Kapitel 11 Wiedergabeverfahren Karl M

Total Page:16

File Type:pdf, Size:1020Kb

Kapitel 11 Wiedergabeverfahren Karl M Kapitel 11 Wiedergabeverfahren Karl M. Slavik und Stefan Weinzierl 11.1 Zweikanalstereofonie. 610 11.1.1 Vorgeschichte. 610 11.1.2 Abhörbedingungen. 611 11.2 Quadrofonie . 612 11.3 Mehrkanalstereofonie. 615 11.3.1 Entwicklung. 615 11.3.2 Nomenklatur . 616 11.3.3 Spuren- und Kanalbelegung, Signalüberwachung. 618 11.4 Matrizierte Mehrkanal-Kodierverfahren. 620 11.4.1 Dolby Stereo und Dolby Stereo SR . 620 11.4.2 Dolby ProLogic II und Dolby ProLogic IIx . 624 11.4.3 Lexicon Logic 7. 625 11.4.4 SRS Circle Surround und CS II. 626 11.5 Digitale und diskrete Mehrkanal-Kodierverfahren. 626 11.5.1 CDS. 626 11.5.2 Dolby E, Dolby Digital, Dolby Digital Plus, Dolby True HD. 627 11.5.3 Dolby Metadaten. 632 11.5.4 DTS. 634 11.5.5 MPEG-basierte Mehrkanalverfahren. 636 11.5.6 SDDS. 639 11.5.7 Worldnet Skylink. 640 11.6 Wiedergabeanordnungen im Studio- und Heimbereich. 641 11.6.1 Wiedergabe von 3.0 und 4.0 . 641 11.6.2 Wiedergabe von 5.1 und mehr Kanälen. 642 11.6.3 LFE . 644 11.6.4 Bass-Management. 645 11.6.5 Einmessung. 645 11.6.6 Mehrkanalfähige Medien im Heimbereich . 647 609 610 K. M. Slavik, S. Weinzierl 11.7 Mehrkanalton im Kino. 648 11.7.1 Lichtton. 649 11.7.2 Magnetton . 650 11.7.3 Tonabtastung und Aufbereitung (A-Chain). 651 11.7.4 Wiedergabe im Kino und in der Filmtonregie (B-Chain) . 652 11.7.5 Wiedergabe von 4.0, 5.1 und 6.1 im Kino . 654 11.7.6 D-Cinema . 655 11.8 3D Audio. 657 11.8.1 Vector Base Amplitude Panning . 657 11.8.2 Ambisonics . 659 11.8.3 Wellenfeldsynthese . 664 11.8.4 Binauraltechnik. 671 Normen und Standards. 682 Literatur. 682 11.1 Zweikanalstereofonie 11.1.1 Vorgeschichte Bereits 1881 erhielt der französische Ingenieur Clément Ader ein Patent für die zweikanalige Übertragung von Audiosignalen über – zu diesem Zeitpunkt noch ver- stärkerlose – Telefonleitungen. Das System wurde noch im gleichen Jahr eingesetzt, um Aufführungen aus der Pariser Oper in einen Ausstellungsraum der Ersten Inter- nationalen Elektrotechnischen Ausstellung in Paris stereofon zu übertragen (Eich- horst 1959). In der Anfangszeit des Rundfunks Mitte der 1920er Jahre wurden ver- suchsweise stereofone Übertragungen über zwei unabhängige Sendefrequenzen durchgeführt (Kapeller 1925). 1933 wurde dem Ingenieur Alan Dower Blumlein das Patent für die Aufzeichnung zweikanaliger Signale in einer Schallplattenrille in Form einer Zweikomponentenschrift (Flankenschrift) zugesprochen (Blumlein 1931), im gleichen Jahr wurden bei EMI in Hayes/England versuchsweise erste Schallplatten nach diesem Verfahren hergestellt. In den Jahren 1943 und 1944 entstanden bei der Reichs-Rundfunk-Gesellschaft (RRG) in Berlin erste Versuchsaufnahmen auf zweikanaligem Magnetband (Audio Engineering Society 1993). Für den Heimgebrauch veröffentlichte die Fa. RCA im Jahr 1954 erste zweikanalige Aufnahmen als vorbespielte Tonbänder, im Jahr 1958 erschienen erste stereofone Vinylplatten, u. a. von der Britischen Decca. 1963 schließlich wurde das in den USA bereits seit 1961 gebräuchliche Verfahren zur stereofonen Rundfunkübertragung (Pilottonverfahren) auch in Deutschland über- nommen. Am 30. August 1963 übertrug der Sender Freies Berlin (SFB) Deutsch- lands erstes Rundfunkkonzert in Stereo. Kapitel 11 Wiedergabeverfahren 611 11.1.2 Abhörbedingungen Bei zweikanalstereofoner Wiedergabe werden Lautsprecher als seitliche Begren- zungen eines Bereichs von Hörereignisrichtungen eingesetzt, die sich in Form von Phantomschallquellen zwischen den Lautsprechern ausbilden. Diese Phantom- schallquellen entstehen bei der Wiedergabe von stereofon kodierten Aufnahmen oder bei der Wiedergabe von monofon aufgenommenen Signalen, die auf mehrere Lautsprecher verteilt werden. Die Zusammenhänge zwischen den stereofonen Merkmalen Laufzeit- und Pegeldifferenz und der Lokalisation der Phantomschall- quelle sind in Kap. 10.3 behandelt. Die Breite der Lautsprecherbasis bzw. der Öff- nungswinkel, unter dem ein Hörer die Lautsprecher sieht (s. Abb. 11.1), ist ein Kompromiss: Ein zu kleiner Winkel schränkt die Ausdehnung des bei der Wieder- gabe sich ausbildenden Stereopanoramas unnötig ein. Ein zu großer Öffnungswin- kel führt zu einer zunehmenden Instabilität der Hörereignisorte, die Wiedergabe wird empfindlicher gegenüber Kopfbewegungen des Hörers, und es tritt eine uner- wünschte vertikale Elevation der Phantomschallquellen auf. In den 1960er Jahren etablierte sich ein Öffnungswinkel von 60° als Standard, d. h. eine Anordnung mit den Lautsprechern und dem Hörer an den Eckpunkten eines gleichseitigen Dreiecks. Bezieht man die Lokalisation auf die prozentuale Ausweichung auf der Lautsprecherbasis und nicht auf den horizontalen Lokalisationswinkel, so ist die Abb. 11.1 Zweikanalstereofone Wiedergabeanordnung nach DIN 15996 mit einer Lautsprecher- basis von b = 3 m bis 4,5 m, einem Hörabstand von l = (0,9 ± 0,3) x b in m und einem resultie- renden Basiswinkel von δ = 60° ± 15°. Der Toleranzbereich (Stereo-Hörfläche) für eine seitliche Verschiebung der Hörposition bei einer zulässigen Fehl-Lokalisation von mittigen Phantom- schallquellen um ±50 cm bei einer Lautsprecherbasis von b = 3 m beträgt in einem Hörabstand von l = 3 m nur 21 cm. 612 K. M. Slavik, S. Weinzierl stereofone Lokalisationskurve weitgehend unempfindlich gegenüber gerinfügigen Abweichungen des Lautsprecher-Öffnungswinkels bzw., damit gleichbedeutend, gegenüber dem Abstand des Hörers von der Lautsprecherbasis. Nach DIN 15996 ist ein Toleranzbereich von 45° bis 80° für die zweikanalige Wiedergabe bei der Ton- bearbeitung zulässig. Gravierender wirkt sich eine geringfügige seitliche Verschiebung der Hörpositi- on auf die Lokalisation von Phantomschallquellen aus. Lässt man eine geringfügige Fehl-Lokalisation einer mittigen Phantomschallquelle durch eine Verschiebung des Hörers zu, ergibt sich nur eine schmale, nach hinten etwas breiter werdende Stereo- Hörfläche (Abb. 11.1). Die Mitglieder eines Aufnahmeteams (z. B. Aufnahmeleiter und Toningenieur) müssen daher hintereinander, nicht nebeneinander sitzen. 11.2 Quadrofonie Die frühesten Experimente mit mehrkanaligen Wiedergabeanordnungen finden sich im Bereich des Filmtons sowie in der Elektroakustischen Musik, einem Genre, das überwiegend oder ausschließlich Lautsprecher als Klangquellen für musikalische Aufführungen verwendet (Supper 1997, Ungeheuer 2002). In der französischen Musique concrète kamen bereits 1950 vierkanalige Systeme mit Lautsprechern links und rechts vor, hinter und über dem Publikum zum Einsatz (Symphonie pour un Homme Seul, Pierre Schaeffer/Pierre Henry). Im Umkreis der amerikanischen Tape Music entstanden um die gleiche Zeit Tonbandkompositionen für acht kreis- förmig um das Publikum angeordnete Lautsprecher. Dazu gehören Stücke wie Wil- liams Mix (John Cage, 1952), Octet I und Octet II (Earl Brown, 1952/53) oder In- tersection (Morton Feldman, 1953). Während diese Stücke unsynchronisierte, monofone oder stereofone Bänder benutzten, entstanden im Elektronischen Studio des WDR in Köln mit Gottfried Michael Koenigs Klangfiguren II (1956) sowie Karl-Heinz Stockhausens Gesang der Jünglinge (1956) und Kontakte (1960) erste Kompositionen für die zu dieser Zeit entwickelten, vierkanaligen Magnetbandfor- mate und quadrofone Wiedergabe mit den Lautsprechern an den Ecken eines Qua- Abb. 11.2 Quadrofone Lautsprecheranordnungen: Standard Konfiguration (Scheiber array, links) und Dynaquad array (rechts) Kapitel 11 Wiedergabeverfahren 613 drats um das Publikum. Quadrofone Lautsprecheranordnungen sind in der Elektro- akustischen Musik auch heute noch verbreitet, überwiegend als sog. Scheiber Array, seltener als sog. Dynaquad�������������� Array (Abb. 11.2). Der Versuch, die Langspielplatte als zweikanaligen Tonträger für die Übertra- gung von vier Signalen zu nutzen, führte zur Entwicklung von 4-2-4-Matrixver- fahren. Dabei werden bei der Enkodierung aus vier Quellsignalen (LF, RF, LB, RB) durch additive bzw. subtraktive Überlagerung und Phasenverschiebung zwei Über- tragungskanäle gebildet (Lt, Rt), aus denen bei der Dekodierung vier Wiedergabe- signale (L'F, R'F, L'B, R'B) zurückgewonnen werden. In Matrixschreibweise gilt für die Enkodierung (11.1) für die Dekodierung (11.2) Ein Vergleich der Ausgangssignale (LF, RF, LB, RB) mit dem nach der Dekodierung rekonstruierten Signal (L'F, R'F, L'B, R'B) für einige der in den 1970er Jahren verbrei- teten Matrizierungen (Tabelle 11.1) zeigt, dass die Wiedergewinnung eines vier- kanaligen Ausgangssignals nur um den Preis eines erheblichen Übersprechens be- nachbarter Kanäle möglich war. Die erste, bereits Ende der 1960er Jahre von Peter Scheiber vorgeschlagene Scheiber-Matrix (Scheiber 1971) wurde nie kommerziell realisiert, da sie nur eine Kanaltrennung von 3 dB bei den Frontkanälen und eine gegenphasige Übertragung der rückwärtigen Kanäle erlaubte. Das von CBS/Sony propagierte und am weitesten verbreitete SQ-Verfahren garantierte, ebenso wie die konkurrierenden Verfahren QS (Sansui), QM (Toshiba), QX-4 (Denon), AFD (Mat- sushita), QR (Kenwood) und UD-4 (Denon), eine höhere frontale Kanaltrennung und eine Verteilung des Phasenversatzes auf alle Lautsprecherpaare (außer dem frontalen) durch Verwendung von Allpassfiltern mit einer relativen Phasendifferenz von 90°. Mit Schaltungen zur Unterdrückung von Nachbarkanälen durch einen vom jeweils dominierenden Kanal gesteuerten Expander (gain riding) konnte in be- stimmten Situationen, d. h. wenn nicht alle Kanäle gleich ausgesteuert waren, das Übersprechen weiter verringert werden. 614 K. M. Slavik, S. Weinzierl Tabelle 11.1: Kodierung für einige quadrofone 4-2-4-Matrixverfahren. Bei Verwendung
Recommended publications
  • Dolby Cineasset User Manual 005058 Issue 6
    Dolby CineAsset User’s Manual 22 July 2019 CAS.OM.005058.DRM Issue 6 Notices Notices Copyright © 2019 Dolby Laboratories. All rights reserved. Dolby Laboratories, Inc. 1275 Market Street San Francisco, CA 94103-1410 USA Telephone 415-558-0200 Fax 415-645-4000 http://www.dolby.com Trademarks Dolby and the double-D symbol are registered trademarks of Dolby Laboratories. The following are trademarks of Dolby Laboratories: Dialogue Intelligence™ Dolby Theatre® Dolby® Dolby Vision™ Dolby Advanced Audio™ Dolby Voice® Dolby Atmos® Feel Every Dimension™ Dolby Audio™ Feel Every Dimension in Dolby™ Dolby Cinema™ Feel Every Dimension in Dolby Atmos™ Dolby Digital Plus™ MLP Lossless™ Dolby Digital Plus Advanced Audio™ Pro Logic® Dolby Digital Plus Home Theater™ Surround EX™ Dolby Home Theater® All other trademarks remain the property of their respective owners. Patents THIS PRODUCT MAY BE PROTECTED BY PATENTS AND PENDING PATENT APPLICATIONS IN THE UNITED STATES AND ELSEWHERE. FOR MORE INFORMATION, INCLUDING A SPECIFIC LIST OF PATENTS PROTECTING THIS PRODUCT, PLEASE VISIT http://www.dolby.com/patents. Third-party software attributions Portions of this software are copyright © 2012 The FreeType Project (freetype.org). All rights reserved. Dolby CineAsset software is based in part on the work of the Qwt project (qwt.sf.net). This software uses libraries from the FFmpeg project under the LGPLv2.1. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (openssl.org). This product includes cryptographic software
    [Show full text]
  • 10700990.Pdf
    The Dolby era: Sound in Hollywood cinema 1970-1995. SERGI, Gianluca. Available from the Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/20344/ A Sheffield Hallam University thesis This thesis is protected by copyright which belongs to the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Please visit http://shura.shu.ac.uk/20344/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions. Sheffield Hallam University jj Learning and IT Services j O U x r- U u II I Adsetts Centre City Campus j Sheffield Hallam 1 Sheffield si-iwe Author: ‘3£fsC j> / j Title: ^ D o ltiu £ r a ' o UJTvd 4 c\ ^ £5ori CuCN^YTNCa IQ IO - Degree: p p / D - Year: Q^OO2- Copyright Declaration I recognise that the copyright in this thesis belongs to the author. I undertake not to publish either the whole or any part of it, or make a copy of the whole or any substantial part of it, without the consent of the author. I also undertake not to quote or make use of any information from this thesis without making acknowledgement to the author. Readers consulting this thesis are required to sign their name below to show they recognise the copyright declaration. They are also required to give their permanent address and date.
    [Show full text]
  • Dolby Atmos® for Compact Entertainment Systems: Immersive Surround Sound from a Stereo Form Factor
    Dolby Atmos® for Compact Entertainment Systems: Immersive Surround Sound from a Stereo Form Factor November 2016 Dolby Atmos® is a revolutionary cinema sound technology that has come to home theaters, bringing a new and exciting sense of total immersion and reality to your favorite movies, music, video games, and other programming. With Dolby Atmos, content creators now have the tools to precisely place and move sounds anywhere in your living room, including overhead, to make entertainment incredibly immersive and lifelike. Dolby Atmos is based on the concept of sound objects. Every sound in a scene—a child yelling, a helicopter taking off, a car horn blaring—can be represented as an independent and discrete sound object. Each of those sounds comes from a specific location in the scene, and in some cases, they move. Using sophisticated content creation tools that represent the sound objects in a three-dimensional space, filmmakers can isolate each of the sound objects in a scene and decide exactly where they want it to be and how they want it to move. In the final sound mix, the sound objects are combined with positional metadata—additional data that describes a variety of parameters about the sound object, including its location, its size and movement, if any. During playback of a Dolby Atmos soundtrack, the object audio renderer (referred to as the OAR and a key ingredient in Dolby Cinema™ processors and home theater playback devices) references the positional metadata in the mix to scale the object-based audio presentation to the specific speaker layout in the room.
    [Show full text]
  • Dolby Laboratories, Inc. -- Film Sound Glossary Film Sound Glossary
    Film-Tech The information contained in this Adobe Acrobat pdf file is provided at your own risk and good judgment. These manuals are designed to facilitate the exchange of information related to cinema projection and film handling, with no warranties nor obligations from the authors, for qualified field service engineers. If you are not a qualified technician, please make no adjustments to anything you may read about in these Adobe manual downloads. www.film-tech.com Dolby Laboratories, Inc. -- Film Sound Glossary Film Sound Glossary Acoustics -- The characteristics, such as how sound is reflected and absorbed, that acoustically differentiate one environment from another, such as a living room from a concert hall. Ambiance -- Low level sounds that set a mood or suggest the character of a particular place. Analog vs. digital -- The difference between analog and digital sound is explained best in terms of the analog and digital soundtracks on the Dolby Digital print shown in Figure 1. Figure 1 The width of the analog soundtrack varies in a way that is directly analogous to the varying soundwaves of the original sound. All analog formats have an equivalent varying parameter, such as the strength of the magnetic field on recording tape, or the side-to-side swings of the groove on a phonograph record. When played back, the varying width of the track is translated to a varying electrical voltage which ultimately causes the theatre's loudspeakers cones to move back and forth to recreate the original sound. With a digital optical soundtrack, points along the soundwaves of the original sound are assigned a numeric (or digital) value, which are represented as tiny dots on the track.
    [Show full text]
  • Manual of Analogue Sound Restoration Techniques
    MANUAL OF ANALOGUE SOUND RESTORATION TECHNIQUES by Peter Copeland The British Library Analogue Sound Restoration Techniques MANUAL OF ANALOGUE SOUND RESTORATION TECHNIQUES by Peter Copeland This manual is dedicated to the memory of Patrick Saul who founded the British Institute of Recorded Sound,* and was its director from 1953 to 1978, thereby setting the scene which made this manual possible. Published September 2008 by The British Library 96 Euston Road, London NW1 2DB Copyright 2008, The British Library Board www.bl.uk * renamed the British Library Sound Archive in 1983. ii Analogue Sound Restoration Techniques CONTENTS Preface ................................................................................................................................................................1 Acknowledgements .............................................................................................................................................2 1 Introduction ..............................................................................................................................................3 1.1 The organisation of this manual ...........................................................................................................3 1.2 The target audience for this manual .....................................................................................................4 1.3 The original sound................................................................................................................................6
    [Show full text]
  • United States Securities and Exchange Commission Dolby
    Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-Q ☒ QUARTERLY REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the Quarterly Period Ended December 25, 2020 OR ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the Transition Period From To Commission File Number: 001-32431 DOLBY LABORATORIES, INC. (Exact name of registrant as specified in its charter) Delaware 90-0199783 (State or other jurisdiction of incorporation or organization) (I.R.S. Employer Identification No.) 1275 Market Street San Francisco California 94103-1410 (Address of principal executive offices) (Zip Code) (415) 558-0200 Registrant’s telephone number, including area code Securities registered pursuant to Section 12(b) of the Act: Title of each class Trading Symbol(s) Name of each exchange on which registered Class A common stock, $0.001 par value DLB The New York Stock Exchange Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Yes ☒ No ☐ Indicate by check mark whether the registrant has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T (Section 232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit such files).
    [Show full text]
  • Dolby Is a Deep Company That Owns Many Technologies. Keeping the Terminology Straight Is Challenging
    Dolby is a deep company that owns many technologies. Keeping the terminology straight is challenging. Here is my version: Dolby Surround (LCRS-->Lt/Rt-->files/tape/broadcast-->LCRS) 4:2:4 matrix process only. The mono surround channel is bandwidth limited between 100hz and 7khz. The term was originally used to mean Dolby Stereo, but now the term is used for non-film delivery formats. See Dolby Pro Logic Dolby Stereo (LCRS-->LtRt-->Dolby A encode-->OpticalTrack-->Dolby A decode-- >LCRS) 4:2:4 matrix described above with Dolby A type noise reduction. Dolby A is no longer favored, instead use Dolby SR. Dolby SR (LCRS-->LtRt-->Dolby SR encode-->OpticalTrack-->Dolby SR decode-- >LCRS) 4:2:4 matrix described above with Dolby SR type noise reduction. This is the same as Dolby Stereo except that the optical track is encoded with SR instead of A type noise reduction. This format is still used for surround audio from film optical and as the backup track for Dolby Digital. The terms Dolby SR and Dolby Stereo are often interchanged, incorrectly. Dolby Digital a.k.a. AC-3 5.1-->AC-3 data stream-->5.1 The compressed data stream supports up to 5 full bandwidth plus one low frequency effects channel. It is designed for film, broadcast, and DVD final audio delivery. It is NOT considered "editable", which means you cannot just "punch in" on the data stream without consequences. This is the digital audio part of Dolby SR-D and Digitial Cinema. Dolby SR-D is a dual-stream audio delivery system printed on the film, with a Dolby SR optical track and blocks of bits printed between sprocket holes that, when reconstructed, form the AC-3 digital audio stream.
    [Show full text]
  • Audio Metering
    Audio Metering Measurements, Standards and Practice This page intentionally left blank Audio Metering Measurements, Standards and Practice Eddy B. Brixen AMSTERDAM l BOSTON l HEIDELBERG l LONDON l NEW YORK l OXFORD PARIS l SAN DIEGO l SAN FRANCISCO l SINGAPORE l SYDNEY l TOKYO Focal Press is an Imprint of Elsevier Focal Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First published 2011 Copyright Ó 2011 Eddy B. Brixen. Published by Elsevier Inc. All Rights Reserved. The right of Eddy B. Brixen to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]
  • Dolby® Cineasset
    Dolby® CineAsset Dolby CineAsset DCP Editor Dolby CineAsset Content Management Dolby® CineAsset is a complete mastering software suite that can create and play back DCI-compliant digital cinema packages (DCPs) from virtually any source. The Pro version of Dolby CineAsset allows for the generation of encrypted DCPs along with the ability to easily generate key delivery messages (KDMs) for any encrypted content in the Dolby CineAsset database. With Dolby CineAsset, asset management has never been simpler. Drop folders allow for automated transfer of image sequences and other media files into the database. Dolby CineAsset offers additional functionality when used with Dolby digital cinema servers, including transport controls, file transfer, and KDM management for the connected device. The Dolby CineAsset suite includes Dolby CineAsset, Dolby CinePlayer, and the Dolby CineInspect DCP validation tool. CINEASSET KEY FEATURES: CINEASSET DEVICE CONTROL*: • Create and playback DCPs with subtitles • Device KDM and certificate manager • Generate encrypted DCPs (Pro version only) • Convert, transfer, schedule and playback 2D • Subtitle editor or 3D video clips • Optional render nodes reduce render times * Supported Dolby servers: (DCP-2000 – • Dolby Atmos® support ShowVault /IMB – DCP-2K4 – IMS2000) • Multiple filters (scale, XYZ color space conversion, timecode burn-in, logo overlay, audio delay, trimmer) CinePlayer DCP Player: • Custom LUTs and Matrix values for color conversion • High-frame-rate support • Real time XYZ to RGB color conversion
    [Show full text]
  • Loudness and Dynamic Range in Broadcast Audio
    AUDIO LEVELS Loudness and Dynamicin broadcast Range audio — the Dolby solution Tony Spath Dolby Laboratories, Inc. Digital delivery media offer a wider dynamic range for audio than their analogue predecessors. This entails adopting a larger difference between the average levels (and thus the implied loudness) and the signal peaks. Although it is possible to implement this larger difference in a TV station or media studio, problems will occur in the home – due to inconsistent loudness and electrical levels within the consumer receivers and audio equipment. The audio delivery system, Dolby Digital ™, includes specific tools to overcome these problems, while allowing the full dynamic range of digital audio to be delivered. These tools – Dialogue Normalization and Dynamic Range Control – are described here with particular reference to digital TV. Reference levels and loudness Audio levels (such as programme loudness, peak programme levels and reference levels) are typically meas- ured as a decibel ratio. Broadcast audio engineers are nearly always dealing with instantaneous or short-dura- tion signal levels in programmes; historically, the motive will have been to be aware of how much headroom the system has over the audio peaks, and how far from the system noise floor are the details in the audio signal. This has led to a well-known set of reference levels – e.g. 0 VU, 0 dBu, 20 kHz RF deviation – which are used to line up a signal path for unity gain, and a set of metering practices and standards against which the audio signal in question can be measured. For example: ! 0 dBm (where m is 1 mW into 600 Ω); ! 0 dBu (where u is 0.775 VRMS); ! PPM 4 on a BBC peak programme meter (the peak level produced by a 0.775 VRMS sine wave); ! 100% on a European peak meter (corresponds to +6 dBu).
    [Show full text]
  • Dolby Cineasset Player User’S Manual
    Dolby CineAsset Player User’s Manual 22 July 2019 CAS.OM.005071.DRM Issue 6 Notices Notices Copyright © 2019 Dolby Laboratories. All rights reserved. Dolby Laboratories, Inc. 1275 Market Street San Francisco, CA 94103-1410 USA Telephone 415-558-0200 Fax 415-645-4000 http://www.dolby.com Trademarks Dolby and the double-D symbol are registered trademarks of Dolby Laboratories. The following are trademarks of Dolby Laboratories: Dialogue Intelligence™ Dolby Theatre® Dolby® Dolby Vision™ Dolby Advanced Audio™ Dolby Voice® Dolby Atmos® Feel Every Dimension™ Dolby Audio™ Feel Every Dimension in Dolby™ Dolby Cinema™ Feel Every Dimension in Dolby Atmos™ Dolby Digital Plus™ MLP Lossless™ Dolby Digital Plus Advanced Audio™ Pro Logic® Dolby Digital Plus Home Theater™ Surround EX™ Dolby Home Theater® All other trademarks remain the property of their respective owners. Patents THIS PRODUCT MAY BE PROTECTED BY PATENTS AND PENDING PATENT APPLICATIONS IN THE UNITED STATES AND ELSEWHERE. FOR MORE INFORMATION, INCLUDING A SPECIFIC LIST OF PATENTS PROTECTING THIS PRODUCT, PLEASE VISIT http://www.dolby.com/patents. Third-party software attributions Portions of this software are copyright © 2012 The FreeType Project (freetype.org). All rights reserved. Dolby CineAsset Player software is based in part on the work of the Qwt project (qwt.sf.net). This software uses libraries from the FFmpeg project under the LGPLv2.1. This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (openssl.org). This product includes cryptographic
    [Show full text]
  • Film Sound Glossary
    Film Sound Glossary Acoustics - The characteristics, such as how sound is reflected and absorbed, that give a space such as a living room, concert hall, or cinema an identifiable sonic "signature." Ambience - Low-level sounds (including sound reflections) that set a mood or suggest the character of a particular place. Analog vs. digital soundtrack - The width of an analog soundtrack varies in a way that is directly analogous to the varying soundwaves of the original sound. When played back, the varying width of the track is translated to a varying electrical voltage which ultimately causes the theatre's loudspeaker cones to move back and forth to recreate the original sound. With a digital soundtrack, points along the soundwaves of the original sound are assigned a numeric (or digital) value, consisting of ones and zeroes represented as tiny dots on the track. When a digital track is played back, the numeric values are converted to the varying electrical voltage needed to drive the speakers. (See Optical soundtrack.) Atmospheres - Low level background sounds, such as wind or traffic noise, on a film's soundtrack which add to the reality of a scene. These sounds are sometimes recorded separately at a shooting location, creating what is called a wild track for mixing into the soundtrack later. Dolby Digital - The most widely used multichannel digital sound format in the world, used for everything from 35 mm films in the cinema to HDTV broadcasts and DVD discs in the home. Dolby Digital provides up to 5.1 channels (left, center, right, left surround, right surround, and low- frequency effects).
    [Show full text]