Mathematical Surveys and Monographs Volume 186

Introduction to Quantum Graphs

'REGORY"ERKOLAIKO Peter Kuchment

American Mathematical Society http://dx.doi.org/10.1090/surv/186

Introduction to Quantum Graphs

Mathematical Surveys and Monographs Volume 186

Introduction to Quantum Graphs

Gregory Berkolaiko Peter Kuchment

American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair Benjamin Sudakov MichaelA.Singer MichaelI.Weinstein

2010 Mathematics Subject Classification. Primary 34B45, 35R02, 81Q35, 35Pxx, 58J50, 05C50, 82D77, 81Q50, 47N60, 82D80, 82D55.

For additional information and updates on this book, visit www.ams.org/bookpages/surv-186

Library of Congress Cataloging-in-Publication Data Berkolaiko, Gregory, 1976– Introduction to quantum graphs / Gregory Berkolaiko, Peter Kuchment. pages cm. – (Mathematical surveys and monographs ; volume 186) Includes bibliographical references and index. ISBN 978-0-8218-9211-4 (alk. paper) 1. Quantum graphs. 2. Boundary value problems. I. Kuchment, Peter, 1949– II. Title.

QA166.165.B47 2012 530.12015115–dc23 2012033434

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2013 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 181716151413 To our families and our teachers

Contents

Preface xi

Introduction xiii Chapter 1. Operators on Graphs. Quantum graphs 1 1.1. Main graph notions and notation 2 1.2. Difference operators. Discrete Laplace operators 5 1.3. Metric graphs 7 1.4. Differential operators on metric graphs. Quantum graphs 12 1.4.1. Vertex conditions. Finite graphs. 15 1.4.2. Scale invariance 22 1.4.3. Quadratic form 22 1.4.4. Examples of vertex conditions 24 1.4.5. Infinite graphs 27 1.4.6. Non-local vertex conditions 32 1.5. Further remarks and references 33

Chapter 2. Quantum Graph Operators. Special Topics 37 2.1. Quantum graphs and scattering matrices 37 2.1.1. Scattering on vertices 37 2.1.2. Bond scattering and the secular equation 41 2.2. First order operators and scattering matrices 44 2.3. Factorization of quantum graph Hamiltonians 51 2.4. Index of quantum graph operators 52 2.5. Dependence on vertex conditions 54 2.5.1. Variations in the edge lengths 58 2.6. Magnetic Schr¨odinger operator 59 2.7. Further remarks and references 62

Chapter 3. Spectra of Quantum Graphs 65 3.1. Basic spectral properties of compact quantum graphs 66 3.1.1. Discreteness of the spectrum 66 3.1.2. Dependence on the vertex conditions 67 3.1.3. Eigenfunction dependence 68 3.1.4. An Hadamard-type formula 68 vii viii CONTENTS

3.1.5. Generic simplicity of the spectrum 71 3.1.6. Eigenvalue bracketing 72 3.1.7. Dependence on the coupling constant at a vertex 76 3.2. The Shnol’ theorem 79 3.3. Generalized eigenfunctions 82 3.4. Failure of the unique continuation property. Scars 84 3.5. The ubiquitous Dirichlet-to-Neumann map 85 3.5.1. DtN map for a single edge 85 3.5.2. DtN map for a compact graph with a “boundary” 87 3.5.3. DtN map for a single vertex boundary 89 3.5.4. DtN map and the secular equation 89 3.5.5. DtN map and number of negative eigenvalues 90 3.6. Relations between quantum and discrete graph spectra 90 3.7. Trace formulas 92 3.7.1. Secular equation 93 3.7.2. Weyl’s law 95 3.7.3. Derivation of the trace formula 96 3.7.4. Expansion in terms of periodic orbits 99 3.7.5. Other formulations of the trace formula 100 3.8. Further remarks and references 101

Chapter 4. Spectra of Periodic Graphs 105 4.1. Periodic graphs 105 4.2. Floquet-Bloch theory 107 4.2.1. Floquet transform on combinatorial periodic graphs 109 4.2.2. Floquet transform of periodic difference operators 112 4.2.3. Floquet transform on quantum periodic graphs 113 4.2.4. Floquet transform of periodic operators 114 4.3. Band-gap structure of spectrum 115 4.3.1. Discrete case 115 4.3.2. Quantum graph case 116 4.3.3. Floquet transform in Sobolev classes 117 4.4. Absence of the singular continuous spectrum 117 4.5. The point spectrum 118 4.6. Where do the spectral edges occur? 121 4.7. Existence and location of spectral gaps 123 4.8. Impurity spectra 124 4.9. Further remarks and references 124

Chapter 5. Spectra of Quantum Graphs. Special Topics 129 5.1. Resonant gap opening 129 5.1.1. “Spider” decorations 133 CONTENTS ix

5.2. Zeros of eigenfunctions and nodal domains 134 5.2.1. Some basic results 137 5.2.2. Bounds on the nodal count 138 5.2.3. Nodal count for special types of graphs 142 5.2.4. Nodal deficiency and Morse indices 143 5.3. Spectral determinants of quantum graphs 148 5.4. Scattering on quantum graphs 150 5.5. Further remarks and references 153

Chapter 6. Quantum Chaos on Graphs 157 6.1. Classical “motion” on graphs 158 6.2. Spectral statistics and theory 159 6.2.1. Form factor of a 161 6.2.2. Random matrices 162 6.3. Spectral statistics of graphs 164 6.4. Periodic orbit expansions 167 6.4.1. On time-reversal invariance 170 6.4.2. Diagonal approximation 170 6.4.3. The simplest example of an off-diagonal term 173 6.5. Further remarks and references 179

Chapter 7. Some Applications and Generalizations 181 7.1. Inverse problems 181 7.1.1. Can one hear the shape of a quantum graph? 183 7.1.2. Quantum graph isospectrality 184 7.1.3. Can one count the shape of a graph? 185 7.1.4. Inverse scattering 185 7.1.5. Discrete “electrical impedance” problem 185 7.2. Other types of equations on metric graphs 186 7.2.1. Heat equation 186 7.2.2. Wave equation 186 7.2.3. Control theory 186 7.2.4. Reaction-diffusion equations 187 7.2.5. Dirac and Rashba operators 187 7.2.6. Pseudo-differential Hamiltonians 187 7.2.7. Non-linear Schr¨odinger equation (NLS) 188 7.3. Analysis on fractals 188 7.4. Equations on multistructures 188 7.5. Graph models of thin structures 188 7.5.1. Neumann tubes 190 7.5.2. Dirichlet tubes 192 7.5.3. “Leaky” structures 194 xCONTENTS

7.6. Quantum graph modeling of various physical phenomena 200 7.6.1. Simulation of quantum graphs by microwave networks 200 7.6.2. Realizability questions 200 7.6.3. Spectra of graphene and carbon nanotubes 201 7.6.4. Vacuum energy and Casimir effect 205 7.6.5. Anderson localization 207 7.6.6. Bose-Einstein condensates 207 7.6.7. Quantum Hall effect 207 7.6.8. Flat band phenomena and slowing down light 208 Appendix A. Some Notions of 209 A.1. Graph, edge, vertex, 209 A.2. Some special graphs 210 A.3. Graphs and digraphs 210 A.4. Paths, closed paths, Betti number 211 A.5. Periodic graph 211 A.6. Cayley graphs and Schreier graphs 212 Appendix B. Linear Operators and Operator-Functions 213 B.1. Some notation concerning linear operators 213 B.2. Fredholm and semi-Fredholm operators. Fredholm index 213 B.3. Analytic Fredholm operator functions 215 B.3.1. Some notions from the several complex variables theory 215 B.3.2. Analytic Fredholm operator functions 216 Appendix C. Structure of Spectra 219 C.1. Classification of the points of the spectrum 220 C.2. Spectral theorem and spectrum classification 220 Appendix D. Symplectic Geometry and Extension Theory 223 Bibliography 227 Index 267 Preface

In this book, the name “quantum graph” refers to a graph con- sidered as a one-dimensional simplicial complex and equipped with a differential operator (“Hamiltonian”). Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s in various areas of chemistry, physics, and mathemat- ics. However, as a coherent and actively pursued topic, the area of quantum graphs has experienced an explosive growth only in the last couple of decades. There are manifold reasons for this surge. Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., “meso-” or “nano-scale”) system that looks like a thin neighborhood of a graph. One can mention in particular the free-electron theory of conjugated molecules, quantum wires, photonic crystals, carbon nano-structures, thin waveguides, some problems of dynamical systems, system theory and number theory, and many other applications that have led inde- pendently to quantum graph models. Quantum graphs also play a role of simplified, although still non-trivial, models for studying difficult issues, for instance, Anderson localization and quantum chaos. There are fruitful relations of quantum graphs with the older spec- tral theory of “standard” (combinatorial) graphs [191, 195, 213–215, 415] and with what is sometimes called discrete geometric analysis [682]. Quantum graphs present new non-trivial mathematical chal- lenges, which makes them dear to a mathematician’s heart. As the reader will see, work on quantum graph theory and applications has brought together tools and intuition coming from graph theory, com- binatorics, mathematical physics, PDEs, and spectral theory. In the new millennium, these relations between the various topics leading to quantum graphs were noticed, which has triggered a series of interdisciplinary meetings and intensive communication and coop- eration among researchers coming from different areas of science and engineering. Surveys and collections of papers on quantum graphs and related issues have started to appear (e.g., [98,121,122,126,161,353,

xi xii PREFACE

421,438,477–480,536,614,615,622]). These surveys, however, usu- ally focus on special features of quantum graph theory and there is still no comprehensive introduction to the topic, which is why the authors decided to write this text. The book is intended to serve a dual pur- pose: to provide an introduction to and survey of the current state of quantum graph theory, as well as to serve as a reference text, where the main notions and techniques are collected. The authors are indebted to many colleagues, from whom they have learned over the years a great deal about quantum graph theory and related issues. This includes, in particular, M. Aizenman, R. Band, J. Bolte, R. Carlson, Y. Colin de Verdiere, P. Exner, A. Figotin, M. Freidlin, L. Friedlander, S. Fulling, S. Gnutzmann, R. Grigorchuk, J.M. Harrison, J. P. Keating, E. Korotyaev, V. Kostrykin, M. Kotani, T. Kottos, L. Kunyansky, S. Molchanov, V. Nekrashevich, S. Novikov, K. Pankrashkin, B. Pavlov, O. Post, H. Schantz, R. Schrader, M. Shu- bin, U. Smilansky, A. Sobolev, M. Solomyak, T. Sunada, A. Teplyaev, B. Vainberg, I. Veseli´c, and B. Winn. The second author has been sig- nificantly influenced by the late M. Birman, R. Brooks, and V. Geyler. We cordially thank S. Fulling, W. Justice and our graduate students N. Do, W. Liu and T. Weyand for their critical reading of the manu- script and numerous corrections. We are grateful to the reviewers, especially those who had to endure the cruel and unusual punishment of refereeing several versions, for many important suggestions. Our thanks go to the people from the AMS office for invaluable help. We are especially grateful to S. Gelfand, without whose insistence this book would have never been finished, and C. Thivierge for constant support during the production. Some parts of this work were supported by grants from the National Science Foundation. The authors express their gratitude to the NSF for the support. Finally, we are grateful to our families for their limitless patience.

Gregory Berkolaiko and Peter Kuchment College Station, TX July 2012 Introduction

In this book, our goal is to introduce the main notions, structures, and techniques used in quantum graph studies, as well as to provide a brief survey of more special topics and applications. This task has shaped the book as follows: we present in detail the basic constructions and frequently used technical results in Chapters 1 and 2, devoted to quantum graph operators, and Chapters 3 – 5, which address various issues of the spectral theory of quantum graphs. The remaining two chapters are of review nature and thus less detailed; in most cases the reader will be directed to the cited literature for precise formulations and proofs. Using graphs as models for quantum chaos is considered in Chapter 6. Chapter 7 provides a brief survey of various generalizations and applications. The reader will notice that the area is developing very fast; had we tried to be more specific in this chapter, it would be outdated by the time of publications anyway. Our intent was to make the book accessible to graduate and ad- vanced undergraduate students in mathematics, physics, and engineer- ing. Since a variety of techniques are used, for the benefit of the reader we introduce the main notions and relevant results in graph theory, functional analysis, and operator theory in a series of Appendices. In order to make reading smoother, we normally do not include references in the main text of the chapters, collecting them, as well as additional comments, in the specially devoted last section of each chapter. We also have not tried to make the considerations too gen- eral. For instance, we mostly treat the second derivative operators on quantum graphs, while considerations could be easily extended to the more general Schr¨odinger operators. When we do mention more gen- eral operators, we do not look for the most general conditions on the coefficients (potentials), settling for some reasonable conditions that make the techniques work.

xiii

Bibliography

[1] M. J. Ablowitz and P. A. Clarkson. Solitons, nonlinear evolution equations and inverse scattering, volume 149 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1991. [2] M. J. Ablowitz and H. Segur. Solitons and the inverse scattering transform, volume 4 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. [3] R. Abraham. Lectures of Smale on differential topology. Lecture Notes, Columbia Univ., New York, N.Y., 1962. [4] E. Abrahams, editor. 50 years of Anderson localization. World Scientific Pub- lishing Co. Pte. Ltd., Hackensack, NJ, 2010. [5] L. Accardi, A. Ben Ghorbal, and N. Obata. Monotone independence, comb graphs and Bose-Einstein condensation. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7(3):419–435, 2004. [6] R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. On the structure of critical energy levels for the cubic focusing nls on star graphs. J. Phys. A, 45(19):192001, 2012. [7] R. A. Adams. Sobolev spaces,volume65ofPure and Applied Mathematics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. [8] V. Adamyan. Scattering matrices for microschemes. In Operator theory and complex analysis (Sapporo, 1991),volume59ofOper. Theory Adv. Appl., pages 1–10. Birkh¨auser, Basel, 1992. [9] V. Adamyan and B. Pavlov. Local scattering problem and a solvable model of quantum network. In Recent advances in operator theory in Hilbert and Krein spaces, volume 198 of Oper. Theory Adv. Appl., pages 1–10. Birkh¨auser Verlag, Basel, 2010. [10] M. Aizenman, R. Sims, and S. Warzel. Absolutely continuous spectra of quan- tum tree graphs with weak disorder. Comm. Math. Phys., 264(2):371–389, 2006. [11] M. Aizenman, R. Sims, and S. Warzel. Fluctuation-based proof of the stability of ac spectra of random operators on tree graphs. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 1–14. Amer. Math. Soc., Providence, RI, 2006. [12] M. Aizenman, R. Sims, and S. Warzel. Fluctuation based proof of the sta- bility of ac spectra of random operators on tree graphs. In N. Chernov, Y. Karpeshina, I. W. Knowles, R. T. Lewis, and R. Weikard, editors, Re- cent advances in differential equations and mathematical physics, volume 412 of Contemporary Mathematics, pages 1–14. Amer. Math. Soc., Providence, RI, 2006.

227 228 BIBLIOGRAPHY

[13] M. Aizenman, R. Sims, and S. Warzel. Fluctuation-based proof of the stability of ac spectra of random operators on tree graphs. In G. Berkolaiko, R. Carlson, S. Fulling, and P. Kuchment, editors, Quantum graphs and their applications, volume 415 of Contemp. Math., pages 1–14. Amer. Math. Soc., Providence, RI, 2006. [14] M. Aizenman, R. Sims, and S. Warzel. Stability of the absolutely continuous spectrum of random Schr¨odinger operators on tree graphs. Probab. Theory Related Fields, 136(3):363–394, 2006. [15] M. Aizenman and S. Warzel. Persistence under weak disorder of AC spec- tra of quasi-periodic Schr¨odinger operators on trees graphs. Mosc. Math. J., 5(3):499–506, 742, 2005. [16] N. I. Akhiezer and I. M. Glazman. Theory of linear operators in Hilbert space. Dover Publications Inc., New York, 1993. Translated from the Russian and with a preface by Merlynd Nestell. Reprint of the 1961 and 1963 translations, two volumes bound as one. [17] E. Akkermans, A. Comtet, J. Desbois, G. Montambaux, and C. Texier. Spec- tral determinant on quantum graphs. Ann. Phys., 284(1):10–51, 2000. [18] O. Al-Obeid. On the number of the constant sign zones of the eigenfunctions of a dirichlet problem on a network (graph). Technical report, Voronezh: Voronezh State University, 1992. in Russian, deposited in VINITI 13.04.93, N 938 – B 93. – 8 p. [19] J. H. Albert. Generic properties of eigenfunctions of elliptic partial differential operators. Trans. Amer. Math. Soc., 238:341–354, 1978. [20] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden. Solvable models in quantum mechanics. Texts and Monographs in Physics. Springer-Verlag, New York, 1988. [21] S. Alexander. Superconductivity of networks. A percolation approach to the effects of disorder. Phys. Rev. B (3), 27(3):1541–1557, 1983. [22] F. Ali Mehmeti, J. von Below, and S. Nicaise, editors. Partial differential equations on multistructures, volume 219 of Lecture Notes in Pure and Applied Mathematics, New York, 2001. Marcel Dekker Inc. [23] D. Alpay and V. Vinnikov, editors. Characteristic functions, scattering func- tions and transfer functions, volume 197 of Operator Theory: Advances and Applications. Birkh¨auser Verlag, Basel, 2010. The Moshe Livsic memorial volume. [24] C. Amovilli, F. E. Leys, and N. H. March. Electronic energy spectrum of two- dimensional solids and a chain of C atoms from a quantum network model. J. Math. Chem., 36(2):93–112, 2004. [25] V. Ancona, B. Gaveau, and M. Okada. Harmonic forms and cohomology of singular stratified spaces. Bull. Sci. Math., 131(5):422–456, 2007. [26] Y. Arlinskii, S. Belyi, and E. Tsekanovskii. Conservative realizations of Herglotz-Nevanlinna functions, volume 217 of Operator Theory: Advances and Applications. Birkh¨auser/Springer Basel AG, Basel, 2011. [27] V. I. Arnold. Mathematical methods of classical mechanics. Springer-Verlag, New York, 1978. Translated from the Russian by K. Vogtmann and A. We- instein, Graduate Texts in Mathematics, 60. BIBLIOGRAPHY 229

[28] V. I. ArnoldandA.B.Givental.Symplecticgeometry.InV.I.Arnoldand S. P. Novikov, editors, Dynamical systems,volumeIVofEncyclopedia Math. Sci., pages 1–138. Springer, Berlin, 2001. [29] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Holt, Rinehart and Winston, New York-London, 1976. [30] P. Auscher, T. Coulhon, and A. Grigor’yan, editors. Heat kernels and anal- ysis on manifolds, graphs, and metric spaces, volume 338 of Contemporary Mathematics. Amer. Math. Soc., Providence, RI, 2003. [31] S. Avdonin. Control problems on quantum graphs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 507–521. Amer. Math. Soc., Providence, RI, 2008. [32] S. Avdonin, B. P. Belinskiy, and J. V. Matthews. Dynamical inverse problem on a metric tree. Inverse Problems, 27(7):075011, 21, 2011. [33] S. Avdonin and P. Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2(1):1–21, 2008. [34] S. Avdonin, P. Kurasov, and M. Nowaczyk. Inverse problems for quantum trees II: recovering matching conditions for star graphs. Inverse Probl. Imag- ing, 4(4):579–598, 2010. [35] S. Avdonin, G. Leugering, and V. Mikhaylov. On an inverse problem for tree- like networks of elastic strings. ZAMM Z. Angew. Math. Mech., 90(2):136– 150, 2010. [36] S. Avdonin and V. Mikhaylov. Controllability of partial differential equations on graphs. Appl. Math. (Warsaw), 35(4):379–393, 2008. [37] M. Avellaneda and F.-H. Lin. Un th´eor`eme de Liouville pour des ´equations elliptiquesa ` coefficients p´eriodiques. C. R. Acad. Sci. Paris S´er. I Math., 309(5):245–250, 1989. [38] Y. Avishai, D. Bessis, B. G. Giraud, and G. Mantica. Quantum bound states in open geometries. Phys. Rev. B, 44(15):8028–8034, 1991. [39] J. E. Avron, P. Exner, and Y. Last. Periodic Schr¨odinger operators with large gaps and Wannier-Stark ladders. Phys. Rev. Lett., 72(6):896–899, 1994. [40] J. E. Avron, A. Raveh, and B. Zur. Adiabatic quantum transport in multiply connected systems. Rev. Mod. Phys., 60(4):873–915, 1988. [41] W. Axmann, P. Kuchment, and L. Kunyansky. Asymptotic methods for thin high-contrast two-dimensional PBG materials. J. Lightwave Technology, 17(11):1996–2007, 1999. [42] A. V. Badanin and E. L. Korotyaev. A magnetic Schr¨odinger operator on a periodic graph. Mat. Sb., 201(10):3–46, 2010. [43] M. Baker and X. Faber. Metrized graphs, Laplacian operators, and electrical networks. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 15–33. Amer. Math. Soc., Providence, RI, 2006. [44] M. Baker and R. Rumely. Harmonic analysis on metrized graphs. Canad. J. Math., 59(2):225–275, 2007. [45] N. Bakhvalov and G. Panasenko. Homogenization: averaging processes in pe- riodic media,volume36ofMathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989. Mathematical prob- lems in the mechanics of composite materials. Translated from the Russian by D. Le˘ıtes. 230 BIBLIOGRAPHY

[46] R. Band, G. Berkolaiko, H. Raz, and U. Smilansky. The number of nodal domains on quantum graphs as a stability index of graph partitions. Commun. Math. Phys., 311(3):815–838, 2012. [47] R. Band, G. Berkolaiko, and U. Smilansky. Dynamics of nodal points and the nodal count on a family of quantum graphs. Annales Henri Poincare, 13(1):145–184, 2012. [48] R. Band, J. M. Harrison, and C. H. Joyner. Finite pseudo orbit expansions for spectral quantities of quantum graphs. preprint arXiv:1205.4214, 2012. [49] R. Band, I. Oren, and U. Smilansky. Nodal domains on graphs—how to count them and why? In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 5–27. Amer. Math. Soc., Providence, RI, 2008. [50] R. Band, O. Parzanchevski, and G. Ben-Shach. The isospectral fruits of rep- resentation theory: quantum graphs and drums. J. Phys. A, 42(17):175202, 42, 2009. [51] R. Band, A. Sawicki, and U. Smilansky. Scattering from isospectral quantum graphs. J. Phys. A, 43(41):415201, 17, 2010. [52] R. Band, A. Sawicki, and U. Smilansky. Note on the role of symmetry in scattering from isospectral graphs and drums. preprint arXiv:1110.2475, 2011. [53] R. Band, T. Shapira, and U. Smilansky. Nodal domains on isospectral quan- tum graphs: the resolution of isospectrality? J. Phys. A, 39(45):13999–14014, 2006. [54] S. Bandyopadhyay and M. Cahay. Introduction to Spintronics. CRC Press, Boca Raton, FL, 2008. [55] M. Barlow, T. Coulhon, and A. Grigor’yan. Manifolds and graphs with slow heat kernel decay. Invent. Math., 144(3):609–649, 2001. [56] F. Barra and P. Gaspard. On the level spacing distribution in quantum graphs. J. Statist. Phys., 101(1–2):283–319, 2000. Dedicated to Gr´egoire Nico- lis on the occasion of his sixtieth birthday (Brussels, 1999). [57] F. Barra and P. Gaspard. Transport and dynamics on open quantum graphs. Phys. Rev. E, 65(1):016205, 2002. [58] F. Barra and T. Gilbert. Algebraic decay in hierarchical graphs. J. Stat. Phys., 109(3–4):777–801, 2002. [59] L. Bartholdi, R. Grigorchuk, and V. Nekrashevych. From fractal groups to fractal sets. In Fractals in Graz 2001, Trends Math., pages 25–118. Birkh¨auser, Basel, 2003. [60] L. Bartholdi and R. I. Grigorchuk. Spectra of non-commutative dynamical systems and graphs related to fractal groups. C. R. Acad. Sci. Paris S´er. I Math., 331(6):429–434, 2000. [61] H. Bass. The Ihara-Selberg zeta function of a tree lattice. Internat. J. Math., 3(6):717–797, 1992. [62] J. Behrndt and A. Luger. On the number of negative eigenvalues of the Lapla- cian on a metric graph. J. Phys. A, 43(47):474006, 11, 2010. [63] M. I. Belishev. Boundary control in reconstruction of manifolds and metrics (the BC method). Inverse Problems, 13(5):R1–R45, 1997. [64] M. I. Belishev. Boundary spectral inverse problem on a class of graphs (trees) by the BC method. Inverse Problems, 20(3):647–672, 2004. BIBLIOGRAPHY 231

[65] M. I. Belishev. On the boundary controllability of a dynamical system de- scribed by the wave equation on a class of graphs (on trees). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 308(Mat. Vopr. Teor. Rasprostr. Vol. 33):23–47, 252, 2004. [66] M. I. Belishev. Recent progress in the boundary control method. Inverse Problems, 23(5):R1–R67, 2007. [67] M. I. Belishev and A. F. Vakulenko. Inverse problems on graphs: recovering the tree of strings by the BC-method. J. Inverse Ill-Posed Probl., 14(1):29–46, 2006. [68] M. I. Belishev and N. Wada. On revealing graph cycles via boundary mea- surements. Inverse Problems, 25(10):105011, 21, 2009. [69] B. Bellazzini, M. Burrello, M. Mintchev, and P. Sorba. Quantum field theory on star graphs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 639–656. Amer. Math. Soc., Providence, RI, 2008. [70] J. v. Below. A characteristic equation associated to an eigenvalue problem on c2-networks. Linear Algebra Appl., 71:309–325, 1985. [71] J. v. Below. Classical solvability of linear parabolic equations on networks. J. Differential Equations, 72(2):316–337, 1988. [72] J. v. Below. The index of a periodic graph. Results Math., 25(3–4):198–223, 1994. [73] J. v. Below. Can one hear the shape of a network? In Partial differential equations on multistructures (Luminy, 1999), volume 219 of Lecture Notes in Pure and Appl. Math., pages 19–36. Dekker, New York, 2001. [74] J. v. Below. An index theory for uniformly locally finite graphs. Linear Algebra Appl., 431(1-2):1–19, 2009. [75] J. v. Below and J. A. Lubary. Harmonic functions on locally finite networks. Results Math., 45(1-2):1–20, 2004. [76] J. v. Below and J. A. Lubary. The eigenvalues of the Laplacian on locally finite networks under generalized node transition. Results Math., 54(1-2):15– 39, 2009. [77] J. v. Below and J. A. Lubary. Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Netw. Heterog. Media, 4(3):453–468, 2009. [78] S. Belyi, S. Hassi, H. de Snoo, and E. Tsekanovskiˇı. A general realization the- orem for matrix-valued Herglotz-Nevanlinna functions. Linear Algebra Appl., 419(2-3):331–358, 2006. [79] S. V. Belyi and E. R. Tsekanovskii. Inverse Stieltjes-like functions and inverse problems for systems with Schr¨odinger operator. In Characteristic functions, scattering functions and transfer functions, volume 197 of Oper. Theory Adv. Appl., pages 21–49. Birkh¨auser Verlag, Basel, 2010. [80] A. Bendikov, L. Saloff-Coste, M. Salvatori, and W. Woess. The heat semi- group and Brownian motion on strip complexes. Adv. Math., 226(1):992–1055, 2011. [81] A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures, volume 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1978. [82] F. Bentosela, P. Duclos, and P. Exner. Absolute continuity in periodic thin tubes and strongly coupled leaky wires. Lett. Math. Phys., 65(1):75–82, 2003. 232 BIBLIOGRAPHY

[83] D. Bercioux, M. Governale, V. Cataudella, and V. M. Ramaglia. Rashba-effect-induced localization in quantum networks. Phys. Rev. Lett., 93(5):056802, 2004. [84] D. Bercioux, M. Governale, V. Cataudella, and V. M. Ramaglia. Rashba effect in quantum networks. Phys. Rev. B, 72(7):075305, 2005. [85] C. Berenstein, F. Gavil´anez, and J. Baras. Network tomography. In Integral geometry and tomography, volume 405 of Contemp. Math., pages 11–17. Amer. Math. Soc., Providence, RI, 2006. [86] C. A. Berenstein, E. Casadio Tarabusi, J. M. Cohen, and M. A. Picardello. Integral geometry on trees. Amer. J. Math., 113(3):441–470, 1991. [87] C. A. Berenstein and F. Gavil´anez. Network tomography. Rev. Colombiana Mat., 41(Numero Especial):143–150, 2007. [88] J. M. Berezanskii. Expansions in Eigenfunctions of Self-Adjoint Operators, volume 17. Transl. Amer. Math. Soc., Providence, RI, 1968. [89] F. A. Berezin and M. A. Shubin. The Schr¨odinger equation,volume66of Mathematics and its Applications (Soviet Series). Kluwer Academic Publish- ers Group, Dordrecht, 1991. Translated from the 1983 Russian edition by Yu. Rajabov, D. A. Le˘ıtes and N. A. Sakharova and revised by Shubin. With contributions by G. L. Litvinov and Le˘ıtes. [90] C. Berge. Graphs and hypergraphs. North-Holland Publishing Co., Amster- dam, 1973. Translated from the French by Edward Minieka, North-Holland Mathematical Library, Vol. 6. [91] J. Berger, J. Rubinstein, and M. Schatzman. Multiply connected mesoscopic superconducting structures. In Calculus of variations and differential equa- tions (Haifa, 1998), volume 410 of Chapman & Hall/CRC Res. Notes Math., pages 21–40. Chapman & Hall/CRC, Boca Raton, FL, 2000. [92] G. Berkolaiko. Quantum start graphs and related systems. PhD thesis, Uni- versity of Bristol, 2000. [93] G. Berkolaiko. Form factor for large quantum graphs: evaluating orbits with time reversal. Waves Random Media, 14(1):S7–S27, 2004. Special section on quantum graphs. [94] G. Berkolaiko. Form factor expansion for large graphs: a diagrammatic ap- proach. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 35–49. Amer. Math. Soc., Providence, RI, 2006. [95] G. Berkolaiko. A lower bound for nodal count on discrete and metric graphs. Comm. Math. Phys., 278(3):803–819, 2008. [96] G. Berkolaiko. Nodal count of graph eigenfunctions via magnetic perturba- tion. preprint arXiv:1110.5373, 2011. [97] G. Berkolaiko, E. B. Bogomolny, and J. P. Keating. Star graphs and Sebaˇ billiards. J. Phys. A, 34(3):335–350, 2001. [98] G. Berkolaiko, R. Carlson, S. Fulling, and P. Kuchment, editors. Quantum graphs and their applications, volume 415 of Contemp. Math., Providence, RI, 2006. Amer. Math. Soc. [99] G. Berkolaiko, J. M. Harrison, and J. H. Wilson. Mathematical aspects of vacuum energy on quantum graphs. J. Phys. A, 42(2):025204, 20, 2009. [100] G. Berkolaiko and J. P. Keating. Two-point spectral correlations for star graphs. J. Phys. A, 32(45):7827–7841, 1999. BIBLIOGRAPHY 233

[101] G. Berkolaiko, J. P. Keating, and U. Smilansky. Quantum ergodicity for graphs related to interval maps. Comm. Math. Phys., 273(1):137–159, 2007. [102] G. Berkolaiko, J. P. Keating, and B. Winn. Intermediate wave function sta- tistics. Phys. Rev. Lett., 91(13):134103, 2003. [103] G. Berkolaiko, J. P. Keating, and B. Winn. No quantum ergodicity for star graphs. Comm. Math. Phys., 250(2):259–285, 2004. [104] G. Berkolaiko and P. Kuchment. Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths. In Spectral Geometry.American Math. Soc., 2012. [105] G. Berkolaiko, P. Kuchment, and U. Smilansky. Critical partitions and nodal deficiency of billiard eigenfunctions. to appear in Geom. Funct. Anal., 2012. preprint arXiv:1107.3489. [106] G. Berkolaiko, H. Raz, and U. Smilansky. Stability of nodal structures in graph eigenfunctions and its relation to the nodal domain count. J. Phys. A, 45(16):165203, 2012. [107] G. Berkolaiko, H. Schanz, and R. S. Whitney. Leading off-diagonal correction to the form factor of large graphs. Phys. Rev. Lett., 88:104101, 2002. [108] G. Berkolaiko, H. Schanz, and R. S. Whitney. Form factor for a family of quantum graphs: an expansion to third order. J. Phys. A, 36(31):8373–8392, 2003. [109] G. Berkolaiko and B. Winn. Relationship between scattering matrix and spec- trum of quantum graphs. Trans. Amer. Math. Soc., 362(12):6261–6277, 2010. [110] R. Berndt. An introduction to symplectic geometry,volume26ofGraduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Translated from the 1998 German original by Michael Klucznik. [111] M. V. Berry. Semiclassical theory of spectral rigidity. Proc. Roy. Soc. London Ser. A, 400(1819):229–251, 1985. [112] H. Bethe and A. Sommerfeld. Elektronentheorie der metalle. In H. Geiger and K. Scheel, editors, Handbuch der Physik, volume 24,2, pages 333–622. Springer, 1933. This nearly 300-page chapter was later published as a separate book: Elektronentheorie der Metalle (Springer, 1967). [113] G. Bianconi and A.-L. Barab´asi. Bose-Einstein condensation in complex net- works. Phys. Rev. Lett., 86(5632–5635):229–251, 2001. [114] W. E. Bies and E. J. Heller. Nodal structure of chaotic eigenfunctions. J.Phys.A:Math.Gen., 35(27):5673–5685, 2002. [115] N. Biggs. Algebraic Graph Theory. Cambridge University Press, Cambridge, 1974. [116] T. Birch. History of the Royal Society of London. A. Millar, London, 1756. [117] M. S. Birman and M. Z. Solomjak. Spectral theory of selfadjoint operators in Hilbert space. Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht, 1987. Translated from the 1980 Russian original by S. Khrushch¨ev and V. Peller. [118] M. S. Birman and T. A. Suslina. A periodic magnetic Hamiltonian with a variable metric. The problem of absolute continuity. Algebra i Analiz, 11(2):1– 40, 1999. [119] M. S. Birman, T. A. Suslina, and R. G. Shterenberg. Absolute continuity of the two-dimensional Schr¨odinger operator with delta potential concentrated on a periodic system of curves. Algebra i Analiz, 12(6):140–177, 2000. 234 BIBLIOGRAPHY

[120] T. Bıyıko˘glu. A discrete nodal domain theorem for trees. Linear Algebra Appl., 360:197–205, 2003. [121] T. Bıyıko˘glu, J. Leydold, and P. F. Stadler. Laplacian eigenvectors of graphs, volume 1915 of Lecture Notes in Mathematics. Springer, Berlin, 2007. Perron- Frobenius and Faber-Krahn type theorems. [122] J. Blank, P. Exner, and M. Havl´ıˇcek. Hilbert space operators in quantum physics. Theoretical and Mathematical Physics. Springer, New York, second edition, 2008. [123] G. Blum, S. Gnutzmann, and U. Smilansky. Nodal domains statistics: A criterion for quantum chaos. Phys. Rev. Lett., 88(11):114101, 2002. [124] V. B. Bogevolnov, A. B. Mikhailova, B. S. Pavlov, and A. M. Yafyasov. About scattering on the ring. In Recent advances in operator theory (Groningen, 1998), volume 124 of Oper. Theory Adv. Appl., pages 155–173. Birkh¨auser, Basel, 2001. [125] O. Bohigas, M. J. Giannoni, and C. Schmit. Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett., 52(1):1–4, 1984. [126] J. Bolte and S. Endres. Trace formulae for quantum graphs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 247–259. Amer. Math. Soc., Providence, RI, 2008. [127] J. Bolte and S. Endres. The trace formula for quantum graphs with general self adjoint boundary conditions. Ann. Henri Poincar´e, 10(1):189–223, 2009. [128] J. Bolte and J. Harrison. Spectral statistics for the Dirac operator on graphs. J. Phys. A, 36(11):2747–2769, 2003. [129] J. Bolte and J. Harrison. The spin contribution to the form factor of quantum graphs. J. Phys. A, 36(27):L433–L440, 2003. [130] J. Boman and P. Kurasov. Symmetries of quantum graphs and the inverse scattering problem. Adv. in Appl. Math., 35(1):58–70, 2005. [131] A. N. Bondarenko and V. A. Dedok. Spectral surgery of quantum graphs. Sib. Zh. Ind. Mat., 7(4):16–28, 2004. [132] J. D. Bondurant and S. A. Fulling. The Dirichlet-to-Robin transform. J. Phys. A, 38(7):1505–1532, 2005. [133] L. Borcea. Electrical impedance tomography. Inverse Problems, 18(6):R99– R136, 2002. [134] L. P. Bouckaert, R. Smoluchowski, and E. Wigner. Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev., 50(1):58– 67, 1936. [135] N. Bourbaki. El´´ ements de math´ematique. Fasc. XXXVI. Vari´et´es diff´erentielles et analytiques. Fascicule de r´esultats (Paragraphes 8 `a 15).Ac- tualit´es Scientifiques et Industrielles, No. 1347. Hermann, Paris, 1971. [136] J. Bourgain. Green’s function estimates for lattice Schr¨odinger operators and applications, volume 158 of Annals of Mathematics Studies. Princeton Uni- versity Press, Princeton, NJ, 2005. [137] A. Boutet de Monvel, D. Lenz, and P. Stollmann. Schnol’s theorem for strongly local forms. Israel J. Math., 173(1):189–211, 2009. [138] A. Boutet de Monvel and P. Stollmann. Eigenfunction expansions for gener- ators of Dirichlet forms. J. Reine Angew. Math., 561:131–144, 2003. BIBLIOGRAPHY 235

[139] O. Boyko and V. Pivovarchik. Inverse spectral problem for a star graph of Stieltjes strings. Methods Funct. Anal. Topology, 14(2):159–167, 2008. [140] M. R. Bridson and K. Vogtmann. Automorphisms of automorphism groups of free groups. J. Algebra, 229(2):785–792, 2000. [141] L. Brillouin. Wave propagation in periodic structures. Electric filters and crys- tal lattices. Dover Publications Inc., New York, N. Y., 1953. 2d ed. [142] M. Brin and Y. Kifer. Brownian motion, harmonic functions and hyperbolicity for Euclidean complexes. Math. Z., 237(3):421–468, 2001. [143] R. Brooks. The fundamental group and the spectrum of the Laplacian. Com- ment. Math. Helv., 56(4):581–598, 1981. [144] R. Brooks. The spectral geometry of a tower of coverings. J. Differential Geom., 23(1):97–107, 1986. [145] R. Brooks. Constructing isospectral manifolds. Amer. Math. Monthly, 95(9):823–839, 1988. [146] B. M. Brown, M. S. P. Eastham, and I. G. Wood. An example on the dis- crete spectrum of a star graph. In Analysis on graphs and its applications, volume 77 of Proc. Sympos. Pure Math., pages 331– 335. Amer. Math. Soc., Providence, RI, 2008. [147] B. M. Brown, M. Langer, and K. M. Schmidt. The HELP inequality on trees. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 337–354. Amer. Math. Soc., Providence, RI, 2008. [148] B. M. Brown and R. Weikard. A Borg-Levinson theorem for trees. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461(2062):3231–3243, 2005. [149] B. M. Brown and R. Weikard. On inverse problems for finite trees. In Methods of spectral analysis in mathematical physics, volume 186 of Oper. Theory Adv. Appl., pages 31–48. Birkh¨auser Verlag, Basel, 2009. [150] A. Brudnyi. Holomorphic functions of polynomial growth on abelian coverings of a compact complex manifold. Comm. Anal. Geom., 6(3):485–510, 1998. [151] A. Brudnyi. Holomorphic functions of exponential growth on abelian cover- ings of a projective manifold. Compositio Math., 127(1):69–81, 2001. [152] J. Br¨uning and D. Fajman. On the nodal count for flat tori. Communications in Mathematical Physics, 313:791–813, 2012. 10.1007/s00220-012-1432-0. [153] J. Br¨uning, V. Geyler, and K. Pankrashkin. Cantor and band spectra for pe- riodic quantum graphs with magnetic fields. Comm. Math. Phys., 269(1):87– 105, 2007. [154] J. Br¨uning, D. Klawonn, and C. Puhle. Comment on: “Resolving isospec- tral ‘drums’ by counting nodal domains” [J. Phys. A 38 (2005), no. 41, 8921–8933] by S. Gnutzmann, U. Smilansky and N. Sondergaard. J. Phys. A, 40(50):15143–15147, 2007. [155] W. Bulla and T. Trenkler. The free Dirac operator on compact and noncom- pact graphs. J. Math. Phys., 31(5):1157–1163, 1990. [156] L. Bungart. On analytic fiber bundles. I. Holomorphic fiber bundles with infinite dimensional fibers. Topology, 7:55–68, 1967. [157] R. Burioni, D. Cassi, and A. Vezzani. Topology, hidden spectra and Bose- Einstein condensation on low-dimensional complex networks. J. Phys. A, 35(5):1245–1252, 2002. 236 BIBLIOGRAPHY

[158] K. Busch, G. v. Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener. Periodic nanostructures for photonics. Physics Reports, 444(3– 6):101–202, 2007. [159] M. B¨uttiker. Absence of backscattering in the quantum Hall effect in multi- probe conductors. Phys. Rev. B, 38(14):9375–9389, 1988. [160] C. Cacciapuoti and P. Exner. Nontrivial edge coupling from a Dirichlet net- work squeezing: the case of a bent waveguide. J. Phys. A, 40(26):F511–F523, 2007. [161] J. Carini, D. Murdock, and J. Londergan. Binding and Scattering in Two- Dimensional Systems: Applications to Quantum Wires, Waveguides and Pho- tonic Crystals. Springer Lecture Notes in Physics. Springer-Verlag, Berlin, 1999. [162] J. P. Carini, J. T. Londergan, and D. P. Murdock. Bound states in waveg- uides and bent quantum wires. ii. electrons in quantum wires. Phys. Rev. B, 55(15):9852–9859, 1997. [163] J. P. Carini, J. T. Londergan, D. P. Murdock, D. Trinkle, and C. S. Yung. Bound states in waveguides and bent quantum wires. I. Applications to waveg- uide systems. Phys. Rev. B, 55(15):9842–9851, 1997. [164] R. Carlson. Adjoint and self-adjoint differential operators on graphs. Electron. J. Differential Equations, pages No. 6, 10 pp. (electronic), 1998. [165] R. Carlson. Hill’s equation for a . In Mathematical and numer- ical aspects of wave propagation (Golden, CO, 1998), pages 227–231. SIAM, Philadelphia, PA, 1998. [166] R. Carlson. Inverse eigenvalue problems on directed graphs. Trans. Amer. Math. Soc., 351(10):4069–4088, 1999. [167] R. Carlson. Nonclassical Sturm-Liouville problems and Schr¨odinger opera- tors on radial trees. Electron. J. Differential Equations, pages No. 71, 24 pp. (electronic), 2000. [168] R. Carlson. Spectral theory and spectral gaps for periodic Schr¨odinger opera- tors on product graphs. Waves Random Media, 14(1):S29–S45, 2004. Special section on quantum graphs. [169] R. Carlson. Linear network models related to blood flow. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 65–80. Amer. Math. Soc., Providence, RI, 2006. [170] R. Carlson. Boundary value problems for infinite metric graphs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 355–368. Amer. Math. Soc., Providence, RI, 2008. [171] R. Carlson. Harmonic analysis for star graphs and the spherical coordinate trapezoidal rule. J. Comput. Appl. Math., 235(8):2077–2089, 2011. [172] R. Carlson. Spectral theory for nonconservative transmission line networks. Netw. Heterog. Media, 6(2):257–277, 2011. [173] R. Carlson and V. Pivovarchik. Spectral asymptotics for quantum graphs with equal edge lengths. J. Phys. A, 41(14):145202, 16, 2008. [174] J. Cartwright. Graphyne could be better than graphene. Science Now, 2012. [175] H. Casimir. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet., 51:793–795, 1948. [176] H. B. G. Casimir and D. Polder. The influence of retardation on the London- van der Waals forces. Phys. Rev., 73:360–372, Feb 1948. BIBLIOGRAPHY 237

[177] C. Cattaneo. The spectrum of the continuous Laplacian on a graph. Monatsh. Math., 124(3):215–235, 1997. [178] T. Ceccherini-Silberstein and M. Coornaert. Cellular automata and groups. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. [179] J. T. Chalker and P. D. Coddington. Percolation, quantum tunnelling and the integer Hall effect. Journal of Physics C: Solid State Physics, 21(14):2665, 1988. [180] S. N. Chandler-Wilde and M. Lindner. Limit operators, collective compact- ness, and the spectral theory of infinite matrices. Mem. Amer. Math. Soc., 210(989):viii+111, 2011. [181] M. Cheney, D. Isaacson, and J. C. Newell. Electrical impedance tomography. SIAM Rev., 41(1):85–101 (electronic), 1999. [182] T. Cheon and P. Exner. An approximation to δ couplings on graphs. J. Phys. A, 37(29):L329–L335, 2004. [183] T. Cheon, P. Exner, and O. Turek. Approximation of a general singular vertex coupling in quantum graphs. Ann. Physics, 325(3):548–578, 2010. [184] T. Cheon, P. Exner, and O. Turek. Tripartite connection condition for a quantum graph vertex. Phys. Lett. A, 375(2):113–118, 2010. [185] T. Cheon, P. Exner, and O. Turek. Inverse scattering problem for quantum graph vertices. Phys. Rev. A, 83:062715, 2011. [186] T. Cheon and O. Turek. Fulop-Tsutsui interactions on quantum graphs. Phys. Lett. A, 374(41):4212–4221, 2010. [187] V. L. Chernyshev. Time-dependent Schr¨odinger equation: statistics of the distribution of Gaussian packets on a metric graph. Proc. Steklov Inst. Math., 270(1):246–262, 2010. [188] E. Chladni. Entdeckungenuber ¨ die Theorie des Klanges. Weidmanns Erben und Reich, Leipzig, 1787. [189] E. Christensen, C. Ivan, and M. L. Lapidus. Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math., 217(1):42–78, 2008. [190] F. Chung, M. Garrett, R. Graham, and D. Shallcross. Distance realization problems with applications to internet tomography. J. Comput. System Sci., 63(3):432–448, 2001. [191] F. R. K. Chung. Spectral graph theory,volume92ofCBMS Regional Con- ference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997. [192] S.-Y. Chung and C. A. Berenstein. ω-harmonic functions and inverse conduc- tivity problems on networks. SIAM J. Appl. Math., 65(4):1200–1226 (elec- tronic), 2005. [193] T. H. Colding and W. P. Minicozzi, II. Harmonic functions on manifolds. Ann. of Math. (2), 146(3):725–747, 1997. [194] Y. Colin de Verdi`ere. Spectres de vari´et´es riemanniennes et spectres de graphes. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 522–530, Providence, RI, 1987. Amer. Math. Soc. [195] Y. Colin de Verdi`ere. Le spectre du laplacien: survol partiel depuis le Berger- Gauduchon-Mazet et probl`emes. In ActesdelaTableRondedeG´eom´etrie Diff´erentielle (Luminy, 1992), volume 1 of S´emin. Congr., pages 233–252. Soc. Math. France, Paris, 1996. 238 BIBLIOGRAPHY

[196] Y. Colin de Verdi`ere. Spectres de graphes, volume 4 of Cours Sp´ecialis´es [Spe- cialized Courses].Soci´et´eMath´ematique de France, Paris, 1998. [197] Y. Colin de Verdi`ere. Spectre d’op´erateurs diff´erentiels sur les graphes. In Random walks and discrete potential theory (Cortona, 1997),Sympos.Math., XXXIX, pages 139–164. Cambridge Univ. Press, Cambridge, 1999. [198] Y. Colin de Verdi`ere. Magnetic interpretation of the nodal defect on graphs. preprint arXiv:1201.1110, 2012. [199] Y. Colin de Verdi`ere, Y. Pan, and B. Ycart. Singular limits of Schr¨odinger operators and Markov processes. J. Operator Theory, 41(1):151–173, 1999. [200] D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering the- ory,volume93ofApplied Mathematical Sciences. Springer-Verlag, Berlin, second edition, 1998. [201] V. Coluci, S. Braga, S. Legoas, D. Galvao, and R. Baughman. New Families of Carbon Nanotubes. eprint arXiv:cond-mat/0207085, July 2002. [202] M. Conti, S. Terracini, and G. Verzini. On a class of optimal partition prob- lems related to the Fuˇc´ık spectrum and to the monotonicity formulae. Calc. Var. Partial Differential Equations, 22(1):45–72, 2005. [203] J. H. Conway. The sensual (quadratic) form,volume26ofCarus Mathematical Monographs. Mathematical Association of America, Washington, DC, 1997. With the assistance of Francis Y. C. Fung. [204] H. D. Cornean, P. Duclos, and B. Ricaud. On the skeleton method and an application to a quantum scissor. In Analysis on graphs and its applications, volume 77 of Proc. Sympos. Pure Math., pages 657–672. Amer. Math. Soc., Providence, RI, 2008. [205] R. Courant. Ein allgemeiner Satz zur Theorie der Eigenfunktione selbstad- jungierter Differentialausdr¨ucke. Nach. Ges. Wiss. G¨ottingen Math.-Phys. Kl., pages 81–84, July 1923. [206] R. Courant and D. Hilbert. Methods of mathematical physics. Vol. I.Inter- science Publishers, Inc., New York, N.Y., 1953. [207] R. Courant and D. Hilbert. Methods of mathematical physics. Vol. II. Wiley Classics Library. John Wiley & Sons Inc., New York, 1989. Partial differential equations. Reprint of the 1962 original. A Wiley-Interscience Publication. [208] S. J. Cox and D. C. Dobson. Maximizing band gaps in two-dimensional pho- tonic crystals. SIAM J. Appl. Math., 59(6):2108–2120 (electronic), 1999. [209] S. J. Cox and D. C. Dobson. Band structure optimization of two-dimensional photonic crystals in h-polarization. J. Comp. Phys., 158:214–224, 2000. [210] M. Culler and K. Vogtmann. Moduli of graphs and automorphisms of free groups. Invent. Math., 84(1):91–119, 1986. [211] E. B. Curtis, D. Ingerman, and J. A. Morrow. Circular planar graphs and resistor networks. Linear Algebra Appl., 283(1-3):115–150, 1998. [212] E. B. Curtis and J. A. Morrow. Inverse Problems for Electrical Networks.On Applied Mathematics. World Scientific Publishing Company, 2000. [213] D. Cvetkovi´c, P. Rowlinson, and S. Simi´c. Eigenspaces of graphs,volume66 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1997. [214] D. M. Cvetkovi´c, M. Doob, I. Gutman, and A. Torgaˇsev. Recent results in the theory of graph spectra,volume36ofAnnals of Discrete Mathematics. North-Holland Publishing Co., Amsterdam, 1988. BIBLIOGRAPHY 239

[215] D. M. Cvetkovi´c, M. Doob, and H. Sachs. Spectra of graphs. VEB Deutscher Verlag der Wissenschaften, Berlin, second edition, 1982. Theory and applica- tion. [216] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon. Schr¨odinger opera- tors with application to quantum mechanics and global geometry.Textsand Monographs in Physics. Springer-Verlag, Berlin, study edition, 1987. [217] R. D´ager and E. Zuazua. Wave propagation, observation and control in 1-d flexible multi-structures,volume50ofMath´ematiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 2006. [218] D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, editors. Casimir Physics, volume 834 of Lecture Notes in Physics. Springer Verlag, Berlin, 2011. [219] G. Davidoff, P. Sarnak, and A. Valette. Elementary number theory, group theory, and Ramanujan graphs,volume55ofLondon Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2003. [220] E. Davies. An inverse spectral theorem. arXiv:1010.0094, 2010. [221] E. Davies and A. Pushnitski. Non-Weyl resonance asymptotics for quantum graphs. Analysis & PDE, 4:729–756, 2011. [222] E. B. Davies. Spectral theory and differential operators,volume42ofCam- bridge Studies in Advanced Mathematics. Cambridge University Press, Cam- bridge, 1995. [223] E. B. Davies. Linear operators and their spectra, volume 106 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2007. [224] E. B. Davies, P. Exner, and J. Lipovsk´y. Non-Weyl asymptotics for quantum graphs with general coupling conditions. J. Phys. A, 43(47):474013, 16, 2010. [225] E. B. Davies, G. M. L. Gladwell, J. Leydold, and P. F. Stadler. Discrete nodal domain theorems. Linear Algebra Appl., 336:51–60, 2001. [226] P.-G. de Gennes. Champ critique d’une boucle supraconductrice ramefiee. C. R. Acad. Sci. Paris B, 292:279–282, 1981. [227] B. Dekoninck and S. Nicaise. Spectre des r´eseaux de poutres. C. R. Acad. Sci. Paris S´er. I Math., 326(10):1249–1254, 1998. [228] B. Dekoninck and S. Nicaise. The eigenvalue problem for networks of beams. In Generalized functions, operator theory, and dynamical systems (Brussels, 1997), volume 399 of Chapman & Hall/CRC Res. Notes Math., pages 335– 344. Chapman & Hall/CRC, Boca Raton, FL, 1999. [229] B. Dekoninck and S. Nicaise. The eigenvalue problem for networks of beams. Linear Algebra Appl., 314(1-3):165–189, 2000. [230] G. Dell’Antonio and L. Tenuta. Quantum graphs as holonomic constraints. J. Math. Phys., 47(7):072102, 21, 2006. [231] G. F. Dell’Antonio. Limit motion on metric graphs. Adv. Nonlinear Stud., 9(4):701–711, 2009. [232] G. F. Dell’Antonio and E. Costa. Effective Schr¨odinger dynamics on -thin Dirichlet waveguides via quantum graphs: I. Star-shaped graphs. J. Phys. A, 43(47):474014, 23, 2010. [233] H. Donnelly and C. Fefferman. Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math., 93(1):161–183, 1988. [234] H. Donnelly and C. Fefferman. Growth and geometry of eigenfunctions of the Laplacian. In Analysis and partial differential equations, volume 122 of 240 BIBLIOGRAPHY

Lecture Notes in Pure and Appl. Math., pages 635–655. Dekker, New York, 1990. [235] H. Donnelly and C. Fefferman. Nodal sets for eigenfunctions of the Laplacian on surfaces. J. Amer. Math. Soc., 3(2):333–353, 1990. [236] H. Donnelly and C. Fefferman. Nodal sets of eigenfunctions: Riemannian manifolds with boundary. In Analysis, et cetera, pages 251–262. Academic Press, Boston, MA, 1990. [237] H. Donnelly and C. Fefferman. Nodal domains and growth of harmonic func- tions on noncompact manifolds. J. Geom. Anal., 2(1):79–93, 1992. [238] J. P. Dowling. Photonic and acoustic band-gap bibliography, http://phys.lsu.edu/ jdowling/pbgbib.html. [239] B. Dubrovin, V. Matveev, and S. Novikov. Non-linear equations of Korteweg- de Vries type, finite-zone linear operators, and abelian varieties. Russian Math. Surv., 31(1):59–146, 1976. [240] B. A. Dubrovin. Geometry of Hamiltonian evolutionary systems,volume22 of Monographs and Textbooks in Physical Science. Lecture Notes. Bibliopolis, Naples, 1991. [241] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov. Modern geometry— methods and applications. Part I,volume93ofGraduate Texts in Mathe- matics. Springer-Verlag, New York, second edition, 1992. The geometry of surfaces, transformation groups, and fields. Translated from the Russian by Robert G. Burns. [242] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov. Topological and algebraic geometry methods in contemporary mathematical physics, volume 2 of Clas- sic Reviews in Mathematics and Mathematical Physics. Cambridge Scientific Publishers, Cambridge, 2004. [243] P. Duclos and P. Exner. Curvature vs. thickness in quantum waveguides. Czech. J. Phys., 441(11):1009–1018, 1991. [244] P. Duclos and P. Exner. Curvature-induced bound states in quantum waveg- uides in two and three dimensions. Rev. Math. Phys., 7(1):73–102, 1995. [245] P. Duclos, P. Exner, and P. Stoviˇˇ cek. Curvature-induced resonances in a two- dimensional Dirichlet tube. Ann. Inst. H. Poincar´ePhys.Th´eor., 62(1):81– 101, 1995. [246] N. Dunford and J. T. Schwartz. Linear operators. Part II. Wiley Classics Library. John Wiley & Sons Inc., New York, 1988. Spectral theory. Selfad- joint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1963 original, A Wiley-Interscience Publi- cation. [247] M. S. P. Eastham. The Spectral Theory of Periodic Differential Equations. Scottish Academic Press Ltd., London, 1973. [248] M. S. P. Eastham and H. Kalf. Schr¨odinger-type operators with continuous spectra,volume65ofResearch Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass., 1982. [249] D. E. Edmunds and W. D. Evans. Spectral theory and differential operators. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1987. Oxford Science Publications. BIBLIOGRAPHY 241

[250] S. Egger n´e Endres and F. Steiner. An exact trace formula and zeta functions for an infinite quantum graph with a non-standard Weyl asymptotics. J. Phys. A, 44(18):185202, 44, 2011. [251] T. Ekholm, R. L. Frank, and H. Kovaˇr´ık. Remarks about Hardy inequalities on metric trees. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 369–379. Amer. Math. Soc., Providence, RI, 2008. [252] C. L. Epstein. Positive harmonic functions on abelian covers. J. Funct. Anal., 82(2):303–315, 1989. [253] G. Eskin, J. Ralston, and E. Trubowitz. Isospectral periodic potentials on Rn.InInverse problems (New York, 1983),volume14ofSIAM-AMS Proc., pages 91–96. Amer. Math. Soc., Providence, RI, 1984. [254] G. Eskin, J. Ralston, and E. Trubowitz. On isospectral periodic potentials in Rn.II.Comm. Pure Appl. Math., 37(6):715–753, 1984. [255] D. V. Evans, M. Levitin, and D. Vassiliev. Existence theorems or trapped modes. J. Fluid Mech., 261:21–31, 1994. [256] W. D. Evans and D. J. Harris. Fractals, trees and the Neumann Laplacian. Math. Ann., 296(3):493–527, 1993. [257] W. D. Evans, D. J. Harris, and Y. Sait¯o. On the approximation numbers of Sobolev embeddings on singular domains and trees. Q. J. Math., 55(3):267– 302, 2004. [258] W. D. Evans and Y. Sait¯o. Neumann Laplacians on domains and operators on associated trees. Q. J. Math., 51(3):313–342, 2000. [259] W. N. Everitt and L. Markus. Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators,volume61ofMath- ematical Surveys and Monographs. American Mathematical Society, Provi- dence, RI, 1999. [260] W. N. Everitt and L. Markus. Complex symplectic geometry with applications to ordinary differential operators. Trans. Amer. Math. Soc., 351(12):4905– 4945, 1999. [261] W. N. Everitt and L. Markus. Multi-interval linear ordinary boundary value problems and complex symplectic algebra. Mem. Amer. Math. Soc., 151(715):viii+64, 2001. [262] W. N. Everitt and L. Markus. Elliptic partial differential operators and sym- plectic algebra. Mem. Amer. Math. Soc., 162(770):x+111, 2003. [263] W. N. Everitt and L. Markus. Infinite dimensional complex symplectic spaces. Mem. Amer. Math. Soc., 171(810):x+76, 2004. [264] P. Exner. Lattice Kronig-Penney models. Phys. Rev. Lett., 74(18):3503–3506, 1995. [265] P. Exner. Contact interactions on graph superlattices. J. Phys., 29(1):87–102, 1996. [266] P. Exner. Leaky quantum graphs: a review. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 523–564. Amer. Math. Soc., Providence, RI, 2008. [267] P. Exner and R. L. Frank. Absolute continuity of the spectrum for periodically modulated leaky wires in R3. Ann. Henri Poincar´e, 8(2):241–263, 2007. [268] P. Exner and R. Gawlista. Band spectra of rectangular graph superlattices. Phys. Rev. B, 53(11):7275–7286, 1996. 242 BIBLIOGRAPHY

[269] P. Exner and R. Gawlista. Band spectra of rectangular graph superlattices. Phys. Rev. B, 53(11):7275–7286, 1996. [270] P. Exner, E. M. Harrell, and M. Loss. Optimal eigenvalues for some Laplacians and Schr¨odinger operators depending on curvature. In Mathematical results in quantum mechanics (Prague, 1998), volume 108 of Oper. Theory Adv. Appl., pages 47–58. Birkh¨auser, Basel, 1999. [271] P. Exner and T. Ichinose. Geometrically induced spectrum in curved leaky wires. J. Phys. A, 34(7):1439–1450, 2001. [272] P. Exner, J. P. Keating, P. Kuchment, T. Sunada, and A. Teplyaev, editors. Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., Providence, RI, 2008. Amer. Math. Soc. [273] P. Exner and S. Kondej. Curvature-induced bound states for a δ interaction supported by a curve in R3. Ann. Henri Poincar´e, 3(5):967–981, 2002. [274] P. Exner and H. Kovaˇr´ık. Spectrum of the Schr¨odinger operator in a perturbed periodically twisted tube. Lett. Math. Phys., 73(3):183–192, 2005. [275] P. Exner, P. Kuchment, and B. Winn. On the location of spectral edges in Z-periodic media. J. Phys. A, 43(47):474022, 8, 2010. [276] P. Exner and J. Lipovsk´y. Equivalence of resolvent and scattering resonances on quantum graphs. In Adventures in mathematical physics, volume 447 of Contemp. Math., pages 73–81. Amer. Math. Soc., Providence, RI, 2007. [277] P. Exner and O. Post. Convergence of spectra of graph-like thin manifolds. J. Geom. Phys., 54(1):77–115, 2005. [278] P. Exner and O. Post. Convergence of resonances on thin branched quantum waveguides. J. Math. Phys., 48(9):092104, 43, 2007. [279] P. Exner and O. Post. Approximation of quantum graph vertex couplings by scaled Schr¨odinger operators on thin branched manifolds. J. Phys. A, 42(41):415305, 22, 2009. [280] P. Exner and P. Seba.ˇ Trapping modes in a curved electromagnetic wave- guide with perfectly conducting walls. Soobshcheniya Ob’edinennogo Instituta Yadernykh Issledovani˘ı. Dubna [Communications of the Joint Institute for Nuclear Research. Dubna], E5-88-379. Joint Inst. Nuclear Res., Dubna, 1988. With a Russian summary. [281] P. Exner and P. Seba.ˇ Bound states in curved quantum waveguides. J. Math. Phys., 30(11):2574–2580, 1989. [282] P. Exner and P. Seba. Electrons in semiconductor microstructures: a chal- lenge to operator theorists. In Proceedings of the Workshop on Schr¨odinger Operators, Standard and Nonstandard (Dubna 1988), pages 79–100. World Scientific, Singapore, 1989. [283] P. Exner and P. Seba.ˇ Free quantum motion on a branching graph. Rep. Math. Phys., 28(1):7–26, 1989. [284] P. Exner and P. Seba.ˇ A “hybrid plane” with spin-orbit interaction. Russ. J. Math. Phys., 14(4):430–434, 2007. [285] P. Exner, P. Seba,ˇ and P. Stoviˇˇ cek. On existence of a bound state in an L-shaped waveguide. Czech. J. Phys., 39(11):1181–1191, 1989. [286] P. Exner, P. Seba,ˇ and P. Stoviˇˇ cek. Semiconductor edges can bind electrons. Phys. Lett. A, 150(3–4):179–182, 1990. [287] P. Exner and E. Sereˇˇ sov´a. Appendix resonances on a simple graph. J. Phys. A, 27(24):8269–8278, 1994. BIBLIOGRAPHY 243

[288] P. Exner and O. Turek. Approximations of permutation-symmetric vertex couplings in quantum graphs. In Quantum graphs and their applications,vol- ume 415 of Contemp. Math., pages 109–120. Amer. Math. Soc., Providence, RI, 2006. [289] P. Exner and O. Turek. Approximations of singular vertex couplings in quan- tum graphs. Rev. Math. Phys., 19(6):571–606, 2007. [290] P. Exner and O. Turek. High-energy asymptotics of the spectrum of a periodic square lattice quantum graph. J. Phys. A, 43(47):474024, 25, 2010. [291] P. Exner and K. Yoshitomi. Band gap of the Schr¨odinger operator with a strong δ-interaction on a periodic curve. Ann. Henri Poincar´e, 2(6):1139– 1158, 2001. [292] P. Exner and K. Yoshitomi. Persistent currents for the 2D Schr¨odinger op- erator with a strong δ-interaction on a loop. J. Phys. A, 35(15):3479–3487, 2002. [293] P. Exner and V. A. Zagrebnov. Bose-Einstein condensation in geometrically deformed tubes. J. Phys. A, 38(25):L463–L470, 2005. [294] S. Fedorov and B. Pavlov. A remark on discrete wave scattering. J. Phys. A, 39(11):2657–2671, 2006. [295] J. Feldman, H. Kn¨orrer, and E. Trubowitz. Riemann surfaces of infinite genus,volume20ofCRM Monograph Series. American Mathematical So- ciety, Providence, RI, 2003. [296] F. Fidaleo, D. Guido, and T. Isola. Bose-Einstein condensation on inhomo- geneous amenable graphs. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14(2):149–197, 2011. [297] A. Fig`a-Talamanca and C. Nebbia. Harmonic analysis and representation theory for groups acting on homogeneous trees, volume 162 of London Mathe- matical Society Lecture Note Series. Cambridge University Press, Cambridge, 1991. [298] A. Fig`a-Talamanca and M. A. Picardello. Harmonic analysis on free groups, volume 87 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1983. [299] A. Figotin. Existence of gaps in the spectrum of periodic dielectric structures on a lattice. J. Statist. Phys., 73(3–4):571–585, 1993. [300] A. Figotin. Photonic pseudogaps for periodic dielectric structures. J. Statist. Phys., 74(1–2):433–446, 1994. [301] A. Figotin and Y. A. Godin. Spectral properties of thin-film photonic crystals. SIAM J. Appl. Math., 61(6):1959–1979 (electronic), 2001. [302] A. Figotin and P. Kuchment. Band-gap structure of spectra of periodic dielec- tric and acoustic media. I. Scalar model. SIAM J. Appl. Math., 56(1):68–88, 1996. [303] A. Figotin and P. Kuchment. Band-gap structure of spectra of periodic di- electric and acoustic media. II. Two-dimensional photonic crystals. SIAM J. Appl. Math., 56(6):1561–1620, 1996. [304] A. Figotin and P. Kuchment. Spectral properties of classical waves in high- contrast periodic media. SIAM J. Appl. Math., 58(2):683–702 (electronic), 1998. [305] A. Figotin and I. Vitebsky. Spectra of periodic nonreciprocal electric circuits. SIAM J. Appl. Math., 61(6):2008–2035 (electronic), 2001. 244 BIBLIOGRAPHY

[306] N. Filonov and F. Klopp. Absolute continuity of the spectrum of a Schr¨odinger operator with a potential which is periodic in some directions and decays in others. Doc. Math., 9:107–121 (electronic), 2004. [307] H. Flechsig and S. Gnutzmann. On the spectral gap in Andreev graphs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 381–395. Amer. Math. Soc., Providence, RI, 2008. [308] G. Floquet. Sur les ´equations diff´erentielles lin´eairesa ` coefficients p´eriodiques. Ann. Ecole Norm., 12(2):47–89, 1883. [309] A. T. Fomenko. Symplectic geometry, volume 5 of Advanced Studies in Con- temporary Mathematics. Gordon and Breach Science Publishers, New York, 1988. Translated from the Russian by R. S. Wadhwa. [310] C. Fox, V. Oleinik, and B. Pavlov. A Dirichlet-to-Neumann map approach to resonance gaps and bands of periodic networks. In Recent advances in differ- ential equations and mathematical physics, volume 412 of Contemp. Math., pages 151–169. Amer. Math. Soc., Providence, RI, 2006. [311] M. Freidlin. Markov processes and differential equations: asymptotic prob- lems. Lectures in Mathematics ETH Z¨urich. Birkh¨auser Verlag, Basel, 1996. [312] M. Freidlin and M. Weber. Small diffusion asymptotics for exit problems on graphs. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 137–150. Amer. Math. Soc., Providence, RI, 2006. [313] M. I. Freidlin and A. D. Wentzell. Diffusion processes on graphs and the averaging principle. Ann. Probab., 21(4):2215–2245, 1993. [314] M. I. Freidlin and A. D. Wentzell. Diffusion processes on an open book and the averaging principle. Stochastic Process. Appl., 113(1):101–126, 2004. [315] G. Freiling and V. Yurko. Inverse Sturm-Liouville problems and their appli- cations. Nova Science Publishers Inc., Huntington, NY, 2001. [316] G. Freiling and V. A. Yurko. Inverse nodal problems for differential operators on graphs with a cycle. Tamkang J. Math., 41(1):15–24, 2010. [317] L. Friedlander. On the spectrum of a class of second order periodic elliptic differential operators. Comm. Math. Phys., 229(1):49–55, 2002. [318] L. Friedlander. Absolute continuity of the spectra of periodic waveguides. In Waves in periodic and random media (South Hadley, MA, 2002), volume 339 of Contemp. Math., pages 37–42. Amer. Math. Soc., Providence, RI, 2003. [319] L. Friedlander. Genericity of simple eigenvalues for a metric graph. Israel J. Math., 146:149–156, 2005. [320] L. Friedlander. Determinant of the Schr¨odinger operator on a metric graph. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 151–160. Amer. Math. Soc., Providence, RI, 2006. [321] K. Fritzsche and H. Grauert. From holomorphic functions to complex man- ifolds, volume 213 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002. [322] R. Froese and I. Herbst. Realizing holonomic constraints in classical and quan- tum mechanics. Comm. Math. Phys., 220(3):489–535, 2001. [323] R. Froese, I. Herbst, M. Hoffmann-Ostenhof, and T. Hoffmann-Ostenhof. L2- lower bounds to solutions of one-body Schr¨odinger equations. Proc.Roy.Soc. Edinburgh Sect. A, 95(1–2):25–38, 1983. [324] S. A. Fulling. Systematics of the relationship between vacuum energy calcu- lations and heat-kernel coefficients. J. Phys. A, 36(24):6857–6873, 2003. BIBLIOGRAPHY 245

[325] S. A. Fulling. Local spectral density and vacuum energy near a quantum graph vertex. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 161–172. Amer. Math. Soc., Providence, RI, 2006. [326] S. A. Fulling, L. Kaplan, K. Kirsten, Z. H. Liu, and K. A. Milton. Vacuum stress and closed paths in rectangles, pistons and pistols. Journal of Physics A: Mathematical and Theoretical, 42(15):155402, 2009. [327] S. A. Fulling, L. Kaplan, and J. H. Wilson. Vacuum energy and repulsive Casimir forces in quantum star graphs. Phys. Rev. A (3), 76(1):012118, 7, 2007. [328] S. A. Fulling, P. Kuchment, and J. H. Wilson. Index theorems for quantum graphs. J. Phys. A, 40(47):14165–14180, 2007. [329] S. A. Fulling and J. H. Wilson. Vacuum energy and closed orbits in quantum graphs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 673–679. Amer. Math. Soc., Providence, RI, 2008. [330] Galileo. Discorsi e dimostrazioni matematiche, intorno ‘a due nuove scienze. Louis Elsevier, Leiden, 1638. [331] P. R. Garabedian. Partial differential equations. Chelsea Publishing Co., New York, second edition, 1986. [332] P. R. Garabedian and M. Schiffer. Convexity of domain functionals. J. Anal- yse Math., 2:281–368, 1953. [333] B. Gaveau and M. Okada. Differential forms and heat diffusion on one- dimensional singular varieties. Bull.Sci.Math., 115(1):61–79, 1991. [334] B. Gaveau, M. Okada, and T. Okada. Explicit heat kernels on graphs and spectral analysis. In Several complex variables (Stockholm, 1987/1988),vol- ume 38 of Math. Notes, pages 364–388. Princeton Univ. Press, Princeton, NJ, 1993. [335] F. H. Gavilanez Alvarez. Network tomography. ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–University of Maryland, College Park. [336] U. Gavish and U. Smilansky. Degeneracies in the length spectra of metric graphs. J. Phys. A, 40(33):10009–10020, 2007. [337] A. Geim. Graphene: Status and prospects. Science, 324:1530–1534, 2009. [338] A. Geim. Nobel lecture: Random walk to graphene. Rev. Mod. Phys., 83:851– 862, 2011. [339] A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Mater., 6(3):183–191, 1950. [340] A. Georgieva, T. Kriecherbauer, and S. Venakides. Wave propagation and resonance in a one-dimensional nonlinear discrete periodic medium. SIAM J. Appl. Math., 60(1):272–294 (electronic), 2000. [341] C. G´erard and F. Nier. The Mourre theory for analytically fibered operators. J. Funct. Anal., 152(1):202–219, 1998. [342] N. I. Gerasimenko. The inverse scattering problem on a noncompact graph. Teoret. Mat. Fiz., 75(2):187–200, 1988. [343] N. I. Gerasimenko and B. S. Pavlov. A scattering problem on noncompact graphs. Teoret. Mat. Fiz., 74(3):345–359, 1988. [344] F. Gesztesy. Inverse spectral theory as influenced by Barry Simon. In Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday,volume76ofProc. Sympos. Pure Math., pages 741–820. Amer. Math. Soc., Providence, RI, 2007. 246 BIBLIOGRAPHY

[345] F. Gesztesy and B. Simon. Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum. Trans. Amer. Math. Soc., 352(6):2765–2787, 2000. [346] F. Gesztesy and B. Simon. A new approach to inverse spectral theory. II. General real potentials and the connection to the spectral measure. Ann. of Math. (2), 152(2):593–643, 2000. [347] V. A. Geyler and I. Y. Popov. Eigenvalues imbedded in the band spectrum for a periodic array of quantum dots. Rep. Math. Phys., 39(2):275–281, 1997. [348] I. M. Glazman. Direct methods of qualitative spectral analysis of singular differential operators. Translated from the Russian by the IPST staff. Israel Program for Scientific Translations, Jerusalem, 1965, 1966. [349] S. Gnutzmann and A. Altland. Universal spectral statistics in quantum graphs. Phys. Rev. Lett., 93:194101, 2004. [350] S. Gnutzmann and A. Altland. Spectral correlations of individual quantum graphs. Phys. Rev. E (3), 72(5):056215, 14, 2005. [351] S. Gnutzmann, P. D. Karageorge, and U. Smilansky. Can one count the shape of a drum? Phys. Rev. Lett., 97(9):090201, 4, 2006. [352] S. Gnutzmann, J. P. Keating, and F. Piotet. Eigenfunction statistics on quan- tum graphs. Ann. Physics, 325(12):2595–2640, 2010. [353] S. Gnutzmann and U. Smilansky. Quantum graphs: Applications to quantum chaos and universal spectral statistics. Adv. Phys., 55(5–6):527–625, 2006. [354] S. Gnutzmann, U. Smilansky, and S. Derevyanko. Stationary scattering from a nonlinear network. Phys. Rev. A, 83:033831, Mar 2011. [355] S. Gnutzmann, U. Smilansky, and N. Sondergaard. Resolving isospectral ‘drums’ by counting nodal domains. J. Phys. A, 38(41):8921–8933, 2005. [356] S. Gnutzmann, U. Smilansky, and J. Weber. Nodal counting on quantum graphs. Waves Random Media, 14(1):S61–S73, 2004. Special section on quan- tum graphs. [357] Y. A. Godin and B. Vainberg. A simple method for solving the inverse scattering problem for the difference Helmholtz equation. Inverse Problems, 24(2):025007, 9, 2008. [358] C. Godsil and G. Royle. Algebraic graph theory, volume 207 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001. [359] I. C. Gohberg and M. G. Kre˘ın. Fundamental aspects of defect numbers, root numbers and indexes of linear operators. Uspehi Mat. Nauk (N.S.), 12(2(74)):43–118, 1957. English translation: The basic propositions on de- fect numbers, root numbers and indices of linear operators, Amer. Math. Soc. Transl. (2) 13 (1960), 185–264. [360] I. C. Gohberg and M. G. Kre˘ın. Introduction to the theory of linear nonselfad- joint operators. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18. American Mathematical Society, Provi- dence, RI, 1969. [361] N. Goldman and P. Gaspard. Quantum graphs and the integer quantum Hall effect. Phys. Rev. B, 77:024302, 2008. [362] A. M. Gomilko and V. N. Pivovarchik. The universe Sturm-Liouville problem on a figure-eight-type graph. Ukra¨ın. Mat. Zh., 60(9):1168–1188, 2008. [363] A. Grant. What is this? a psychedelic place mat? Discover, February, 2009. BIBLIOGRAPHY 247

[364] H. Grauert and R. Remmert. Theory of Stein spaces. Classics in Mathematics. Springer-Verlag, Berlin, 2004. Translated from the German by Alan Huckle- berry, Reprint of the 1979 translation. [365] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann. Invisibility and inverse problems. Bull.Amer.Math.Soc.(N.S.), 46(1):55–97, 2009. [366] D. Gridin, R. V. Craster, and A. T. I. Adamou. Trapped modes in curved elas- tic plates. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461(2056):1181– 1197, 2005. [367] D. Grieser. Monotone unitary families. preprint arXiv:0711.2869, 2007. [368] D. Grieser. Spectra of graph neighborhoods and scattering. Proc. Lond. Math. Soc. (3), 97(3):718–752, 2008. [369] D. Grieser. Thin tubes in mathematical physics, global analysis and spectral geometry. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 565–593. Amer. Math. Soc., Providence, RI, 2008. [370] J. S. Griffith. A free-electron theory of conjugated molecules. II. A derived algebraic scheme. Proc. Camb. Philos. Soc., 49:650–658, 1953. [371] J. S. Griffith. A free-electron theory of conjugated molecules. Part 1. — Poly- cyclic hydrocarbons. Trans. Faraday Soc., 49:345–351, 1953. [372] R. Grigorchuk and V. Nekrashevych. Self-similar groups, operator algebras and Schur complement. J. Mod. Dyn., 1(3):323–370, 2007. [373] R. Grigorchuk and Z. Suni´ˇ c. Schreier spectrum of the Hanoi Towers group on three pegs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 183–198. Amer. Math. Soc., Providence, RI, 2008. [374] R. Grigorchuk and Z. Suniˇ k.´ Asymptotic aspects of Schreier graphs and Hanoi Towers groups. C. R. Math. Acad. Sci. Paris, 342(8):545–550, 2006. [375] R. I. Grigorchuk and A. Zuk.˙ The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps. In Random walks and geometry, pages 141–180. Walter de Gruyter GmbH & Co. KG, Berlin, 2004. [376] A. Grigoryan. Heat kernels on manifolds, graphs and fractals. In European Congress of Mathematics, Vol. I (Barcelona, 2000), volume 201 of Progr. Math., pages 393–406. Birkh¨auser, Basel, 2001. [377] A. Grigor’yan. Heat kernels and function theory on metric measure spaces. In Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), volume 338 of Contemp. Math., pages 143–172. Amer. Math. Soc., Providence, RI, 2003. [378] A. Grigor’yan. Heat kernels on metric measure spaces with regular volume growth. In Handbook of geometric analysis, No. 2,volume13ofAdv. Lect. Math. (ALM), pages 1–60. Int. Press, Somerville, MA, 2010. [379] A. Grigoryan and T. Kumagai. On the dichotomy in the heat kernel two sided estimates. In Analysis on graphs and its applications,volume77of Proc. Sympos. Pure Math., pages 199–210. Amer. Math. Soc., Providence, RI, 2008. [380] A. Grigoryan and A. Telcs. Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J., 109(3):451–510, 2001. [381] P. Grinfeld. Hadamard’s formula inside and out. J. Optim. Theory Appl., 146(3):654–690, 2010. [382] M. J. Gruber, D. H. Lenz, and I. Veseli´c. Uniform existence of the integrated density of states for combinatorial and metric graphs over Zd.InAnalysis on 248 BIBLIOGRAPHY

graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 87–108. Amer. Math. Soc., Providence, RI, 2008. [383] F. Guevara Vasquez, G. W. Milton, and D. Onofrei. Complete characteri- zation and synthesis of the response function of elastodynamic networks. J. Elasticity, 102(1):31–54, 2011. [384] F. Guevara Vasquez, G. W. Milton, and D. Onofrei. Exterior cloaking with active sources in two dimensional acoustics. Wave Motion, 48(6):515–524, 2011. [385] D. Guido, T. Isola, and M. L. Lapidus. Bartholdi zeta functions for periodic simple graphs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 109–122. Amer. Math. Soc., Providence, RI, 2008. [386] R. C. Gunning and H. Rossi. Analytic functions of several complex variables. AMS Chelsea Publishing, Providence, RI, 2009. Reprint of the 1965 original. [387] B. Gutkin and U. Smilansky. Can one hear the shape of a graph? J. Phys. A, 34(31):6061–6068, 2001. [388] F. Haake. Quantum signatures of chaos. Springer Series in Synergetics. Springer-Verlag, Berlin, 3rd edition, 2010. [389] J. Hadamard. M´emoire sur le probl`eme d’analyse relatifal’´ ` equilibre des plaques elastiques encastr´ees. Mem. Acad. Sci. Inst. de France, 1908. [390] R. Hadani and A. Singer. Representation theoretic patterns in three dimen- sional cryo-electron microscopy I: The intrinsic reconstitution algorithm. Ann. of Math. (2), 174(2):1219–1241, 2011. [391] R. Hadani and A. Singer. Representation theoretic patterns in three- dimensional cryo-electron microscopy II—the class averaging problem. Found. Comput. Math., 11(5):589–616, 2011. [392] O. H. Hald and J. R. McLaughlin. Inverse nodal problems: finding the po- tential from nodal lines. Mem. Amer. Math. Soc., 119(572):viii+148, 1996. [393] M. Harmer. Hermitian symplectic geometry and extension theory. J. Phys. A, 33(50):9193–9203, 2000. [394] M. Harmer. Inverse scattering on matrices with boundary conditions. J. Phys. A, 38(22):4875–4885, 2005. [395] M. Harmer. Spin filtering on a ring with the Rashba Hamiltonian. J. Phys. A, 39(46):14329–14341, 2006. [396] M. Harmer, A. Mikhailova, and B. S. Pavlov. Manipulating the electron cur- rent through a splitting. In Geometric analysis and applications (Canberra, 2000),volume39ofProc. Centre Math. Appl. Austral. Nat. Univ., pages 118–131. Austral. Nat. Univ., Canberra, 2001. [397] M. S. Harmer. Inverse scattering for the matrix Schr¨odinger operator and Schr¨odinger operator on graphs with general self-adjoint boundary conditions. ANZIAM J., 44(1):161–168, 2002. Kruskal, 2000 (Adelaide). [398] P. J. F. Harris. Carbon Nano-tubes and Related Structures. Cambridge Uni- versity Press, Cambridge, 1999. New Materials for the Twenty-first Century. [399] J. M. Harrison. Quantum graphs with spin Hamiltonians. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 261–277. Amer. Math. Soc., Providence, RI, 2008. [400] J. M. Harrison, J. P. Keating, and J. M. Robbins. Quantum statistics on graphs. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467(2125):212– 233, 2011. BIBLIOGRAPHY 249

[401] J. M. Harrison and K. Kirsten. Zeta functions of quantum graphs. J. Phys. A, 44(23):235301, 29, 2011. [402] J. M. Harrison, K. Kirsten, and C. Texier. Spectral determinants and zeta functions of Schr¨odinger operators on metric graphs. J. Phys. A, 45(12):125206, 2012. [403] J. M. Harrison, P. Kuchment, A. Sobolev, and B. Winn. On occurrence of spectral edges for periodic operators inside the Brillouin zone. J. Phys. A, 40(27):7597–7618, 2007. [404] J. M. Harrison, U. Smilansky, and B. Winn. Quantum graphs where back- scattering is prohibited. J. Phys. A, 40(47):14181–14193, 2007. [405] J. M. Harrison and B. Winn. Intermediate statistics for a system with sym- plectic symmetry: the Dirac rose graph. preprint arXiv:1205.6073, 2012. [406] J. E. Heebner, R. W. Boyd, and Q. Park. Scissor solitons & other propagation effects in microresonator modified waveguides. JOSA B, 19:722–731, 2002. [407] P. Hejˇc´ık and T. Cheon. Enhanced all-optical switching using a nonlinear fiber ring resonator. Optics Letters, 24:847–849, 1999. [408] B. Helffer. Domaines nodaux et partitions spectrales minimales (d’apr`es B. Helffer, T. Hoffmann-Ostenhof et S. Terracini). In S´eminaire: Equations´ aux D´eriv´ees Partielles. 2006–2007,S´emin. Equ.´ D´eriv. Partielles, pages Exp. No. VIII, 23. Ecole´ Polytech., Palaiseau, 2007. [409] B. Helffer, T. Hoffmann-Ostenhof, and S. Terracini. Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincar´eAnal.NonLin´eaire, 26(1):101–138, 2009. [410] S. Heusler, S. Muller, P. Braun, and F. Haake. Universal spectral form factor for chaotic dynamics. J. Phys. A-Math. Gen., 37(3):L31–L37, 2004. [411] Y. Higuchi and T. Shirai. Some spectral and geometric properties for infinite graphs. In Discrete geometric analysis, volume 347 of Contemp. Math., pages 29–56. Amer. Math. Soc., Providence, RI, 2004. [412] D. Hinton. Sturm’s 1836 oscillation results: evolution of the theory. In Sturm- Liouville theory, pages 1–27. Birkh¨auser, Basel, 2005. [413] P. D. Hislop and O. Post. Anderson localization for radial tree-like quantum graphs. Waves Random Complex Media, 19(2):216–261, 2009. [414] P. D. Hislop and I. M. Sigal. Introduction to spectral theory, volume 113 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996. With applications to Schr¨odinger operators. [415] L. Hogben. Spectral graph theory and the inverse eigenvalue problem of a graph. Electron. J. Linear Algebra, 14:12–31 (electronic), 2005. [416] J. Holmer, J. Marzuola, and M. Zworski. Fast soliton scattering by delta impurities. Comm. Math. Phys., 274(1):187–216, 2007. [417] L. H¨ormander. An introduction to complex analysis in several variables,vol- ume 7 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, third edition, 1990. [418] M. D. Horton, H. M. Stark, and A. A. Terras. What are zeta functions of graphs and what are they good for? In Quantum graphs and their appli- cations, volume 415 of Contemp. Math., pages 173–189. Amer. Math. Soc., Providence, RI, 2006. 250 BIBLIOGRAPHY

[419] M. D. Horton, H. M. Stark, and A. A. Terras. Zeta functions of weighted graphs and covering graphs. In Analysis on graphs and its applications,vol- ume 77 of Proc. Sympos. Pure Math., pages 29–50. Amer. Math. Soc., Prov- idence, RI, 2008. [420] O. Hul, M.Lawniczak,  S. Bauch, and L. Sirko. Simulation of quantum graphs by microwave networks. In Analysis on graphs and its applications,volume77 of Proc. Sympos. Pure Math., pages 595–615. Amer. Math. Soc., Providence, RI, 2008. [421] N. E. Hurt. Mathematical physics of quantum wires and devices, volume 506 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2000. From spectral resonances to Anderson localization. [422] A. Iantchenko and E. Korotyaev. Schr¨odinger operator on the zigzag half- nanotube in magnetic field. Math.Model.Nat.Phenom., 5(4):175–197, 2010. [423] Y. Imry. Introduction to Mesoscopic Physics (Mesoscopic Physics and Nan- otechnology). Oxford University Press, New York, 1997. [424] D. Ingerman and J. A. Morrow. On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region. SIAM J. Math. Anal., 29(1):106–115 (electronic), 1998. [425] D. V. Ingerman. Discrete and continuous Dirichlet-to-Neumann maps in the layered case. SIAM J. Math. Anal., 31(6):1214–1234 (electronic), 2000. [426] V. Isakov. Inverse problems for partial differential equations, volume 127 of Applied Mathematical Sciences. Springer, New York, second edition, 2006. [427] L. Ivanov, L. Kotko, and S. Kre˘ın. Boundary value problems in variable domains. Differencialnye Uravnenija i Primenen.—Trudy Sem., 19:1–161, 1977. [428] J. D. Jackson. Classical electrodynamics. John Wiley & Sons Inc., New York, second edition, 1975. [429] J. D. Joannopoulos, S. Johnson, R. D. Meade, and J. N. Winn. Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton, N.J., 2nd edition, 2008. [430] S. John. Strong localization of photons in certain disordered dielectric super- lattices. Phys. Rev. Lett., 58(23):2486–2489, 1987. [431] S. G. Johnson. Numerical methods for computing Casimir interactions. In D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, editors, Casimir Physics, volume 834 of Lecture Notes in Physics, chapter 6, pages 175–218. Springer, Berlin, June 2011. [432] S. G. Johnson and J. D. Joannopoulos. Photonic Crystals, The Road from Theory to Practice. Kluwer Academic Publishers, Boston, 2002. [433] V. Kaimanovich. The Poisson boundary of covering Markov operators. Israel J. Math., 89(1–3):77–134, 1995. [434] P. D. Karageorge and U. Smilansky. Counting nodal domains on surfaces of revolution. J. Phys. A, 41(20):205102, 2008. [435] A. Katchalov, Y. Kurylev, and M. Lassas. Inverse boundary spectral problems, volume 123 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2001. [436] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. BIBLIOGRAPHY 251

[437] J. P. Keating. Fluctuation statistics for quantum star graphs. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 191–200. Amer. Math. Soc., Providence, RI, 2006. [438] J. P. Keating. Quantum graphs and quantum chaos. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 279–290. Amer. Math. Soc., Providence, RI, 2008. [439] J. P. Keating, J. Marklof, and B. Winn. Value distribution of the eigenfunc- tions and spectral determinants of quantum star graphs. Comm. Math. Phys., 241(2–3):421–452, 2003. [440] M. Kelbert and Y. Suhov. Asymptotic properties of Markov processes on Cayley trees. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 123–138. Amer. Math. Soc., Providence, RI, 2008. [441] R. Kenyon. The Laplacian and Dirac operators on critical planar graphs. Invent. Math., 150(2):409–439, 2002. [442] J. Kigami. Analysis on fractals, volume 143 of Cambridge Tracts in Mathe- matics. Cambridge University Press, Cambridge, 2001. [443] B. G. Kim and H. J. Choi. Graphyne: hexagonal network of carbon with versatile Dirac cone. ArXiv e-prints, Dec. 2011. [444] A. Kirsch and N. Grinberg. The factorization method for inverse problems, volume 36 of Oxford Lecture Series in Mathematics and its Applications.Ox- ford University Press, Oxford, 2008. [445] D. Klawonn. Inverse nodal problems. J. Phys. A, 42(17)(11):175209, 2009. [446] A. Klein. Absolutely continuous spectrum in the Anderson model on the Bethe lattice. Math. Res. Lett., 1(4):399–407, 1994. [447] A. Klein. The Anderson metal-insulator transition on the Bethe lattice. In XIth International Congress of Mathematical Physics (Paris, 1994), pages 383–391. Int. Press, Cambridge, MA, 1995. [448] A. Klein. Extended states in the Anderson model on the Bethe lattice. Adv. Math., 133(1):163–184, 1998. [449] F. Klopp and K. Pankrashkin. Localization on quantum graphs with random vertex couplings. J. Stat. Phys., 131(4):651–673, 2008. [450] F. Klopp and K. Pankrashkin. Localization on quantum graphs with random edge lengths. Lett. Math. Phys., 87(1-2):99–114, 2009. [451] E. Korotyaev. Effective masses for zigzag nanotubes in magnetic fields. Lett. Math. Phys., 83(1):83–95, 2008. [452] E. Korotyaev. Zigzag nanoribbons in external electric and magnetic fields. J. Comp. Sci. Math., 3(1–2):168–191, 2010. [453] E. Korotyaev and A. Kutsenko. Zigzag nanoribbons in external electric fields. Asympt. Anal., 66(3–4):187–206, 2010. [454] E. Korotyaev and I. Lobanov. Zigzag periodic nanotube in magnetic field. preprint arXiv:math.SP/0604007, 2006. [455] E. Korotyaev and I. Lobanov. Schr¨odinger operators on zigzag nanotubes. Ann. Henri Poincar´e, 8(6):1151–1176, 2007. [456] V. Kostrykin, J. Potthoff, and R. Schrader. Heat kernels on metric graphs and a trace formula. In Adventures in mathematical physics, volume 447 of Contemp. Math., pages 175–198. Amer. Math. Soc., Providence, RI, 2007. 252 BIBLIOGRAPHY

[457] V. Kostrykin, J. Potthoff, and R. Schrader. Contraction semigroups on metric graphs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 423–458. Amer. Math. Soc., Providence, RI, 2008. [458] V. Kostrykin, J. Potthoff, and R. Schrader. Finite propagation speed for solutions of the wave equation on metric graphs. J. Funct. Anal., 263(5):1198– 1223, 2012. [459] V. Kostrykin and R. Schrader. Kirchhoff’s rule for quantum wires. J. Phys. A, 32(4):595–630, 1999. [460] V. Kostrykin and R. Schrader. The generalized star product and the factor- ization of scattering matrices on graphs. J. Math. Phys., 42(4):1563–1598, 2001. [461] V. Kostrykin and R. Schrader. Quantum wires with magnetic fluxes. Comm. Math. Phys., 237(1-2):161–179, 2003. Dedicated to Rudolf Haag. [462] V. Kostrykin and R. Schrader. A random necklace model. Waves Random Media, 14(1):S75–S90, 2004. Special section on quantum graphs. [463] V. Kostrykin and R. Schrader. Laplacians on metric graphs: eigenvalues, resolvents and semigroups. In Quantum graphs and their applications,volume 415 of Contemp. Math., pages 201–225. Amer. Math. Soc., Providence, RI, 2006. [464] M. Kotani and T. Sunada. Albanese maps and off diagonal long time asymp- totics for the heat kernel. Comm. Math. Phys., 209(3):633–670, 2000. [465] M. Kotani and T. Sunada. Spectral geometry of crystal lattices. In Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), volume 338 of Contemp. Math., pages 271–305. Amer. Math. Soc., Providence, RI, 2003. [466] T. Kottos and U. Smilansky. Quantum chaos on graphs. Phys. Rev. Lett., 79(24):4794–4797, 1997. [467] T. Kottos and U. Smilansky. Periodic orbit theory and spectral statistics for quantum graphs. Ann. Physics, 274(1):76–124, 1999. [468] T. Kottos and U. Smilansky. Chaotic scattering on graphs. Phys. Rev. Lett., 85(5):968–971, 2000. [469] T. Kottos and U. Smilansky. Quantum graphs: a simple model for chaotic scattering. J. Phys. A, 36(12):3501–3524, 2003. Random matrix theory. [470] M. G. Krein and G. I. Liubarskii. On the theory of transmission bands of periodic waveguides. J. Appl. Math. Mech., 25:29–48, 1961. [471] S. G. Kre˘ın. Linear equations in Banach spaces. Birkh¨auser, Boston, Mass., 1982. Translated from the Russian by A. Iacob. With an introduction by I. Gohberg. [472] D. Krejˇciˇr´ık. Twisting versus bending in quantum waveguides. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 617–637. Amer. Math. Soc., Providence, RI, 2008. [473] S. Krsti´c and K. Vogtmann. Equivariant outer space and automorphisms of free-by-finite groups. Comment. Math. Helv., 68(2):216–262, 1993. [474] P. Kuchment. Floquet theory for partial differential equations,volume60of Operator Theory: Advances and Applications. Birkh¨auser Verlag, Basel, 1993. [475] P. Kuchment. The mathematics of photonic crystals. In G. Bao, L. Cowsar, and W. Masters, editors, Mathematical modeling in optical science,volume22 of Frontiers Appl. Math., pages 207–272. SIAM, Philadelphia, PA, 2001. BIBLIOGRAPHY 253

[476] P. Kuchment. Graph models for waves in thin structures. Waves Random Media, 12(4):R1–R24, 2002. [477] P. Kuchment. Differential and pseudo-differential operators on graphs as mod- els of mesoscopic systems. In H. Begehr, R. Gilbert, and M. W. Wang, edi- tors, Analysis and applications—ISAAC 2001 (Berlin),volume10ofInt. Soc. Anal. Appl. Comput., pages 7–30. Kluwer Acad. Publ., Dordrecht, 2003. [478] P. Kuchment, editor. Waves in periodic and random media (South Hadley, MA, 2002), volume 339, Providence, RI, 2003. Amer. Math. Soc. [479] P. Kuchment, editor. Quantum graphs and their applications, volume 14. Waves in Random Media, 2004. [480] P. Kuchment. Quantum graphs. I. Some basic structures. Waves Random Media, 14(1):S107–S128, 2004. Special section on quantum graphs. [481] P. Kuchment. Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A, 38(22):4887–4900, 2005. [482] P. Kuchment. Quantum graphs: an introduction and a brief survey. In Anal- ysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 291–312. Amer. Math. Soc., Providence, RI, 2008. [483] P. Kuchment and L. Kunyansky. Differential operators on graphs and pho- tonic crystals. Adv. Comput. Math., 16(2–3):263–290, 2002. Modeling and computation in optics and electromagnetics. [484] P. Kuchment and L. A. Kunyansky. Spectral properties of high contrast band- gap materials and operators on graphs. Experiment. Math., 8(1):1–28, 1999. [485] P. Kuchment and S. Levendorskiˆı. On the structure of spectra of periodic elliptic operators. Trans. Amer. Math. Soc., 354(2):537–569 (electronic), 2002. [486] P. Kuchment and B. Ong. On guided waves in photonic crystal waveguides. In Waves in periodic and random media (South Hadley, MA, 2002),volume 339 of Contemp. Math., pages 105–115. Amer. Math. Soc., Providence, RI, 2003. [487] P. Kuchment and Y. Pinchover. Integral representations and Liouville theo- rems for solutions of periodic elliptic equations. J. Funct. Anal., 181(2):402– 446, 2001. [488] P. Kuchment and Y. Pinchover. Liouville theorems and spectral edge be- havior on abelian coverings of compact manifolds. Trans. Amer. Math. Soc., 359(12):5777–5815 (electronic), 2007. [489] P. Kuchment and O. Post. On the spectra of carbon nano-structures. Comm. Math. Phys., 275(3):805–826, 2007. [490] P. Kuchment and B. Vainberg. On absence of embedded eigenvalues for Schr¨odinger operators with perturbed periodic potentials. Comm. Partial Dif- ferential Equations, 25(9–10):1809–1826, 2000. [491] P. Kuchment and B. Vainberg. On the structure of eigenfunctions correspond- ing to embedded eigenvalues of locally perturbed periodic graph operators. Comm. Math. Phys., 268(3):673–686, 2006. [492] P. Kuchment and H. Zeng. Convergence of spectra of mesoscopic systems collapsing onto a graph. J. Math. Anal. Appl., 258(2):671–700, 2001. [493] P. Kuchment and H. Zeng. Asymptotics of spectra of Neumann Laplacians in thin domains. In Y. Karpeshina, G. Stolz, R. Weikard, and Y. Zeng, editors, Advances in differential equations and mathematical physics (Birmingham, 254 BIBLIOGRAPHY

AL, 2002), volume 327 of Contemp. Math., pages 199–213. Amer. Math. Soc., Providence, RI, 2003. [494] P. A. Kuchment. On the Floquet theory of periodic difference equations. In Geometrical and algebraical aspects in several complex variables (Cetraro, 1989), volume 8 of Sem. Conf., pages 201–209. EditEl, Rende, 1991. [495] N. H. Kuiper. The homotopy type of the unitary group of Hilbert space. Topology, 3:19–30, 1965. [496] P. Kurasov. Graph Laplacians and topology. Ark. Mat., 46(1):95–111, 2008. [497] P. Kurasov. Schr¨odinger operators on graphs and geometry. I. Essentially bounded potentials. J. Funct. Anal., 254(4):934–953, 2008. [498] P. Kurasov. Inverse problems for Aharonov-Bohm rings. Math. Proc. Cam- bridge Philos. Soc., 148(2):331–362, 2010. [499] P. Kurasov and M. Nowaczyk. Inverse spectral problem for quantum graphs. J. Phys. A, 38(22):4901–4915, 2005. [500] P. Kurasov and M. Nowaczyk. Corrigendum: “Inverse spectral problem for quantum graphs” [J. Phys. A 38 (2005), no. 22, 4901–4915; mr2148632]. J. Phys. A, 39(4):993, 2006. [501] P. Kurasov and M. Nowaczyk. Geometric properties of quantum graphs and vertex scattering matrices. Opuscula Math., 30(3):295–309, 2010. [502] P. Kurasov and F. Stenberg. On the inverse scattering problem on branching graphs. J. Phys. A, 35(1):101–121, 2002. [503] A. Lambrecht. The casimir effect: a force from nothing. Physics World, pages 29–32, September 2002. [504] S. Lang. Introduction to differentiable manifolds. Universitext. Springer- Verlag, New York, second edition, 2002. [505] M. L. Lapidus and E. P. J. Pearse. Tube formulas for self-similar fractals. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 211–230. Amer. Math. Soc., Providence, RI, 2008. [506] C. K. Law and V. Pivovarchik. Characteristic functions of quantum graphs. J. Phys. A, 42(3):035302, 12, 2009. [507] E. Lawrence, G. Michailidis, V. N. Nair, and B. Xi. Network tomography: a review and recent developments. In Frontiers in statistics, pages 345–366. Imp. Coll. Press, London, 2006. [508] D. Lenz, C. Schubert, and P. Stollmann. Eigenfunction expansions for Schr¨odinger operators on metric graphs. Integral Equations Operator Theory, 62(4):541–553, 2008. [509] D. Lenz, P. Stollmann, and I. Veselic. Generalized eigenfunctions and spectral theory for strongly local Dirichlet forms. preprint arXiv:0909.1107, 2009. [510] U. Leonhardt and T. Philbin. Geometry and light. Dover Publications Inc., Mineola, NY, 2010. The science of invisibility. [511] B. M. Levitan. Inverse Sturm-Liouville problems. VSP, Zeist, 1987. Translated from the Russian by O. Efimov. [512] B. M. Levitan and I. S. Sargsjan. Introduction to spectral theory: selfadjoint ordinary differential operators. American Mathematical Society, Providence, R.I., 1975. Translated from the Russian by Amiel Feinstein, Translations of Mathematical Monographs, Vol. 39. BIBLIOGRAPHY 255

[513] B. M. Levitan and I. S. Sargsjan. Sturm-Liouville and Dirac operators,vol- ume 59 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian. [514] F. Leys, C. Amovilli, and N. March. Topology, connectivity, and electronic structure of C and B cages and the corresponding nanotubes. J. Chem. Inf. Comput. Sci., 44(1):122–135, 2004. [515] P. Li. Curvature and function theory on Riemannian manifolds. In Surveys in differential geometry, Surv. Differ. Geom., VII, pages 375–432. Int. Press, Somerville, MA, 2000. [516] P. Li and J. Wang. Counting dimensions of L-harmonic functions. Ann. of Math. (2), 152(2):645–658, 2000. [517] P. Li and J. Wang. Polynomial growth solutions of uniformly elliptic op- erators of non-divergence form. Proc. Amer. Math. Soc., 129(12):3691–3699 (electronic), 2001. [518] E. H. Lieb and M. Loss. Fluxes, Laplacians, and Kasteleyn’s theorem. Duke Math. J., 71(2):337–363, 1993. [519] I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur. Introduction to the theory of disordered systems. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York, 1988. Translated from the Russian by Eugene Yankovsky [E. M. Yankovski˘ı]. [520] V. Y. Lin. Liouville coverings of complex spaces, and amenable groups. Mat. Sb. (N.S.), 132(174)(2):202–224, 1987. [521] V. Y. Lin and M. Zaidenberg. Liouville and Carath´eodory coverings in Rie- mannian and complex geometry. In Voronezh Winter Mathematical Schools, volume 184 of Amer. Math. Soc. Transl. Ser. 2, pages 111–130. Amer. Math. Soc., Providence, RI, 1998. [522] M. S. Livˇsic. Operators, oscillations, waves (open systems).AmericanMathe- matical Society, Providence, RI, 1973. Translated from the Russian by Scripta Technica, Ltd. English translation edited by R. Herden. Translations of Math- ematical Monographs, Vol. 34. [523] Y. I. Lyubarski˘ı and V. A. Marchenko. Direct and inverse problems of multi- channel scattering. Funktsional. Anal. i Prilozhen., 41(2):58–77, 112, 2007. [524] E. MacCurdy. Notebooks of Leonardo da Vinci. Jonathtan Cape, London, 1938. [525] W. Magnus and S. Winkler. Hill’s equation. Interscience Tracts in Pure and Applied Mathematics, No. 20. Interscience Publishers John Wiley & Sons New York-London-Sydney, 1966. [526] B. Malgrange. Lectures on the theory of functions of several complex variables, volume 13 of Tata Institute of Fundamental Research Lectures on Mathemat- ics and Physics. Distributed for the Tata Institute of Fundamental Research, Bombay, 1984. Reprint of the 1958 edition, Notes by Raghavan Narasimhan. [527] V. A. Marchenko. Sturm-Liouville operators and applications.AMSChelsea Publishing, Providence, RI, revised edition, 2011. [528] A. S. Markus. Introduction to the spectral theory of polynomial operator pen- cils,volume71ofTranslations of Mathematical Monographs.AmericanMath- ematical Society, Providence, RI, 1988. Translated from the Russian by H. H. McFaden. Translation edited by Ben Silver. With an appendix by M. V. Keldysh. 256 BIBLIOGRAPHY

[529] J. E. Marsden and T. S. Ratiu. Introduction to mechanics and symmetry, volume 17 of Texts in Applied Mathematics. Springer-Verlag, New York, 1994. A basic exposition of classical mechanical systems. [530] O. Martinyuk and V. Pivovarchik. Spectral problem for figure-of-eight graph of Stieltjes strings. Methods Funct. Anal. Topology, 16(4):349–358, 2010. [531] O. M. Martinyuk and V. M. Pivovarchik. The inverse spectral problem for a figure-eight Stieltjes string. Ukr. Mat. Visn., 8(1):112–128, 156, 2011. [532] T. Matsui. BEC of free bosons on networks. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9(1):1–26, 2006. [533] V. Mazya, S. Nazarov, and B. Plamenevskij. Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. I, II,volume 111–112 of Operator Theory: Advances and Applications. Birkh¨auser Verlag, Basel, 2000. Translated from the German by Georg Heinig and Christian Posthoff (Vol. I). Translated from the German by Plamenevskij (Vol. II). (English translation of the 1991 German edition by Akademie Verlag). [534] H. P. McKean and P. van Moerbeke. The spectrum of Hill’s equation. Invent. Math., 30(3):217–274, 1975. [535] J. R. McLaughlin. Good vibrations. American Scientist, 86(4):342–349, 1998. [536] F. Mehmeti, J. v. Below, and S. Nicaise, editors. Partial Differential Equa- tions on Multistructures. CRC, 2001. [537] M. L. Mehta. Random matrices, volume 142 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, third edition, 2004. [538] J. Meier. Groups, graphs and trees,volume73ofLondon Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2008. An introduc- tion to the geometry of infinite groups. [539] Y. Melnikov and B. Pavlov. Scattering on graphs and one-dimensional approx- imations to N-dimensional schr¨odinger operators. J. Math. Phys., 42(3):1202– 1228, 2001. [540] Y. B. Melnikov and B. S. Pavlov. Two-body scattering on a graph and ap- plication to simple nanoelectronic devices. J. Math. Phys., 36(6):2813–2825, 1995. [541] V. Z. Meshkov. On the possible rate of decrease at infinity of the solutions of second-order partial differential equations. Mat. Sb., 182(3):364–383, 1991. (In Russian. English transl. in Math. USSR-Sbornik.). [542] A. B. Mikhailova, B. Pavlov, and V. I. Ryzhii. Dirichlet-to-Neumann tech- niques for the plasma-waves in a slot-diode. In Operator theory, analysis and mathematical physics, volume 174 of Oper. Theory Adv. Appl., pages 77–103. Birkh¨auser, Basel, 2007. [543] G. W. Milton and P. Seppecher. Realizable response matrices of multi- terminal electrical, acoustic and elastodynamic networks at a given frequency. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464(2092):967–986, 2008. [544] G. W. Milton and P. Seppecher. Electromagnetic circuits. Netw. Heterog. Media, 5(2):335–360, 2010. [545] G. W. Milton and P. Seppecher. Hybrid electromagnetic circuits. Physica B: Cond. Matter, 405(14):2935–2937, 2010. [546] K. A. Milton. The Casimir effect. World Scientific Publishing Co. Inc., River Edge, NJ, 2001. Physical manifestations of zero-point energy. BIBLIOGRAPHY 257

[547] K. A. Milton. The Casimir effect: recent controversies and progress. J. Phys. A, 37(38):R209–R277, 2004. [548] R. Mittra and S. Lee. Analytical techniques in the theory of guided waves. Macmillan, London, 1971. [549] S. Mizohata. The theory of partial differential equations. Cambridge Univer- sity Press, New York, 1973. Translated from the Japanese by Katsumi Miya- hara. [550] S. Molchanov and B. Vainberg. Slowdown of the wave packages in finite slabs of periodic media. Waves Random Media, 14(3):411–423, 2004. [551] S. Molchanov and B. Vainberg. Slowing down of the wave packets in quantum graphs. Waves Random Complex Media, 15(1):101–112, 2005. [552] S. Molchanov and B. Vainberg. Slowing down and reflection of waves in trun- cated periodic media. J. Funct. Anal., 231(2):287–311, 2006. [553] S. Molchanov and B. Vainberg. Transition from a network of thin fibers to the quantum graph: an explicitly solvable model. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 227–239. Amer. Math. Soc., Providence, RI, 2006. [554] S. Molchanov and B. Vainberg. Scattering solutions in networks of thin fibers: small diameter asymptotics. Comm. Math. Phys., 273(2):533–559, 2007. [555] S. Molchanov and B. Vainberg. Laplace operator in networks of thin fibers: spectrum near the threshold. In Stochastic analysis in mathematical physics, pages 69–93. World Sci. Publ., Hackensack, NJ, 2008. [556] S. Molchanov and B. Vainberg. On general Cwikel-Lieb-Rozenblum and Lieb- Thirring inequalities. In Around the research of Vladimir Maz’ya. III,vol- ume 13 of Int. Math. Ser. (N. Y.), pages 201–246. Springer, New York, 2010. [557] S. Molchanov and B. Vainberg. Wave propagation in periodic networks of thin fibers. Waves Random Complex Media, 20(2):260–275, 2010. [558] E. W. Montroll. Quantum theory on a network. I. A solvable model whose wavefunctions are elementary functions. J. Math. Phys., 11(2):635–648, 1970. [559] J. Moser and M. Struwe. On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus. Bol. Soc. Brasil. Mat. (N.S.), 23(1– 2):1–20, 1992. [560] S. M¨uller, S. Heusler, P. Braun, F. Haake, and A. Altland. Semiclassical foundation of universality in quantum chaos. Phys. Rev. Lett., 93:014103, Jul 2004. [561] S. M¨uller, S. Heusler, P. Braun, F. Haake, and A. Altland. Periodic-orbit theory of universality in quantum chaos. Phys. Rev. E, 72:046207, 2005. [562] N. Nadirashvili, D. Tot, and D. Yakobson. Geometric properties of eigenfunc- tions. Uspekhi Mat. Nauk, 56(6(342)):67–88, 2001. [563] K. Naimark and M. Solomyak. Eigenvalue estimates for the weighted Lapla- cian on metric trees. Proc. London Math. Soc. (3), 80(3):690–724, 2000. [564] K. Naimark and M. Solomyak. Geometry of Sobolev spaces on regular trees and the Hardy inequalities. Russ. J. Math. Phys., 8(3):322–335, 2001. [565] M. A. Naimark. Linear differential operators. Part I: Elementary theory of linear differential operators. Frederick Ungar Publishing Co., New York, 1967. [566] V. Nekrashevych. Self-similar groups, volume 117 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. 258 BIBLIOGRAPHY

[567] V. Nekrashevych and A. Teplyaev. Groups and analysis on fractals. In Anal- ysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 143–180. Amer. Math. Soc., Providence, RI, 2008. [568] S. Nicaise and O. Penkin. Relationship between the lower frequency spectrum of plates and networks of beams. Math. Methods Appl. Sci., 23(16):1389–1399, 2000. [569] S. Nicaise and O. Za¨ır. Identifiability, stability and reconstruction results of point sources by boundary measurements in heterogeneous trees. Rev. Mat. Complut., 16(1):151–178, 2003. [570] S. Novikov, S. V. Manakov, L. P. Pitaevski˘ı,andV.E.Zakharov.Theory of solitons. Contemporary Soviet Mathematics. Consultants Bureau [Plenum], New York, 1984. The inverse scattering method, Translated from the Russian. [571] S. P. Novikov. Solitons and geometry. Lezioni Fermiane. [Fermi Lectures]. Published for the Scuola Normale Superiore, Pisa, 1994. [572] S. P. Novikov. Schrodinger operators on graphs and symplectic geometry. In The Arnoldfest (Toronto, ON, 1997),volume24ofFields Inst. Commun., pages 397–413. Amer. Math. Soc., Providence, RI, 1999. [573] K. Novoselov. Nobel lecture: Graphene: Materials in the flatland. Rev. Mod.Phys., 83:837–849, 2011. [574] M. Nowaczyk. Inverse spectral problem for quantum graphs. Master’s thesis, Lund Institute of Technology, 2005. Licenciate Thesis. [575] M. Nowaczyk. Inverse spectral problem for quantum graphs with rationally dependent edges. In Operator theory, analysis and mathematical physics,vol- ume 174 of Oper. Theory Adv. Appl., pages 105–116. Birkh¨auser, Basel, 2007. [576] P. Ola and L. P¨aiv¨arinta. Mellin operators and pseudodifferential operators on graphs. Waves Random Media, 14(1):S129–S142, 2004. Special section on quantum graphs. [577] V. Oleinik and B. Pavlov. Embedded spectrum on a metric graph (an obser- vation). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 300(Teor. Predst. Din. Sist. Spets. Vyp. 8):215–220, 291, 2003. [578] V. L. Oleinik, B. S. Pavlov, and N. V. Sibirev. Analysis of the dispersion equa- tion for the Schr¨odinger operator on periodic metric graphs. Waves Random Media, 14(2):157–183, 2004. [579] B.-S. Ong. Spectral Problems of Optical Waveguides and Quantum Graphs. PhD thesis, Texas A&M University, 2006. [580] S. F. Oppenheimer. A convection-diffusion problem in a network. Appl. Math. Comp., 112:223–240, 2000. [581] I. Oren. Nodal domain counts and the chromatic number of graphs. J. Phys. A, 40(32):9825–9832, 2007. [582] I. Oren and R. Band. Isospectral graphs with identical nodal counts. J. Phys. A, 45:135203, 2012. preprint arXiv:1110.0158. [583] I. Oren, A. Godel, and U. Smilansky. Trace formulae and spectral statistics for discrete Laplacians on regular graphs. I. J. Phys. A, 42(41):415101, 20, 2009. [584] I. Oren and U. Smilansky. Trace formulas and spectral statistics for discrete Laplacians on regular graphs (II). J. Phys. A, 43(22):225205, 13, 2010. [585] P. Pakonski, G. Tanner, and K. Zyczkowski. Families of line-graphs and their quantization. J. Stat. Phys., 111(5-6):1331–1352, 2003. BIBLIOGRAPHY 259

[586] P. Pako´nski, K. Zyczkowski,˙ and M. Ku´s. Classical 1D maps, quantum graphs and ensembles of unitary matrices. J. Phys. A, 34(43):9303–9317, 2001. [587] K. Pankrashkin. Localization effects in a periodic quantum graph with mag- netic field and spin-orbit interaction. J. Math. Phys., 47(11):112105, 17, 2006. [588] K. Pankrashkin. Spectra of Schr¨odinger operators on equilateral quantum graphs. Lett. Math. Phys., 77(2):139–154, 2006. [589] K. Pankrashkin. Localization in a quasiperiodic model on quantum graphs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 459–467. Amer. Math. Soc., Providence, RI, 2008. [590] L. Parnovski. Bethe-Sommerfeld conjecture. Ann. Henri Poincar´e, 9(3):457– 508, 2008. [591] L. Parnovski and A. V. Sobolev. Bethe-Sommerfeld conjecture for periodic operators with strong perturbations. Invent. Math., 181(3):467–540, 2010. [592] O. Parzanchevski and R. Band. Linear representations and isospectrality with boundary conditions. J. Geom. Anal., 20(2):439–471, 2010. [593] L. Pastur and A. Figotin. Spectra of random and almost-periodic operators, volume 297 of Grundlehren der Mathematischen Wissenschaften [Fundamen- tal Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992. [594] L. Pauling. The diamagnetic anisotropy of aromatic molecules. J. Chem. Phys., 4(10):673–677, 1936. [595] B. Pavlov. Resonance quantum switch: matching domains. In Surveys in analysis and operator theory (Canberra, 2001),volume40ofProc. Centre Math. Appl. Austral. Nat. Univ., pages 127–156. Austral. Nat. Univ., Can- berra, 2002. [596] B. Pavlov. A star-graph model via operator extension. Math. Proc. Cambridge Philos. Soc., 142(2):365–384, 2007. [597] B. Pavlov and K. Robert. Resonance optical switch: calculation of resonance eigenvalues. In Waves in periodic and random media (South Hadley, MA, 2002), volume 339 of Contemp. Math., pages 141–169. Amer. Math. Soc., Providence, RI, 2003. [598] B. S. Pavlov. A model of zero-radius potential with internal structure. Teoret. Mat. Fiz., 59(3):345–353, 1984. [599] B. S. Pavlov. The theory of extensions, and explicitly solvable models. Uspekhi Mat. Nauk, 42(6(258)):99–131, 247, 1987. [600] J. Peetre. On Hadamard’s variational formula. J. Differential Equations, 36(3):335–346, 1980. [601] R. Peirone. Existence of eigenforms on nicely separated fractals. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 231–241. Amer. Math. Soc., Providence, RI, 2008. [602] O. M. Penkin and Y. V. Pokorny˘ı. On a boundary value problem on a graph. Differentsialnye Uravneniya, 24(4):701–703, 734–735, 1988. [603] Y. Pinchover, G. Wolansky, and D. Zelig. Spectral properties of Schr¨odinger operators on radial N-dimensional infinite trees. Israel J. Math., 165:281–328, 2008. [604] L. Pitaevskii and S. Stringari. Bose-Einstein condensation, volume 116 of International Series of Monographs on Physics. The Clarendon Press Oxford University Press, Oxford, 2003. 260 BIBLIOGRAPHY

[605] M. Pivarski and L. Saloff-Coste. Small time heat kernel behavior on Riemann- ian complexes. New York J. Math., 14:459–494, 2008. [606] V. Pivovarchik. Inverse problem for the Sturm-Liouville equation on a simple graph. SIAM J. Math. Anal., 32(4):801–819 (electronic), 2000. [607] V. Pivovarchik. Inverse problem for the Sturm-Liouville equation on a star- shaped graph. Math. Nachr., 280(13-14):1595–1619, 2007. [608] V. Pivovarchik and H. Woracek. Sums of Nevanlinna functions and differential equations on star-shaped graphs. Oper. Matrices, 3(4):451–501, 2009. [609] V. Pivovarchik and H. Woracek. Eigenvalue asymptotics for a star-graph damped vibrations problem. Asymptot. Anal., 73(3):169–185, 2011. [610] V. N. Pivovarchik. Ambartsumyan’s theorem for the Sturm-Liouville bound- ary value problem on a star-shaped graph. Funktsional. Anal. i Prilozhen., 39(2):78–81, 2005. [611] J. Platt, K. Ruedenberg, C. W. Scherr, N. S. Ham, H. Labhart, and W. Lichten. Free-Electron Theory of Conjugated Molecules: Papers of The Chicago Group 1949-1961. Wiley, 1964. [612] A.˚ Pleijel. Remarks on Courant’s nodal line theorem. Comm. Pure Appl. Math., 9:543–550, 1956. [613] A. Pli´s. Non-uniqueness in Cauchy’s problem for differential equations of el- liptic type. J. Math. Mech., 9:557–562, 1960. [614] Y. V. Pokorny˘ı, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, and S. A. Shabrov. Differentsialnye uravneniya na geometricheskikh grafakh. Fiziko-Matematicheskaya Literatura, Moscow, 2005. [615] Y. V. Pokorny˘ı and V. L. Pryadiev. Some problems in the qualitative Sturm- Liouville theory on a spatial network. UspekhiMat.Nauk, 59(3(357)):115–150, 2004. [616] Y. V. Pokorny˘ı, V. L. Pryadiev, and A. Al-Obe˘ıd. On the oscillation of the spectrum of a boundary value problem on a graph. Mat. Zametki, 60(3):468– 470, 1996. [617] J. P¨oschel and E. Trubowitz. Inverse spectral theory, volume 130 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1987. [618] O. Post. Periodic manifolds with spectral gaps. J. Differential Equations, 187(1):23–45, 2003. [619] O. Post. Spectral convergence of quasi-one-dimensional spaces. Ann. Henri Poincar´e, 7(5):933–973, 2006. [620] O. Post. Equilateral quantum graphs and boundary triples. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 469–490. Amer. Math. Soc., Providence, RI, 2008. [621] O. Post. First order approach and index theorems for discrete and metric graphs. Ann. Henri Poincar´e, 10(5):823–866, 2009. [622] O. Post. Spectral Analysis on Graph-like Spaces, volume 2039 of Lecture Notes in Mathematics. Springer Verlag, Berlin, 2012. [623] O. U. Press. A Dictionary of Scientists. Oxford Univ. Press, Providence, RI, 1999. [624] V. Rabinovich, S. Roch, and B. Silbermann. Limit operators and their ap- plications in operator theory, volume 150 of Operator Theory: Advances and Applications. Birkh¨auser Verlag, Basel, 2004. BIBLIOGRAPHY 261

[625] V. S. Rabinovich and S. Roch. Pseudodifferential operators on periodic graphs. Integral Equations Operator Theory, 72(2):197–217, 2012. [626] M. Reed and B. Simon. Methods of modern mathematical physics. I–4. Func- tional analysis. Academic Press, New York, 1972. [627] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders. Ann. of Math. (2), 155(1):157– 187, 2002. [628] F. S. Rofe-Beketov. A finiteness test for the number of discrete levels which can be introduced into the gaps of the continuous spectrum by perturbations of a periodic potential. Dokl. Akad. Nauk SSSR, 156:515–518, 1964. [629] F. S. Rofe-Beketov. A perturbation of a Hill’s operator, that has a first mo- ment and a non-zero integral, introduces a single discrete level into each of the distant spectral lacunae. In Mathematical physics and functional analy- sis, No. 4 (Russian), pages 158–159, 163. Fiz.-Tehn. Inst. Nizkih Temperatur, Akad. Nauk Ukrain. SSR, Kharkov, 1973. [630] J.-P. Roth. Spectre du laplacien sur un graphe. C. R. Acad. Sci. Paris S´er. I Math., 296(19):793–795, 1983. [631] J.-P. Roth. Le spectre du laplacien sur un graphe. In Th´eorie du potentiel (Or- say, 1983), volume 1096 of Lecture Notes in Math., pages 521–539. Springer, Berlin, 1984. [632] J. Rubinstein and M. Schatzman. Spectral and variational problems on mul- ticonnected strips. C. R. Acad. Sci. Paris S´er. I Math., 325(4):377–382, 1997. [633] J. Rubinstein and M. Schatzman. Asymptotics for thin superconducting rings. J. Math. Pures Appl. (9), 77(8):801–820, 1998. [634] J. Rubinstein and M. Schatzman. Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum. Arch. Ration. Mech. Anal., 160(4):271–308, 2001. [635] R. Rueckriemen. Recovering quantum graphs from their Bloch spectrum. preprint arXiv:1101.6002, 2011. [636] R. Rueckriemen and D. C. D. of Mathematics. Quantum Graphs and Their Spectra, PhD Thesis. Dartmouth College, 2011. [637] K. Ruedenberg and C. W. Scherr. Free-electron network model for conjugated systems. i. J. Chem. Phys., 21(9):1565–1581, 1953. [638] R. Saito, G. Dresselhaus, and M. S. Dresselhaus. Physical Properties of Car- bon Nanotubes. Imperial College Press, London, 1998. [639] Y. Saito. The limiting equation for Neumann Laplacians on shrinking do- mains. Electron. J. Differential Equations, pages No. 31, 25 pp. (electronic), 2000. [640] Y. Sait¯o. Convergence of the Neumann Laplacian on shrinking domains. Anal- ysis (Munich), 21(2):171–204, 2001. [641] K. Sakoda. Optical Properties of Photonic Crystals. Springer Verlag, New York, 2001. [642] H. Schanz and U. Smilansky. Spectral statistics for quantum graphs: periodic orbits and combinatorics. Phil. Mag. B, 80(12):1999–2021, 2000. [643] H. Schanz and U. Smilansky. Combinatorial identities from the spectral the- ory of quantum graphs. Electron. J. Combin., 8(2):Research Paper 16, 16 pp. (electronic), 2001. In honor of Aviezri Fraenkel on the occasion of his 70th birthday. 262 BIBLIOGRAPHY

[644] P. Schapotschnikow. Eigenvalue and nodal properties on quantum graph trees. Waves Random Complex Media, 16(3):167–178, 2006. [645] P. Schapotschnikow and S. Gnutzmann. Spectra of graphs and semi- conducting polymers. In Analysis on graphs and its applications,volume77 of Proc. Sympos. Pure Math., pages 691–705. Amer. Math. Soc., Providence, RI, 2008. [646] M. Schatzman. On the eigenvalues of the Laplace operator on a thin set with Neumann boundary conditions. Appl. Anal., 61(3–4):293–306, 1996. [647] J. H. Schenker and M. Aizenman. The creation of spectral gaps by graph decoration. Lett. Math. Phys., 53(3):253–262, 2000. [648] M. Schiffer. Hadamard’s formula and variation of domain-functions. Amer. J. Math., 68:417–448, 1946. [649] R. L. Schult, D. G. Ravenhall, and H. W. Wyld. Quantum bound states in a classically unbound system of crossed wires. Phys. Rev. B, 39(8):5476–5479, 1989. [650] W. Shaban and B. Vainberg. Radiation conditions for the difference Schr¨odinger operators. Appl. Anal., 80(3-4):525–556, 2001. [651] V. M. Shalaev. Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, volume 158 of Springer Tracts in Modern Physics. Springer-Verlag, 1999. [652] T. J. Shepherd, P. J. Roberts, and R. Loudon. Soluble two-dimensional photonic-crystal model. Phys. Rev. E, 55(5):6024–6038, 1997. [653] E.` E.` Shnol’. On the behavior of the eigenfunctions of Schr¨odinger’s equation. Mat. Sb. (N.S.), 42 (84)(3):273–286, 1957. [654] M. Shubin. Spectral theory of the Schr¨odinger operators on non-compact manifolds: qualitative results. In Spectral theory and geometry (Edinburgh, 1998), volume 273 of London Math. Soc. Lecture Note Ser., pages 226–283. Cambridge Univ. Press, Cambridge, 1999. [655] M. Shubin and T. Sunada. Geometric theory of lattice vibrations and specific heat. Pure Appl. Math. Q., 2(3, part 1):745–777, 2006. [656] M. A. Shubin. Pseudodifference operators and their Green function. Izv. Akad. Nauk SSSR Ser. Mat., 49(3):652–671, 1985. [657] M. A. Shubin. Pseudodifferential operators and spectral theory. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1987. Translated from the Russian by Stig I. Andersson. [658] M. A. Shubin. Spectral theory of elliptic operators on noncompact manifolds. Ast´erisque, (207):5, 35–108, 1992. M´ethodes semi-classiques, Vol. 1 (Nantes, 1991). [659] M. Sieber. Leading off-diagonal approximation for the spectral form factor for uniformly hyperbolic systems. J. Phys. A, 35(42):L613–L619, 2002. [660] M. Sieber and K. Richter. Correlations between periodic orbits and their role in spectral statistics. Phys. Scr., T90:128–133, 2001. 116th Symposium of the Nobel on Quantum Chaos Y2K, Sweden, JUN 13-17, 2000. [661] B. Simon. On the genericity of nonvanishing instability intervals in Hills equa- tion. Ann. Inst. Henri Poincar´e, XXIV(1):91–93, 1976. [662] B. Simon. A new approach to inverse spectral theory. I. Fundamental formal- ism. Ann. of Math. (2), 150(3):1029–1057, 1999. BIBLIOGRAPHY 263

[663] B. Simon. Trace ideals and their applications, volume 120 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2005. [664] A. Singer, Z. Zhao, Y. Shkolnisky, and R. Hadani. Viewing angle classification of cryo-electron microscopy images using eigenvectors. SIAM J. Imaging Sci., 4(2):723–759, 2011. [665] M. M. Skriganov. Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators. Trudy Mat. Inst. Steklov., 171:122, 1985. [666] M. M. Skriganov. The spectrum band structure of the three-dimensional Schr¨odinger operator with periodic potential. Invent. Math., 80(1):107–121, 1985. [667] U. Smilansky. Irreversible quantum graphs. Waves Random Media, 14(1):S143–S153, 2004. Special section on quantum graphs. [668] U. Smilansky. Quantum chaos on discrete graphs. J. Phys. A, 40(27):F621– F630, 2007. [669] U. Smilansky. Exterior-interior duality for discrete graphs. J. Phys. A, 42(3):035101, 13, 2009. [670] U. Smilansky and M. Solomyak. The quantum graph as a limit of a network of physical wires. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 283–291. Amer. Math. Soc., Providence, RI, 2006. [671] Z. Sobirov, D. Matrasulov, K. Sabirov, S. Sawada, and K. Nakamura. Inte- grable nonlinear schr¨odinger equation on simple networks: Connection for- mula at vertices. Phys. Rev. E, 81:066602, Jun 2010. [672] A. V. Sobolev. Absolute continuity of the periodic magnetic Schr¨odinger op- erator. Invent. Math., 137(1):85–112, 1999. [673] A. V. Sobolev and M. Solomyak. Schr¨odinger operators on homogeneous met- ric trees: spectrum in gaps. Rev. Math. Phys., 14(5):421–467, 2002. [674] M. Solomyak. On the spectrum of the Laplacian on regular metric trees. Waves Random Media, 14(1):S155–S171, 2004. Special section on quantum graphs. [675] A. Stern. Bemerkungen ber asymptotisches Verhalten von Eigenwerten und Eigenfunktionen. PhD thesis, G¨ottingen University, 1925. [676] P. Stollmann. Caught by disorder,volume20ofProgress in Mathematical Physics. Birkh¨auser Boston Inc., Boston, MA, 2001. Bound states in random media. [677] R. S. Strichartz. Differential equations on fractals. Princeton University Press, Princeton, NJ, 2006. A tutorial. [678] C. Sturm. M´emoire sur les ´equations diff´erentielles lin´eaires du second ordre. J. Math. Pures Appl., 1:106–186, 1836. [679] C. Sturm. M´emoire sur une classe d’´equationsa ` diff´erences partielles. J. Math. Pures Appl., 1:373–444, 1836. [680] T. Sunada. Riemannian coverings and isospectral manifolds. Ann. of Math. (2), 121(1):169–186, 1985. [681] T. Sunada. A periodic Schr¨odinger operator on an abelian cover. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 37(3):575–583, 1990. 264 BIBLIOGRAPHY

[682] T. Sunada. Discrete geometric analysis. In Analysis on graphs and its appli- cations,volume77ofProc. Sympos. Pure Math., pages 51–83. Amer. Math. Soc., Providence, RI, 2008. [683] G. Tanner. Spectral statistics for unitary transfer matrices of binary graphs. J. Phys. A, 33(18):3567–3585, 2000. [684] G. Tanner. Unitary- ensembles and spectral statistics. J. Phys. A, 34(41):8485–8500, 2001. [685] A. Terras. Zeta functions of graphs, volume 128 of Cambridge Studies in Ad- vanced Mathematics. Cambridge University Press, Cambridge, 2011. A stroll through the garden. [686] A. A. Terras and H. M. Stark. Zeta functions of finite graphs and coverings. III. Adv. Math., 208(1):467–489, 2007. [687] C. Texier and G. Montambaux. Scattering theory on graphs. J. Phys. A, 34(47):10307–10326, 2001. [688] L. E. Thomas. Time dependent approach to scattering from impurities in a crystal. Comm. Math. Phys., 33:335–343, 1973. [689] T. J. Thornton. Mesoscopic devices. Rep. Prog. Phys., 58:311–364, 1995. [690] E. C. Titchmarsh. Eigenfunction expansions associated with second-order dif- ferential equations. Vol. 2. Oxford, at the Clarendon Press, 1958. [691] K. Uhlenbeck. Generic properties of eigenfunctions. Amer.J.Math., 98(4):1059–1078, 1976. [692] G. Uhlmann. Inverse boundary value problems and applications. Ast´erisque, 207:153–211, 1996. [693] G. Uhlmann, editor. Inside out: inverse problems and applications,volume47 of Mathematical Sciences Research Institute Publications. Cambridge Univer- sity Press, Cambridge, 2003. [694] G. Uhlmann. Visibility and invisibility. In ICIAM 07—6th International Con- gress on Industrial and Applied Mathematics, pages 381–408. Eur. Math. Soc., Z¨urich, 2009. [695] G. Uhlmann, editor. Inside out: inverse problems and applications,volume2 of Mathematical Sciences Research Institute Publications. Cambridge Univer- sity Press, Cambridge, 2012. [696] I. Veseli´c. Spectral analysis of percolation Hamiltonians. Math. Ann., 331(4):841–865, 2005. [697] F. Visco-Comandini, M. Mirrahimi, and M. Sorine. Some inverse scattering problems on star-shaped graphs. J. Math. Anal. Appl., 378(1):343–358, 2011. [698] K. Vogtmann. Automorphisms of free groups and outer space. In Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), volume 94, pages 1–31, 2002. [699] K. Vogtmann. What is...outer space? Notices Amer. Math. Soc., 55(7):784– 786, 2008. [700] J. von Neumann. Allgemeine Eigenwerttheorie Hermitescher Funktionaloper- atoren. Math. Ann., 102:49–131, 1929–1930. [701] B. Winn. A conditionally convergent trace formula for quantum graphs. In Analysis on graphs and its applications,volume77ofProc. Sympos. Pure Math., pages 491–501. Amer. Math. Soc., Providence, RI, 2008. [702] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58(20):2059–2062, 1987. BIBLIOGRAPHY 265

[703] D. R. Yafaev. Mathematical scattering theory, volume 158 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010. Analytic theory. [704] V. A. Yakubovich and V. M. Starzhinskii. Linear differential equations with periodic coefficients. 1, 2. Halsted Press [John Wiley & Sons] New York- Toronto, Ont., 1975. Translated from Russian by D. Louvish. [705] E. Yanagida. Existence of stable stationary solutions of scalar reaction- diffusion equations in thin tubular domains. Appl. Anal., 36:171–188, 1990. [706] E. Yanagida. Stability of nonconstant steady states in reaction-diffusion sys- tems on graphs. Jap. J. Ind. Appl. Math., 18(1):25–42, 2001. [707] C. F. Yang, V. N. Pivovarchik, and Z. Y. Huang. Ambarzumyan-type theo- rems on star graphs. Oper. Matrices, 5(1):119–131, 2011. [708] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer. Coupled-resonator optical wave- guide: a proposal and analysis. Opt. Lett., 24:711–713, 1999. [709] S. T. Yau. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math., 28:201–228, 1975. [710] K. Yoshitomi. Band gap of the spectrum in periodically curved quantum waveguides. J. Differential Equations, 142(1):123–166, 1998. [711] V. Yurko. Inverse spectral problems for Sturm-Liouville operators on graphs. Inverse Problems, 21(3):1075–1086, 2005. [712] V. Yurko. Inverse problems for Sturm-Liouville operators on bush-type graphs. Inverse Problems, 25(10):105008, 14, 2009. [713] V. Yurko. Inverse spectral problems for differential operators on a graph with a rooted cycle. Tamkang J. Math., 40(3):271–286, 2009. [714] V. Yurko. Uniqueness of recovering differential operators on hedgehog-type graphs. Adv. Dyn. Syst. Appl., 4(2):231–241, 2009. [715] V. Yurko. Uniqueness of recovering Sturm-Liouville operators on A-graphs from spectra. Results Math., 55(1-2):199–207, 2009. [716] V. Yurko. An inverse problem for Sturm-Liouville differential operators on A-graphs. Appl. Math. Lett., 23(8):875–879, 2010. [717] V. Yurko. A remark on inverse problems for Sturm-Liouville operators on graphs. Results Math., 58(3-4):399–401, 2010. [718] V. Yurko. Inverse problems for Bessel-type differential equations on noncom- pact graphs using spectral data. Inverse Problems, 27(4):045002, 17, 2011. [719] V. A. Yurko. An inverse problem for higher order differential operators on star-type graphs. Inverse Problems, 23(3):893–903, 2007. [720] V. A. Yurko. The inverse spectral problem for differential operator pencils on noncompact spatial networks. Differ. Uravn., 44(12):1658–1666, 2008. [721] V. A. Yurko. On the reconstruction of higher-order differential operators on compact graphs. Dokl. Akad. Nauk, 419(5):604–608, 2008. [722] V. A. Yurko. Recovering higher-order differential operators on star-type graphs from spectra. Cubo, 10(1):93–102, 2008. [723] V. A. Yurko. Inverse nodal problems for the Sturm-Liouville differential op- erators on a star-type graph. Sibirsk. Mat. Zh., 50(2):469–475, 2009. [724] V. A. Yurko. Inverse spectral problems for Sturm-Liouville differential oper- ators on a finite interval. J. Inverse Ill-Posed Probl., 17(7):639–694, 2009. [725] V. A. Yurko. On an inverse spectral problem for differential operators on a hedgehog-type graph. Dokl. Akad. Nauk, 425(4):466–470, 2009. 266 BIBLIOGRAPHY

[726] V. A. Yurko. Reconstruction of Sturm-Liouville operators from the spectra onagraphwithacycle.Mat. Sb., 200(9):147–160, 2009. [727] V. A. Yurko. Inverse spectral problems for differential operators on arbitrary compact graphs. J. Inverse Ill-Posed Probl., 18(3):245–261, 2010. [728] V. A. Yurko. Reconstruction of Sturm-Liouville differential operators on A- graphs. Differ. Uravn., 47(1):50–59, 2011. [729] M. Zaidenberg. Discrete convolution operators in positive characteristic: a variation on the Floquet-Bloch theory. In Complex analysis and dynamical systems IV. Part 2, volume 554 of Contemp. Math., pages 265–284. Amer. Math. Soc., Providence, RI, 2011. [730] M. G. Za˘ıdenberg, S. G. Kre˘ın, P. A. Kuˇcment, and A. A. Pankov. Banach bundles and linear operators. Uspehi Mat. Nauk, 30(5(185)):101–157, 1975. English translation: Russian Math. Surveys 30 (1975), no. 5, 115–175. [731] M. G. Za˘ıdenberg and V. Y. Lin. Finiteness theorems for holomorphic map- pings. In Current problems in mathematics. Fundamental directions, Vol. 9 (Russian), Itogi Nauki i Tekhniki, pages 127–193, 272. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986. [732] D. Zelig. Properties of Solutions of Partial Differential Equations Defined on Human Lung-shaped Domains. PhD thesis, Technion, Israel, 2005. [733] H. Zeng. Convergence of Spectra of Mesoscopic Systems Collapsing Onto a Graph. PhD thesis, Wichita State University, Wichita, KS, 2001. [734] J. M. Ziman. Principles of the theory of solids. Cambridge University Press, New York, 1964. [735] J. M. Ziman. Models of disorder. Cambridge University Press, Cambridge, 1979. The theoretical physics of homogeneously disordered systems. Index

1D complex, 3, 4 automorphic, 110 B,3 E,2 band-gap structure, 116 N(λ), 67 Bethe lattices, 34, 207 V ,2 Betti number, 4, 211 W , 105, 107 Bloch variety, 116 Φ(E,F), Fredholm operators, 214 bond, 2, 210 Tn, 109 bond reversal, 3 βΓ, 211 bound state, 80 D(Γ), 111 boundary control method, 184 δ-type condition, 24 boundary form, 20 fˆ, 110 boundary vertices, 150 μ(f), 135 Brillouin zone, 109 ν(f), 135 π-electrons, 192 carbon nanotube, 201 ρ(A), 219 Casimir effect, 205 σ-electrons, 192 Casimir-Polder force, 205 σd(A), 220 Cayley graph, 28, 35, 212 σac(A), 221 character, 107 σpp(A), 221 chiral, 204 σr(A), 220 co-boundary operator, 7 σsc(A), 221 co-spectral graphs, 183 σ(A), 219 co-spectrum, 216 σess(A), 220 combinatorial graph, 3 H k(Γ), 11 condition δ-type, 24 du,2 i o continuity, 14 dv,dv,3 1st Betti number, 4, 211 current conservation, 14 decoupling, 26 , 2, 209 Dirichlet, 25 adjacent vertices, 2 Kirchhoff, 14 algebraic counting function, 93 Neumann, 14 analysis on fractals, 188 Neumann–Kirchhoff, 14 analytic Fredholm theorem, 67 quasiperiodic, 60, 114 analytic set, 216 standard, 14 aperiodic graph, 172 strongly coupling, 172 arcs, 175 continuous functional calculus, 220 267 268 INDEX critical point, 147 forest, 211 non-degenerate, 147 form CROWs, 208 closed, 219 current conservation condition, 14 Hermitian, 219 cut-points, 60 Hermitian symplectic, 223 cycle, 211 non-degenerate, 223 cyclomatic number, 4, 211 quadratic, 219 quadratic, of a graph, 22 decoupling condition, 26 sesqui-linear, 219 degeneracy class, 168 form factor, 161 degree matrix, 2, 209 Fredholm operator, 52, 213 degree of a vertex fullerene buckyball, 201 outgoing, 210 function of a discrete graph, 5 degree of a vertex, 2, 209 fundamental domain, 105, 107 incoming, 210 density of states, 100, 160, 221 Gaussian Orthogonal Ensemble determinant, 149 (GOE), 162 diagrams, 179 Gaussian Unitary Ensemble, 163 digraph, 2, 210 graph, 2, 209 Dirac operators, 187 bipartite, 210 Dirac point, 203 compact, 9 directed adjacency matrix, 210 complete, 210 , 2, 210 finite, 9 Dirichlet-to-Neumann map, 85, 87, infinite, 9 198, 201 periodic, 105, 211 Discrete Fourier Transform (DFT) regular, 210 matrix, 50 star, 210 discrete graph, 3 tree, 211 dispersion curve, 116 graphene, 201 dispersion relation, 68, 116 graphyne, 201 Grassmannian, 224 eigenfunction, 220 eigenvalue, 220 Hadamard’s variational formulas, 68 electric potential, 12 Hamiltonian, 12, 29 electromagnetic circuits, 188 Hermitian symplectic space, 223 ellipticity, 53 Hill discriminant, 201 encounter, 175 equilateral graph, 8, 90 improper partition vertex, 143 equipartition, 144 impurity, 124 equitransmitting matrices, 50 impurity spectrum, 124 extension theory, 223 , 6 external edges, 150 incoming amplitude, 150 incoming bond, 3, 210 fattened graph, 189 incoming degree, 3 finite ball condition, 9 index of a Fredholm operator, 52, Floquet multiplier, 109 214 Floquet theory, 105 Internet (or network) tomography, Floquet transform, 109 182 flux, 61 inverse problem, 181 INDEX 269 invertible regularizer, 214 nodal, 143 invisibility cloaking, 195 proper, 143 isospectral graphs, 183 partition vertex, 143 isotropic subspace, 224 path, 99, 211 closed, 99, 211 Lagrangian subspace, 224 primitive, 99 Laplacian repetition, 99 combinatorial, 5 perfect scar, 85 discrete, 5 periodic orbit, 99 harmonic, 5 photonic crystal, 195 normalized, 6 positive (negative) domain, 135 weighted, 7 potential, 203 Laurent polynomials, 112 principal analytic, 68 lead, 8, 150 principal analytic set, 216 leaky wire, 195 proper partition vertex, 143 left regularizer, 215 left semi-Fredholm, 215 quadratic form, 5 level repulsion, 159 quantum graph, 3, 13 Liouville type theorem, 127 quantum waveguide, 193 local finiteness, 2, 209 quantum wire, 193 local vertex conditions, 16 quasi-momentum, 108 Lyapunov function, 201 quasiperiodic conditions, 61 magnetic potential, 12 Rashba Hamiltonian, 187 Markov operator, 6 regularized determinant, 101 metric graph, 3, 7 regularizer, 214 metric length, 100 repetition number, 99 Morse index, 147 repetition of a closed path, 99 multistructure, 188 resolvent, 219 resolvent set, 219 naphthalene, 192 right regularizer, 215 necklace structure, 204 right semi-Fredholm, 215 nodal count, 135 nodal deficiency, 145 scale invariance, 22 nodal domain, 134 scar, 85 number of zeros, 135 scattering matrix, 38, 150 Oka’s principle, 215 Schatten-von Neumann operator operator pencils, 49 ideal, 101 origin vertex, 2, 210 Schreier graph, 28, 35, 212 outgoing, 3 SCISSORs, 208 outgoing amplitudes, 150 semi-Fredholm operators, 215 outgoing bond, 3, 210 simple cycle, 211 outgoing degree, 3 simplicial complex, xi, 8 outgoing directions, 14 simplicity of the spectrum generic, 71 partition, 143 of a tree, 74 bipartite, 144 skew orthogonal, 224 equipartition, 144 Sobolev space H1(Γ), 10 improper, 143 space L2(Γ), 10 270 INDEX spectral band, 115 spectral counting function, 67 spectral determinant, 148 spectral gap, 115 spectral measure, 221 spectral theorem, 220 spectrum, 219 absolutely continuous, 221 discrete, 220 essential, 220 point, 220 pure point, 221 residual, 220 singular continuous, 221 spectrum of the operator function, 216 stability amplitude, 100 Stein domain, 55 Stein manifold, 215, 216 strongly coupling vertex conditions, 182 symplectic geometry, 223 system theory, 201 terminal vertex, 2, 210 threshold, 194 time-reversal invariance, 170 topological length, 99 trace formula, 92 tree, 4, 211 two-point correlation function, 160 unique continuation property, 84 unitary character, 107 vertex conditions, 13 vertex Neumann conditions, 27 weak unique continuation property, 84 Selected Published Titles in This Series

186 Gregory Berkolaiko and Peter Kuchment, Introduction to Quantum Graphs, 2013 185 Patrick Iglesias-Zemmour, Diffeology, 2012 184 Frederick W. Gehring and Kari Hag, The Ubiquitous Quasidisk, 2012 183 Gershon Kresin and Vladimir Maz’ya, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems, 2012 182 Neil A. Watson, Introduction to Heat Potential Theory, 2012 181 Graham J. Leuschke and Roger Wiegand, Cohen-Macaulay Representations, 2012 180 Martin W. Liebeck and Gary M. Seitz, and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras, 2012 179 Stephen D. Smith, Subgroup Complexes, 2011 178 Helmut Brass and Knut Petras, Quadrature Theory, 2011 177 Alexei Myasnikov, Vladimir Shpilrain, and Alexander Ushakov, Non-commutative Cryptography and Complexity of Group-theoretic Problems, 2011 176 Peter E. Kloeden and Martin Rasmussen, Nonautonomous Dynamical Systems, 2011 175 Warwick de Launey and Dane Flannery, Algebraic Design Theory, 2011 174 Lawrence S. Levy and J. Chris Robson, Hereditary Noetherian Prime Rings and Idealizers, 2011 173 Sariel Har-Peled, Geometric Approximation Algorithms, 2011 172 Michael Aschbacher, Richard Lyons, Stephen D. Smith, and Ronald Solomon, The Classification of Finite Simple Groups, 2011 171 Leonid Pastur and Mariya Shcherbina, Eigenvalue Distribution of Large Random Matrices, 2011 170 Kevin Costello, Renormalization and Effective Field Theory, 2011 169 Robert R. Bruner and J. P. C. Greenlees, Connective Real K-Theory of Finite Groups, 2010 168 Michiel Hazewinkel, Nadiya Gubareni, and V. V. Kirichenko, Algebras, Rings and Modules, 2010 167 Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster Algebras and Poisson Geometry, 2010 166 Kyung Bai Lee and Frank Raymond, Seifert Fiberings, 2010 165 Fuensanta Andreu-Vaillo, Jos´eM.Maz´on, Julio D. Rossi, and J. Juli´an Toledo-Melero, Nonlocal Diffusion Problems, 2010 164 Vladimir I. Bogachev, Differentiable Measures and the Malliavin Calculus, 2010 163 Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci Flow: Techniques and Applications: Part III: Geometric-Analytic Aspects, 2010 162 Vladimir Mazya and J¨urgen Rossmann, Elliptic Equations in Polyhedral Domains, 2010 161 KanishkaPerera,RaviP.Agarwal,andDonalO’Regan, Morse Theoretic Aspects of p-Laplacian Type Operators, 2010 160 Alexander S. Kechris, Global Aspects of Ergodic Group Actions, 2010 159 Matthew Baker and Robert Rumely, Potential Theory and Dynamics on the Berkovich Projective Line, 2010 158 D. R. Yafaev, Mathematical Scattering Theory, 2010 157 Xia Chen, Random Walk Intersections, 2010 156 Jaime Angulo Pava, Nonlinear Dispersive Equations, 2009 155 Yiannis N. Moschovakis, Descriptive Set Theory, Second Edition, 2009

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/survseries/.

A “quantum graph” is a graph consid- ered as a one-dimensional complex and equipped with a differential oper- ator (“Hamiltonian”). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propaga- tion of waves of various nature through a quasi-one-dimensional (e.g., “meso-” Subbarao Vani Photo courtesy of or “nano-scale”) system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician’s heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.

For additional information and updates on this book, visit AMS on the Web www.ams.org/bookpages/surv-186 www.ams.org

SURV/186