Janthinobacterium CG23 2: Comparative Genome Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Strong Purifying Selection Contributes to Genome Streamlining in Epipelagic Marinimicrobia
bioRxiv preprint doi: https://doi.org/10.1101/653261; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Strong Purifying Selection Contributes to Genome Streamlining in Epipelagic Marinimicrobia Carolina Alejandra Martinez-Gutierrez and Frank O. Aylward Department of Biological Sciences, Virginia Tech, Blacksburg, VA Email for correspondence: [email protected] Abstract Marine microorganisms inhabiting nutrient-depleted waters play critical roles in global biogeochemical cycles due to their abundance and broad distribution. Many of these microbes share similar genomic features including small genome size, low % G+C content, short intergenic regions, and low nitrogen content in encoded amino acids, but the evolutionary drivers of these characteristics are unclear. Here we compared the strength of purifying selection across the Marinimicrobia, a candidate phylum which encompasses a broad range of phylogenetic groups with disparate genomic features, by estimating the ratio of non-synonymous and synonymous substitutions (dN/dS) in conserved marker genes. Our analysis shows significantly lower dN/dS values in epipelagic Marinimicrobia that exhibit features consistent with genome streamlining when compared to their mesopelagic counterparts. We found a significant positive correlation between median dN/dS values and genomic traits associated to streamlined organisms, including % G+C content, genome size, and intergenic region length. Our findings are consistent with genome streamlining theory, which postulates that small, compact genomes with low G+C contents are adaptive and the product of strong purifying selection. -
1 Strong Purifying Selection Is Associated with Genome
1 Strong Purifying Selection is Associated with Genome Streamlining in Epipelagic Marinimicrobia Carolina Alejandra Martinez-Gutierrez and Frank O. Aylward Department of Biological Sciences, Virginia Tech, Blacksburg, VA Email for correspondence: [email protected] Abstract Marine microorganisms inhabiting nutrient-depleted waters play critical roles in global biogeochemical cycles due to their abundance and broad distribution. Many of these microbes share similar genomic features including small genome size, low % G+C content, short intergenic regions, and low nitrogen content in encoded amino acid residue side chains (N-ARSC), but the evolutionary drivers of these characteristics are unclear. Here we compared the strength of purifying selection across the Marinimicrobia, a candidate phylum which encompasses a broad range of phylogenetic groups with disparate genomic features, by estimating the ratio of non-synonymous and synonymous substitutions (dN/dS) in conserved marker genes. Our analysis reveals that epipelagic Marinimicrobia that exhibit features consistent with genome streamlining have significantly lower dN/dS values when compared to the mesopelagic counterparts. We also found a significant positive correlation between median dN/dS values and % G+C content, N-ARSC, and intergenic region length. We did not identify a significant correlation between dN/dS ratios and estimated genome size, suggesting the strength of selection is not a primary factor shaping genome size in this group. Our findings are generally consistent with genome streamlining theory, which postulates that many genomic features of abundant epipelagic bacteria are the result of adaptation to oligotrophic nutrient conditions. Our results are also in agreement with previous findings that genome streamlining is common in epipelagic waters, suggesting that genomes inhabiting this region of the ocean have been shaped by strong selection together with prevalent nutritional constraints characteristic of this environment. -
First Complete Genome Sequences of Janthinobacterium Lividum EIF1 And
First Complete Genome Sequences of Janthinobacterium lividum EIF1 and EIF2 and their Comparative Genome Analysis Downloaded from https://academic.oup.com/gbe/article-abstract/doi/10.1093/gbe/evaa148/5870831 by University of Economics and Business Administration user on 31 July 2020 Ines Friedrich1#, Jacqueline Hollensteiner1#* Dominik Schneider1, Anja Poehlein1, Robert Hertel2, and Rolf Daniel1 1 Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany 2 FG Synthetic Microbiology, Institute of Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany. # contributed equally, shared co-first authorship *To whom correspondence should be addressed: Jacqueline Hollensteiner, Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany, Phone: +49- 551-3933833, Fax: +49-551-3912181, Email: [email protected] © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non‐Commercial License (http://creativecommons.org/licenses/by‐nc/4.0/), which permits non‐commercial re‐use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re‐use, please contact [email protected] 1 Abstract Downloaded from https://academic.oup.com/gbe/article-abstract/doi/10.1093/gbe/evaa148/5870831 by University of Economics and Business Administration user on 31 July 2020 We present the first two complete genomes of the Janthinobacterium lividum species, namely strains EIF1 and EIF2, which both possess the ability to synthesize violacein. The violet pigment violacein is a secondary metabolite with antibacterial, antifungal, antiviral, and antitumoral properties. -
Cooperative Interaction of Janthinobacterium Sp. SLB01 and Flavobacterium Sp
International Journal of Molecular Sciences Article Cooperative Interaction of Janthinobacterium sp. SLB01 and Flavobacterium sp. SLB02 in the Diseased Sponge Lubomirskia baicalensis Ivan Petrushin 1,2,* , Sergei Belikov 1 and Lubov Chernogor 1 1 Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; [email protected] (S.B.); [email protected] (L.C.) 2 Faculty of Business Communication and Informatics, Irkutsk State University, Irkutsk 664033, Russia * Correspondence: [email protected] Received: 31 August 2020; Accepted: 25 October 2020; Published: 30 October 2020 Abstract: Endemic freshwater sponges (demosponges, Lubomirskiidae) dominate in Lake Baikal, Central Siberia, Russia. These sponges are multicellular filter-feeding animals that represent a complex consortium of many species of eukaryotes and prokaryotes. In recent years, mass disease and death of Lubomirskia baicalensis has been a significant problem in Lake Baikal. The etiology and ecology of these events remain unknown. Bacteria from the families Flavobacteriaceae and Oxalobacteraceae dominate the microbiomes of diseased sponges. Both species are opportunistic pathogens common in freshwater ecosystems. The aim of our study was to analyze the genomes of strains Janthinobacterium sp. SLB01 and Flavobacterium sp. SLB02, isolated from diseased sponges to identify the reasons for their joint dominance. Janthinobacterium sp. SLB01 attacks other cells using a type VI secretion system and suppresses gram-positive bacteria with violacein, and regulates its own activity via quorum sensing. It produces floc and strong biofilm by exopolysaccharide biosynthesis and PEP-CTERM/XrtA protein expression. Flavobacterium sp. SLB02 utilizes the fragments of cell walls produced by polysaccharides. These two strains have a marked difference in carbohydrate acquisition. -
UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations
UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title Bioinformatic Investigations in Marine Microbial Ecology Permalink https://escholarship.org/uc/item/61q69869 Author Heller, Philip Publication Date 2014 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SANTA CRUZ BIOINFORMATIC INVESTIGATIONS IN MARINE MICROBIAL ECOLOGY A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOINFORMATICS by Philip Heller December 2014 The Dissertation of Philip Heller is approved: ____________________________________________________ Professor Jonathan Zehr, chair ____________________________________________________ Professor Josh Stuart ____________________________________________________ Rex Malmstrom, Ph.D. ________________________________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Philip Heller 2014 Table of Contents Table of Contents ............................................................................................................. iii List of Tables and Figures ............................................................................................... v Abstract ............................................................................................................................. vii Introduction ....................................................................................................................... -
Implications of Streamlining Theory for Microbial Ecology
The ISME Journal (2014) 8, 1553–1565 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej WINOGRADSKY REVIEW Implications of streamlining theory for microbial ecology Stephen J Giovannoni1, J Cameron Thrash1,2 and Ben Temperton1,3 1Department of Microbiology, Oregon State University, Corvallis, OR, USA; 2Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA and 3Plymouth Marine Laboratory, Prospect Place, Plymouth, UK Whether a small cell, a small genome or a minimal set of chemical reactions with self-replicating properties, simplicity is beguiling. As Leonardo da Vinci reportedly said, ‘simplicity is the ultimate sophistication’. Two diverging views of simplicity have emerged in accounts of symbiotic and commensal bacteria and cosmopolitan free-living bacteria with small genomes. The small genomes of obligate insect endosymbionts have been attributed to genetic drift caused by small effective population sizes (Ne). In contrast, streamlining theory attributes small cells and genomes to selection for efficient use of nutrients in populations where Ne is large and nutrients limit growth. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function. Consequences of reductive evolution in streamlined organisms include atypical patterns of prototrophy and the absence of common regulatory systems, which have been linked to difficulty in culturing these cells. Recent evidence from metagenomics suggests that streamlining is commonplace, may broadly explain the phenomenon of the uncultured microbial majority, and might also explain the highly interdependent (connected) behavior of many microbial ecosystems. Streamlining theory is belied by the observation that many successful bacteria are large cells with complex genomes. -
How Proteome Cost Minimization Drives Evolution
Survival of the cheapest: How proteome cost minimization drives evolution Kasper P. Kepp* Technical University of Denmark, DTU Chemistry, Kemitorvet 206, DK-2800 Kongens Lyngby, Denmark. * Corresponding e-mail: [email protected] Running title: Survival of the cheapest Word count: 10,169 words 1 Abstract Darwin’s theory of evolution emphasized that positive selection of functional proficiency provides the fitness that ultimately determines the structure of life, a view that has dominated biochemical thinking of enzymes as perfectly optimized for their specific functions. The 20th-century modern synthesis, structural biology, and the central dogma explained the machinery of evolution, and nearly neutral theory explained how selection competes with random fixation dynamics that produce molecular clocks essential e.g. for dating evolutionary histories. However, the quantitative proteomics revealed that fitness effects not related to functional proficiency play much larger roles on long evolutionary time scales than previously thought, with particular evidence that some universal biophysical selection pressures act via protein expression levels. This paper first summarizes recent progress in the 21st century towards recovering this universal selection pressure. Then, the paper argues that proteome cost minimization is the dominant, underlying “non-function” selection pressure controlling most of the evolution of already functionally adapted living systems. A theory of proteome cost minimization is described and argued to have consequences for -
Aquatic Microbial Ecology 78:51
Vol. 78: 51–63, 2016 AQUATIC MICROBIAL ECOLOGY Published online December 15 doi: 10.3354/ame01801 Aquat Microb Ecol Contribution to AME Special 6 ‘SAME 14: progress and perspectives in aquatic microbial ecology’ OPENPEN ACCESSCCESS REVIEW Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere Ryan J. Newton1, Ashley Shade2,* 1School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Avenue, Milwaukee, WI 53204, USA 2Department of Microbiology and Molecular Genetics and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA ABSTRACT: There are patterns in the dynamics of rare taxa that lead to hypotheses about their lifestyles. For example, persistently rare taxa may be oligotrophs that are adapted for efficiency in resource-limiting environments, while conditionally rare or blooming taxa may be copiotrophs that are adapted to rapid growth when resources are available. Of course, the trophic strategies of microorganisms have direct ecological implications for their abundances, contributions to commu- nity structure, and role in nutrient turnover. We summarize general frameworks for separately considering rarity and heterotrophy, pulling examples from a variety of ecosystems. We then inte- grate these 2 topics to discuss the technical and conceptual challenges to understanding their pre- cise linkages. Because much has been investigated especially in marine aquatic environments, we finally extend the discussion to lifestyles of rarity for freshwater lakes by offering case studies of Lake Michigan lineages that have rare and prevalent patterns hypothesized to be characteristic of oligotrophs and copiotrophs. To conclude, we suggest moving forward from assigning dichotomies of rarity/prevalence and oligotrophs/copiotrophs towards their more nuanced con- tinua, which can be linked via genomic information and coupled to quantifications of microbial physiologies during cell maintenance and growth. -
Glucose Uptake in Marine Cyanobacteria: Regulation, Expression of The
Glucose uptake in marine cyanobacteria: regulation, expression of the transporter and effects on the proteome and metabolome José Ángel Moreno Cabezuelo PhD Thesis Supervisors: Jesús Díez Dapena José Manuel García-Fernández PhD in Biological Sciences PhD in Biological Sciences Professor of the Dpt. of Biochemistry Professor of the Dpt. of Biochemistry and Molecular Biology and Molecular Biology Universidad de Córdoba TITULO: Glucose uptake in marine cyanobacteria: regulation, expression of the transporter and effects on the proteome and metabolome AUTOR: José Ángel Moreno Cabezuelo © Edita: UCOPress. 2019 Campus de Rabanales Ctra. Nacional IV, Km. 396 A 14071 Córdoba https://www.uco.es/ucopress/index.php/es/ [email protected] TÍTULO DE LA TESIS: Glucose uptake in marine cyanobacteria: regulation, expression of the transporter and effects on the proteome and metabolome DOCTORANDO: José Ángel Moreno Cabezuelo INFORME RAZONADO DEL/DE LOS DIRECTOR/ES DE LA TESIS (se hará mención a la evolución y desarrollo de la tesis, así como a trabajos y publicaciones derivados de la misma). El trabajo realizado por el doctorando José Ángel Moreno Cabezuelo se puede considerar de excelente. Durante el tiempo transcurrido desde su inicio (tres años y tres meses), ha realizado un estudio exhaustivo sobre los efectos de la adición de glucosa en la expresión del gen glcH, codificante de un transportador de glucosa de alta afinidad en cianobacterias marinas. Además, ha usado técnicas de proteómica y metabolómica de última generación para analizar el efecto de la glucosa sobre el metabolismo de tres estirpes de Prochlorococcus y tres de Synechococcus. Es de reseñar que este es uno de los primeros estudios en el que se han utilizado ambas técnicas en picocianobacterias marinas. -
Clues Into the Early Evolutionary Origin of the Acidocalcisome
Seufferheld et al. Biology Direct 2011, 6:50 http://www.biology-direct.com/content/6/1/50 RESEARCH Open Access Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome Manfredo J Seufferheld1*, Kyung Mo Kim2,3, James Whitfield4, Alejandro Valerio5 and Gustavo Caetano-Anollés2 Abstract Background: Volutin granules appear to be universally distributed and are morphologically and chemically identical to acidocalcisomes, which are electron-dense granular organelles rich in calcium and phosphate, whose functions include storage of phosphorus and various metal ions, metabolism of polyphosphate, maintenance of intracellular pH, osmoregulation and calcium homeostasis. Prokaryotes are thought to differ from eukaryotes in that they lack membrane-bounded organelles. However, it has been demonstrated that as in acidocalcisomes, the calcium and polyphosphate-rich intracellular “volutin granules (polyphosphate bodies)” in two bacterial species, Agrobacterium tumefaciens, and Rhodospirillum rubrum, are membrane bound and that the vacuolar proton- translocating pyrophosphatases (V-H+PPases) are present in their surrounding membranes. Volutin granules and acidocalcisomes have been found in organisms as diverse as bacteria and humans. Results: Here, we show volutin granules also occur in Archaea and are, therefore, present in the three superkingdoms of life (Archaea, Bacteria and Eukarya). Molecular analyses of V-H+PPase pumps, which acidify the acidocalcisome lumen and are diagnostic proteins of the organelle, also reveal the presence of this enzyme in all three superkingdoms suggesting it is ancient and universal. Since V-H+PPase sequences contained limited phylogenetic signal to fully resolve the ancestral nodes of the tree, we investigated the divergence of protein domains in the V-H+PPase molecules. -
Characterizing Proteases in an Antarctic Janthinobacterium Sp
• Article • Advances in Polar Science doi: 10.13679/j.advps.2015.1.00088 March 2015 Vol. 26 No. 1: 88-95 Characterizing proteases in an Antarctic Janthinobacterium sp. isolate: Evidence of a protease horizontal gene transfer event Cecilia Martinez-Rosales1,2☆, Juan José Marizcurrena1☆, Andrés Iriarte3,4,5☆, Natalia Fullana1, Héctor Musto5 & Susana Castro-Sowinski1,2* 1 Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Igua 4225, 11400, Montevideo, Uruguay; 2 Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE). Av Italia 3318, 11600, Montevideo, Uruguay; 3 Dpto de Bioquímica y Genómica Microbiana and Dpto de Genómica (IIBCE); 4 Dpto de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR; 5 Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias, UdelaR Received 5 August 2014; accepted 6 January 2015 Abstract We report the isolation of a cold-adapted bacterium belonging to the genus Janthinobacterium (named AU11), from a water sample collected in Lake Uruguay (King George Island, South Shetlands). AU11 (growth between 4°C and 30°C) produces a single cold-active extracellular protease (ExPAU11), differentially expressed at low temperature. ExPAU11 was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) as an alkaline metallo-protease (70% coverage with an extracellular protease of Janthinobacterium sp. PI12), and by protease-inhibitor screening identified as a serine-protease. To the best of our knowledge this is the first experimental evidence of a cold-active extracellular protease produced by Janthinobacterium. Furthermore, we identified a serine-protease gene (named JSP8A) showing 60% identity (98% ☆ query coverage) to subtilisin peptidases belonging to the S8 family (S8A subfamily) of many cyanobacteria.