacian energy ESL+ (G) is defined as the sum of the absolute deviations of the eigenvalues of SL+(G) from their mean. In this paper, we establish the main properties + of the eigenvalues of SL (G) and of ESL+ (G). Keywords: Seidel Laplacian eigenvalues, Seidel Laplacian energy, Seidel sign- less Laplacian matrix, Seidel signless Laplacian eigenvalues, Seidel signless Laplacian energy. 2010 Mathematics Subject Classification: 05C50. 1. Introduction Let G be a simple, undirected graph with n vertices and m edges. We say that G is an (n; m)-graph. Let v1; v2; : : : ; vn be the vertices of G. The degree of a vertex vi is the number of edges incident to it and is denoted by di. If di = r for all i = 1; 2; : : : ; n, then G is said to be an r-regular graph. By G will be denoted the complement of the graph G. The adjacency matrix of a graph G is the square matrix A(G) = (aij) , in which aij = 1 if vi is adjacent to vj and aij = 0 otherwise.
    [Show full text]
  • A Short Tutorial on Graph Laplacians, Laplacian Embedding, and Spectral Clustering
    A Short Tutorial on Graph Laplacians, Laplacian Embedding, and Spectral Clustering Radu Horaud INRIA Grenoble Rhone-Alpes, France [email protected] http://perception.inrialpes.fr/ Radu Horaud Graph Laplacian Tutorial Introduction The spectral graph theory studies the properties of graphs via the eigenvalues and eigenvectors of their associated graph matrices: the adjacency matrix and the graph Laplacian and its variants. Both matrices have been extremely well studied from an algebraic point of view. The Laplacian allows a natural link between discrete representations, such as graphs, and continuous representations, such as vector spaces and manifolds. The most important application of the Laplacian is spectral clustering that corresponds to a computationally tractable solution to the graph partitionning problem. Another application is spectral matching that solves for graph matching. Radu Horaud Graph Laplacian Tutorial Applications of spectral graph theory Spectral partitioning: automatic circuit placement for VLSI (Alpert et al 1999), image segmentation (Shi & Malik 2000), Text mining and web applications: document classification based on semantic association of words (Lafon & Lee 2006), collaborative recommendation (Fouss et al. 2007), text categorization based on reader similarity (Kamvar et al. 2003). Manifold analysis: Manifold embedding, manifold learning, mesh segmentation, etc. Radu Horaud Graph Laplacian Tutorial Basic graph notations and definitions We consider simple graphs (no multiple edges or loops), G = fV; Eg: V(G) = fv1; : : : ; vng is called the vertex set with n = jVj; E(G) = feijg is called the edge set with m = jEj; An edge eij connects vertices vi and vj if they are adjacent or neighbors. One possible notation for adjacency is vi ∼ vj; The number of neighbors of a node v is called the degree of v and is denoted by d(v), d(v ) = P e .
    [Show full text]
  • The Distance Matrix and Its Variants for Graphs and Digraphs by Carolyn
    The distance matrix and its variants for graphs and digraphs by Carolyn Reinhart A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Leslie Hogben, Major Professor Steve Butler Jonas Hartwig Sung-Yell Song Michael Young The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2021 Copyright © Carolyn Reinhart, 2021. All rights reserved. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS . iii ABSTRACT . iv CHAPTER 1. GENERAL INTRODUCTION . .1 1.1 Definitions for graphs . .3 1.2 Digraphs . .4 1.3 References . .5 CHAPTER 2. THE NORMALIZED DISTANCE LAPLACIAN . .7 2.1 Introduction . .7 2.2 The normalized distance Laplacian . 11 2.3 Using twin vertices to determine eigenvalues . 18 2.4 Characteristic polynomials . 21 2.5 Cospectral graphs . 25 2.5.1 Cospectral pairs on 10 or fewer vertices . 26 2.5.2 The number of graphs with a cospectral mate . 32 2.6 Concluding remarks . 33 2.7 References . 34 CHAPTER 3. A NOTE ON THE PRESERVATION OF GRAPH PARAMETERS BY COSPECTRALITY FOR THE DISTANCE MATRIX AND ITS VARIANTS . 37 3.1 Introduction . 37 3.2 Preservation of parameters . 39 3.3 Concluding remarks . 44 3.4 References . 44 CHAPTER 4. DISTANCE COSPECTRALITY IN DIGRAPHS . 46 4.1 Introduction . 46 4.2 The number of digraphs with distance cospectral mates .
    [Show full text]
  • Eigenvector Localization
    First, parse the title ... Eigenvector localization: • Eigenvectors are “usually” global entities • But they can be localized in extremely sparse/noisy graphs/matrices Implicit regularization: • Usually “exactly” optimize f+λg, for some λ and g • Regularization often a side effect of approximations to f Algorithmic anti-differentiation: • What is the objective that approximate computation exactly optimizes Large-scale graphs and network data: • Small versus medium versus large versus big • Social/information networks versus “constructed” graphs Outline Motivation: large informatics graphs • Downward-sloping, flat, and upward-sloping NCPs (i.e., not “nice” at large size scales, but instead expander-like/tree-like) • Implicit regularization in graph approximation algorithms Eigenvector localization & semi-supervised eigenvectors • Strongly and weakly local diffusions • Extension to semi-supervised eigenvectors Implicit regularization & algorithmic anti-differentiation • Early stopping in iterative diffusion algorithms • Truncation in diffusion algorithms Outline Motivation: large informatics graphs • Downward-sloping, flat, and upward-sloping NCPs (i.e., not “nice” at large size scales, but instead expander-like/tree-like) • Implicit regularization in graph approximation algorithms Eigenvector localization & semi-supervised eigenvectors • Strongly and weakly local diffusions • Extension to semi-supervised eigenvectors Implicit regularization & algorithmic anti-differentiation • Early stopping in iterative diffusion algorithms • Truncation
    [Show full text]
  • 35. Finding Clusters in Graphs
    MITOCW | 35. Finding Clusters in Graphs The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a donation, or to view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. GILBERT OK. Now, clustering for graphs. So this is a topic-- this is one of the important things you can STRANG: try to do with a graph. So you have a large graph. Let me kind of divide it into two clusters. So you've got a giant graph. And then the job is to make some sense out of it. And one possible step is to be able to subdivide it, if, as I see here, there's a cut between two reasonably equal parts of the graph-- reasonable-- reasonably same size. And therefore, that graph could be studied in two pieces. So the question is, how do you find such a cut by a algorithm? What's an algorithm that would find that cut? So that's a problem. Let's say we're looking for two clusters. We could look for more clusters, but let's say we want to look for two clusters. So what are we trying to do? We're trying to minimize. So this is the problem, then. So we look for-- find positions x and y, let's say. Two which will be the centers, so to speak, of the-- and really, it's just these points that-- so the data is the points and the edges, as always-- the nodes and the edges.
    [Show full text]
  • Laplacian Matrix and Applications
    LAPLACIAN MATRIX AND APPLICATIONS Alice Nanyanzi Supervisors: Dr. Franck Kalala Mutombo & Dr. Simukai Utete [email protected] August 24, 2017 1 Complex systems & Complex Networks 2 Networks Overview 3 Laplacian Matrix Laplacian Centrality Diffusion on networks Alice Nanyanzi (AIMS-SU) Laplacian Matrix August 24, 2017 1 / 22 Complex Systems; Complex Network/Large graph Approach Alice Nanyanzi (AIMS-SU) Laplacian Matrix August 24, 2017 2 / 22 Figure Introduction to Networks Intuition of Networks Whenever one mentions the word 'network', one normally thinks of an interconnection of items or things. Alice Nanyanzi (AIMS-SU) Laplacian Matrix August 24, 2017 3 / 22 Introduction to Networks Intuition of Networks Whenever one mentions the word 'network', one normally thinks of an interconnection of items or things. Formal Definition A network, G, is a pair (V ; E). Where V is the set of vertices (nodes) of G and E is the set of edges (links) of G. (Estrada & Knight). Categories of networks include simple networks, directed networks, undirected networks, weighted networks, etc (Estrada, 2015) Alice Nanyanzi (AIMS-SU) Laplacian Matrix August 24, 2017 3 / 22 Real-world Networks (a) Internet (b) Protein-Protein (c) Food web (d) Citation network Source: www.wikipedia.com Alice Nanyanzi (AIMS-SU) Laplacian Matrix August 24, 2017 4 / 22 Laplacian Matrix Definition Consider a simple undirected network, the Laplacian matrix L is the difference between the Degree matrix D and Adjacency matrix A i.e L = D − A. The entries of L are given as 8 k if i = j <> i Li;j = −1 if i 6= j and i is adjacent to j :>0 otherwise; where ki denotes the degree of node i (Estrada, 2011).
    [Show full text]