Environmental Flows Workshop for the Mckenzie River, Oregon

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Flows Workshop for the Mckenzie River, Oregon Cover: The lower McKenzie River (Photograph by Leslie Bach, The Nature Conservancy) Summary Report: Environmental Flows Workshop for the McKenzie River, Oregon By John C. Risley1, Leslie Bach2, and J. Rose Wallick1 1 U.S. Geological Survey, Oregon Water Science Center 2 The Nature Conservancy, Oregon Chapter This page is intentionally blank ii Contents Introduction .................................................................................................................................................................... 1 Background ................................................................................................................................................................ 1 McKenzie River .......................................................................................................................................................... 1 Workshop ....................................................................................................................................................................... 2 Agenda ....................................................................................................................................................................... 2 Results ....................................................................................................................................................................... 5 South Fork McKenzie River .................................................................................................................................... 5 Fall flows for channel habitat maintenance and fish outmigration ....................................................................... 5 Winter high flow for reconnecting off-channel habitat ......................................................................................... 7 Small spring flows for fish outmigration ............................................................................................................... 7 Spring bankfull flow for flushing and scouring ..................................................................................................... 7 Summer low flow for vegetation development and fish rearing ........................................................................... 8 Middle McKenzie River ......................................................................................................................................... 10 Fall flows to protect Chinook redds and benefit fish outmigration ..................................................................... 10 Winter bankfull flow for off-channel habitat maintenance and fish outmigration ................................................ 10 Winter high flow for reconnecting off-channel habitat ....................................................................................... 12 Winter flood for channel/floodplain habitat enhancement ................................................................................. 12 Small spring flows for juvenile fish outmigration and riparian vegetation enhancement .................................... 12 Spring bankfull flow for flushing and scouring ................................................................................................... 13 Summer low flow for vegetation development and fish rearing ......................................................................... 13 McKenzie River through EWEB canal reaches ..................................................................................................... 15 Fall flows to protect Chinook redds and benefit fish outmigration ..................................................................... 15 Winter bankfull flow for gravel movement ......................................................................................................... 15 Winter high flow for reconnecting off-channel habitat ....................................................................................... 17 Winter flood for channel/floodplain habitat enhancement ................................................................................. 17 Small spring flows for fish outmigration and riparian vegetation enhancement ................................................. 17 Spring bankfull flow for flushing and scouring ................................................................................................... 18 Summer low flow for vegetation development and fish rearing ......................................................................... 18 Lower McKenzie River .......................................................................................................................................... 20 Fall flows to protect Chinook redds and benefit fish outmigration ..................................................................... 20 Winter bankfull flow ........................................................................................................................................... 20 Winter high flow for reconnecting off-channel habitat ....................................................................................... 22 Winter flood to rejuvenate Oregon chub habitat ................................................................................................ 22 Small spring flows for fish outmigration and riparian vegetation enhancement ................................................. 22 Spring bankfull flow for flushing and scouring ................................................................................................... 23 Late spring flow for fish outmigration ................................................................................................................ 23 Late spring flow for Oregon chub spawning ...................................................................................................... 23 Recommendations for future monitoring and evaluation .............................................................................................. 25 iii Off-Channel Habitat ................................................................................................................................................. 25 Gravel Bars and other Alluvial Features ................................................................................................................... 26 Riparian Vegetation .................................................................................................................................................. 27 Aquatic Biology ........................................................................................................................................................ 28 Recommendations for Future Studies .......................................................................................................................... 29 Channel Morphology and Streamflow ...................................................................................................................... 29 Streambed Incision .................................................................................................................................................. 29 Sediment Budget ...................................................................................................................................................... 29 Geomorphic Assessment and Mapping.................................................................................................................... 29 References Cited ......................................................................................................................................................... 30 Appendix A. Workshop agenda ................................................................................................................................... 31 Appendix B. List of workshop attendees ...................................................................................................................... 32 Figures Figure 1. Map of the McKenzie River basin, showing study reaches. ......................................................................... 2 Figure 2. RPT generated plot of flow recommendations for the South Fork McKenzie River (Reach 3). .................... 6 Figure 3. Dam flow release and ecology linkages for the South Fork McKenzie River (Reach 3) ............................... 9 Figure 4. RPT generated plot of flow recommendations for the Middle McKenzie River (Reaches 4–7) .................. 11 Figure 5. Dam flow release and ecology linkages for the Middle McKenzie River (Reaches 4–7) ............................ 14 Figure 6. RPT generated plot of flow recommendations for the EWEB canal reaches (Reaches 8–10) ................... 16 Figure 7. Dam flow release and ecology linkages for the EWEB canal reaches (Reaches 8–10) ............................. 19 Figure 8. RPT generated plot of flow recommendations for the lower McKenzie River (Reaches 11–12) ................ 21 Figure 9. Dam flow release and ecology linkages for the Lower McKenzie River (Reaches 11-12). ......................... 24 Tables Table 1. River reach assignments for the workshop breakout groups. ........................................................................ 3 Table 2. McKenzie River streamflow statistics for the four workshop study reaches based on estimated and observed unregulated daily-mean streamflow data from 1936 to 2004. ...................................................................................... 4 iv Summary Report:
Recommended publications
  • Guidelines for the Assessment of Environmental Flows in the Western Indian Ocean Region Guidelines for the Assessment of Eflows in WIO Region
    Western Indian Ocean Ecosystem Guidelines and Toolkits Guidelines for the Assessment of Environmental Flows in the Western Indian Ocean Region Guidelines for the Assessment of EFlows in WIO region Western Indian Ocean Ecosystem Guidelines and Toolkits Guidelines for the Assessment of Environmental Flows in the Western Indian Ocean Region Published by the United Nations Environment Programme/Nairobi Convention Secretariat. Copyright © Nairobi Convention 2020. All rights reserved: The findings, interpretations and conclusions expressed herein are those of the authors and do not necessarily reflect the views of the Contracting Parties to the Nairobi Convention. Rights and Permissions: The information in this report is copyrighted, therefore, copying and/or transmitting portions of this report without permission of the Nairobi Convention may be a violation of applicable law. How- ever, the Nairobi Convention encourages dissemination and use of the materials in this report. Disclaimer: This publication has been produced by the United Nations Environ- ment Programme-Nairobi Convention and WIOMSA with the kind assistance of various regional governments, Non-Governmental Organizations, Civil Society Organizations, as well as of individuals through the Global Environment Facility (GEF) funded WIOSAP pro- ject and SIDA funded MASMA project executed by the Convention and WIOMSA respectively. The report is copyrighted entirely to the Nairobi Convention and WIOMSA. Compiled and prepared by: Cate Brown and Jackie King, with contributions from Lara Van Niekerk and Susan Taljaard. Series Editor: Matthew D. Richmond Designed by: Marco Nunes Correia Coordinated by: Jared Bosire, Julius Francis and Timothy Andrew Citation: UNEP-Nairobi Convention/WIOMSA (2020). Guidelines for the Assessment of Environmental Flows in the Western Indian Ocean Region.
    [Show full text]
  • Timing of In-Water Work to Protect Fish and Wildlife Resources
    OREGON GUIDELINES FOR TIMING OF IN-WATER WORK TO PROTECT FISH AND WILDLIFE RESOURCES June, 2008 Purpose of Guidelines - The Oregon Department of Fish and Wildlife, (ODFW), “The guidelines are to assist under its authority to manage Oregon’s fish and wildlife resources has updated the following guidelines for timing of in-water work. The guidelines are to assist the the public in minimizing public in minimizing potential impacts to important fish, wildlife and habitat potential impacts...”. resources. Developing the Guidelines - The guidelines are based on ODFW district fish “The guidelines are based biologists’ recommendations. Primary considerations were given to important fish species including anadromous and other game fish and threatened, endangered, or on ODFW district fish sensitive species (coded list of species included in the guidelines). Time periods were biologists’ established to avoid the vulnerable life stages of these fish including migration, recommendations”. spawning and rearing. The preferred work period applies to the listed streams, unlisted upstream tributaries, and associated reservoirs and lakes. Using the Guidelines - These guidelines provide the public a way of planning in-water “These guidelines provide work during periods of time that would have the least impact on important fish, wildlife, and habitat resources. ODFW will use the guidelines as a basis for the public a way of planning commenting on planning and regulatory processes. There are some circumstances where in-water work during it may be appropriate to perform in-water work outside of the preferred work period periods of time that would indicated in the guidelines. ODFW, on a project by project basis, may consider variations in climate, location, and category of work that would allow more specific have the least impact on in-water work timing recommendations.
    [Show full text]
  • Mckenzie River Sub-Basin Action Plan 2016-2026
    McKenzie River Sub-basin Strategic Action Plan for Aquatic and Riparian Conservation and Restoration, 2016-2026 MCKENZIE WATERSHED COUNCIL AND PARTNERS June 2016 Photos by Freshwaters Illustrated MCKENZIE RIVER SUB-BASIN STRATEGIC ACTION PLAN June 2016 MCKENZIE RIVER SUB-BASIN STRATEGIC ACTION PLAN June 2016 ACKNOWLEDGEMENTS The McKenzie Watershed Council thanks the many individuals and organizations who helped prepare this action plan. Partner organizations that contributed include U.S. Forest Service, Eugene Water & Electric Board, Oregon Department of Fish and Wildlife, Bureau of Land Management, U.S. Army Corps of Engineers, McKenzie River Trust, Upper Willamette Soil & Water Conservation District, Lane Council of Governments and Weyerhaeuser Company. Plan Development Team Johan Hogervorst, Willamette National Forest, U.S. Forest Service Kate Meyer, McKenzie River Ranger District, U.S. Forest Service Karl Morgenstern, Eugene Water & Electric Board Larry Six, McKenzie Watershed Council Nancy Toth, Eugene Water & Electric Board Jared Weybright, McKenzie Watershed Council Technical Advisory Group Brett Blundon, Bureau of Land Management – Eugene District Dave Downing, Upper Willamette Soil & Water Conservation District Bonnie Hammons, McKenzie River Ranger District, U.S. Forest Service Chad Helms, U.S. Army Corps of Engineers Jodi Lemmer, McKenzie River Trust Joe Moll, McKenzie River Trust Maryanne Reiter, Weyerhaeuser Company Kelly Reis, Springfield Office, Oregon Department of Fish and Wildlife David Richey, Lane Council of Governments Kirk Shimeall, Cascade Pacific Resource Conservation and Development Andy Talabere, Eugene Water & Electric Board Greg Taylor, U.S. Army Corps of Engineers Jeff Ziller, Springfield Office, Oregon Department of Fish and Wildlife MCKENZIE RIVER SUB-BASIN STRATEGIC ACTION PLAN June 2016 Table of Contents EXECUTIVE SUMMARY .................................................................................................................................
    [Show full text]
  • Guidance on Environmental Flows
    Guidance on Environmental Flows Integrating E-flow Science with Fluvial Geomorphology to Maintain Ecosystem Services 2019 edition WEATHER CLIMATE WATER CLIMATE WEATHER WMO-No. 1235 Guidance on Environmental Flows Integrating E-flow Science with Fluvial Geomorphology to Maintain Ecosystem Services 2019 edition WMO-No. 1235 EDITORIAL NOTE METEOTERM, the WMO terminology database, may be consulted at http://public.wmo.int/en/ resources/meteoterm. Readers who copy hyperlinks by selecting them in the text should be aware that additional spaces may appear immediately following http://, https://, ftp://, mailto:, and after slashes (/), dashes (-), periods (.) and unbroken sequences of characters (letters and numbers). These spaces should be removed from the pasted URL. The correct URL is displayed when hovering over the link or when clicking on the link and then copying it from the browser. WMO-No. 1235 © World Meteorological Organization, 2019 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chair, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix Tel.: +41 (0) 22 730 84 03 P.O. Box 2300 Fax: +41 (0) 22 730 81 17 CH-1211 Geneva 2, Switzerland Email: [email protected] ISBN 978-92-63-11235-4 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Mckenzie River Subbasin Assessment Summary Table of Contents
    McKenzie River, ca. 1944 McKenzie River Subbasin Assessment Summary Report February 2000 McKenzie River, ca. 2000 McKenzie River, ca. 2000 Prepared for the McKenzie Watershed Council Prepared By: Alsea Geospatial, Inc. Hardin-Davis, Inc. Pacific Wildlife Research, Inc. WaterWork Consulting McKenzie River Subbasin Assessment Summary Table of Contents High Priority Action Items for Conservation, Restoration, and Monitoring 1 The McKenzie River Watershed: Introduction 8 I. Watershed Overview 9 II. Aquatic Ecosystem Issues & Findings 17 Recommendations 29 III. Fish Populations Issues & Findings 31 Recommendations 37 IV. Wildlife Species and Habitats of Concern Issues & Findings 38 Recommendations 47 V. Putting the Assessment to work 50 Juvenile Chinook Habitat Modeling 51 Juvenile Chinook Salmon Habitat Results 54 VI. References 59 VII. Glossary of Terms 61 The McKenzie River Subbasin Assessment was funded by grants from the Bonneville Power Administration and the U.S. Forest Service. High Priority Action Items for Conservation, Restoration, and Monitoring Our analysis indicates that aquatic and wildlife habitat in the McKenzie River subbasin is relatively good yet habitat quality falls short of historical conditions. High quality habitat currently exists at many locations along the McKenzie River. This assessment concluded, however, that the river’s current condition, combined with existing management and regulations, does not ensure conservation or restoration of high quality habitat in the long term. Significant short-term improvements in aquatic and wildlife habitat are not likely to happen through regulatory action. Current regulations rarely address remedies for past actions. Furthermore, regulations and the necessary enforcement can fall short of attaining conservation goals. Regulations are most effective in ensuring that habitat quality trends improve over the long period.
    [Show full text]
  • Environmental Flows Overview
    Environmental Flows Overview Sam Sandoval and Sarah Yarnell Center for Watershed Sciences, UC Davis Presentation Outline • What are Environmental Flows? • History of E-flows in CA • E-flows methods • Policy and Implementation in CA • Seminar Schedule Environmental Flows • What do we mean by: “Environmental Flows”? Environmental Flows Ecosystem: community of living organisms and nonliving components that interact as a system • Aquatic • Riparian • Terrestrial Environmental Flows • Aquatic Ecosystem Environmental Flows • Aquatic Ecosystem: Food Chain Environmental Flows • Aquatic Ecosystem: Ecosystem Services Environmental Flows • Riparian Ecosystem Environmental Flows • Riparian Ecosystem Environmental Flows • Riparian Ecosystem Environmental Flows • Riparian Ecosystem Environmental Flows • Riparian Ecosystem: Services Environmental Flows • Riparian Ecosystem: Services Environmental Flows • Aquatic and Riparian Ecosystems Environmental Flows • Terrestrial Ecosystem Environmental Flows • Quantity • Quality • Geomorphology Environmental Flows Flow Regime the variability in its discharge throughout the year due to P, T, ET, and basin characteristics Environmental Flows Quantity ~ Flow regime: • Magnitude • Frequency • Timing • Duration • Rate of Change Hydrologic Classification for California State of California Natural Flow Class (SM) Snowmelt (HSR) High-volume snowmelt and rain (LSR) Low-volume snowmelt and rain (RSG) Rain and seasonal groundwater (WS) Winter Storms (GW) Groundwater (PGR) Perennial groundwater and rain (FER) Flashy, ephemeral
    [Show full text]
  • Volume II Willamette Spring Chinook
    Oregon Native Fish Status Report – Volume II Willamette Spring Chinook Existing Populations The Willamette Spring Chinook SMU consists of six populations (Table 63). The status of four of these populations including the Molalla, South Santiam, Calapooia, and Upper Willamette is somewhat uncertain. Little is known about these populations, but what is known indicates that the native populations are extremely depressed. While some natural spawning occurs, it is likely that these spawners are the offspring of naturally-spawning hatchery fish since hatchery fish comprise almost the entire naturally-spawning population each year in these basins. Future inventory work is needed for these populations so that they may be more appropriately assessed. Table 63. Population list and existence status for the Willamette Spring Chinook SMU. Exist Population Description Yes Molalla Molalla River basin. Yes North Santiam North Santiam River basin. Yes South Santiam South Santiam River basin. Yes Calapooia Calapooia River basin. Yes McKenzie McKenzie River basin. Yes Upper Willamette Willamette River basin upstream from mouth of McKenzie River. Habitat Use Distribution The distribution criterion was based on proportions of accessible and inaccessible habitat. It must be recognized that these estimates are derived at the 1:100,000 scale and thus will not capture habitat lost in many smaller (1:24,000) streams resulting from barriers such as culverts. Habitat lost in smaller streams will vary by population, but is not likely to account for 50% of any population, and thus does not alter assessment outcomes derived using data at the 1:100,000 scale. Data presented in this report on accessibility of habitat should be viewed as general approximations and not as a definitive analysis on habitat availability/accessibility.
    [Show full text]
  • Environmental Values, Flow Related Issues and Objectives for the Upper
    Environmental values, flow related issues and objectives for the Canning River, Western Australia From the Canning Dam to Kent St Weir Department of Water Environmental Water Report Series Report No. EWR5 May 2007 Environmental Water Report No. 5 Canning values and issues report Department of Water 168 St Georges Terrace Perth Western Australia 6000 <www.water.wa.gov.au> Telephone +61 8 6364 7600 Facsimile +61 8 6364 7601 For more information contact: Laurence Radin Water Resource Division, Department of Water PO Box K822 Perth Western Australia 6842 Acknowledgements This report was prepared by: Laurence Radin, Kylie La Spina, Mike Braimbridge and Ben Malseed, Environmental Water Planning. Comments on the early draft by Dr Andrew Storey are greatly appreciated as are contributions made throughout the project by Dr Storey. The assistance and advice provided by Mark Pearcey and others from the Department of Water, Surface Water Hydrology group is also acknowledged and appreciated. ISSN 1833-6582 (pbk.). Printed on recycled paper. May, 2007 Subject of cover photograph Freshwater cobbler (Tandanus bostocki) Department of Water ii Environmental Water Report No. 5 Canning values and issues report Contents Contents......................................................................................................................iii Summary..................................................................................................................... v 1 Introduction .............................................................................................................1
    [Show full text]
  • Subsistence Variability in the Willamette Valley Redacted for Privacy
    AN ABSTRACT OF THE THESIS OF Francine M. Havercroft for the degree of Master of Arts in Interdisciplinary Studies in Anthropology, History and Anthropology presented on June 16, 1986. Title: Subsistence Variability in the Willamette Valley Redacted for Privacy Abstract approved: V Richard E. Ross During the summer of 1981, Oregon State University archaeologically tested three prehistoric sites on the William L. Finley National Wildlife Refuge. Among the sites tested were typical Willamette Valley floodplain and adjacent upland sites. Most settlement-subsistence pattern models proposed for the Willamette Valley have been generated with data from the eastern valley floor, western Cascade Range foothills. The work at Wm. L. Finley National Wildlife Refuge provides one of the first opportunities to view similar settings along the western margins of the Willamette Valley. Valley Subsistence Variabilityin the Willamette by Francine M. Havercroft A THESIS submitted to Oregon StateUniversity in partial fulfillmentof the requirementsfor the degree of Master of Arts in InterdisciplinaryStudies Completed June 15, 1986 Commencement June 1987 APPROVED: Redacted for Privacy Professor of Anthropology inAT6cg-tof major A Redacted for Privacy Professor of History in charge of co-field Redacted for Privacy Professor of Anthropology in charge of co-field Redacted for Privacy Chairman of department of Anthropology Dean of Graduate School Date thesis is presented June 16, 1986 Typed by Ellinor Curtis for Francine M. Havercroft ACKNOWLEDGEMENTS Throughout this project, several individuals have provided valuable contributions, and I extend a debt of gratitude to all those who have helped. The Oregon State university Archaeology field school, conducted atthe Wm. L. Finley Refuge, wasdirected by Dr.
    [Show full text]
  • Listen to the River
    2 - LESSONS FROM A GLOBAL REVIEW OF ENVIRONMENTAL FLOW SUCCESS STORIES 3 ACKNOWLEDGEMENTS Citation: Harwood, A., Johnson, S., Richter, B., Locke, A., Yu, X. and Tickner, D. 2017. We would like to thank the following participants who generously donated their time to participate in Listen to the river: Lessons from a global review of environmental flow success stories, the oral case study interviews and provide written comments on the interview notes and case study WWF-UK, Woking, UK synopses. Their viewpoints and input are fundamental to this report and we are grateful for their time and expertise: Eric Krueger (The Nature Conservancy), Harry Shelley (Savannah River Basin Advisory Council), ABOUT WWF Stan Simpson (United States Army Corps of Engineers), Andy Warner (CDM Smith, formerly The At WWF, we believe that a living planet – from the global climate to local environments – is vital Nature Conservancy), Ian Atkinson (International River Foundation, formerly Nature Foundation not only for wildlife, but also as the source of our food, clean water, health and livelihoods. And as South Australia), Andrew Beal (Department of Environment, Water and Natural Resources, South a source of inspiration, now and for future generations. So we’re tackling critical environmental Australia), John Foster (Commonwealth Environmental Water Office, Australia), Tom Rooney challenges and striving to build a world with a future where people and nature thrive. (Waterfind Australia and Healthy Rivers Australia), Hilton Taylor (Commonwealth Environmental Water Office, Australia), Jin Chen (Changjiang Water Resources Commission), Hai Wang (China To do this, we’re educating, inspiring, influencing and engaging the public, policy-makers, business Three Gorges Corporation), the Office of Fisheries Law Enforcement for the Yangtze River Basin leaders and influencers.
    [Show full text]
  • Evaluating Tradeoffs Between Environmental Flow Protections and Agricultural Water Security
    RIVER RESEARCH AND APPLICATIONS River Res. Applic. (2013) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/rra.2637 EVALUATING TRADEOFFS BETWEEN ENVIRONMENTAL FLOW PROTECTIONS AND AGRICULTURAL WATER SECURITY T. E. GRANTHAMa*, M. MEZZATESTAb, D. A. NEWBURNc and A. M. MERENLENDERd a Center for Watershed Sciences, University of California, Davis, California, USA b Federal Energy Regulatory Commission, Washington DC, USA c Department of Agricultural & Resource Economics, University of Maryland, College Park, Maryland, USA d Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA ABSTRACT River basin managers responsible for water allocation decisions are increasingly required to evaluate tradeoffs between environmental flow protections and human water security. However, the basin-scale effects of environmental flow regulations on water users are not well understood, in part because analyses are complicated by the spatial and temporal variation in water availability, human demands, and ecosystem needs. Here, we examine alternative regional environmental flow policies and their effects on a distributed network of water users in a small (182 km2) river basin in coastal California. We use a hydrologic model to simulate water diversion operations under three policy scenarios and quantify potential impacts to bypass flows for adult migrating salmon and agricultural water storage. The results indicate that there are inherent tradeoffs between environmental flows and agricultural water security, with the most restrictive environmental policy associated with the greatest impacts to water users. Surprisingly, the moderate environmental flow policy had larger impacts to bypass flows than the unregulated management scenario, suggesting that ecological benefits of the moderate policy are small relative to the adverse effects on agricultural water users.
    [Show full text]
  • Environmental Flow Releases for Wetland Biodiversity Conservation in the Amur River Basin
    water Article Environmental Flow Releases for Wetland Biodiversity Conservation in the Amur River Basin Oxana I. Nikitina 1,* , Valentina G. Dubinina 2, Mikhail V. Bolgov 3, Mikhail P. Parilov 4 and Tatyana A. Parilova 4 1 World Wide Fund for Nature (WWF-Russia), Moscow 109240, Russia 2 Central Directorate for Fisheries Expertise and Standards for the Conservation, Reproduction of Aquatic Biological Resources and Acclimatization, Moscow 125009, Russia; [email protected] 3 Water Problems Institute of the Russian Academy of Sciences, Moscow 117971, Russia; [email protected] 4 Khingan Nature Reserve, Arkhara 676748, Russia; [email protected] (M.P.P.); [email protected] (T.A.P.) * Correspondence: [email protected]; Tel.: +7-910-462-90-57 Received: 31 August 2020; Accepted: 7 October 2020; Published: 10 October 2020 Abstract: Flow regulation by large dams has transformed the freshwater and floodplain ecosystems of the Middle Amur River basin in Northeast Asia, and negatively impacted the biodiversity and fisheries. This study aimed to develop environmental flow recommendations for the Zeya and Bureya rivers based on past flow rate records. The recommended floodplain inundation by environmental flow releases from the Zeya reservoir are currently impracticable due to technical reasons. Therefore, the importance of preserving the free-flowing tributaries of the Zeya River increases. Future technical improvements for implementing environmental flow releases at the Zeya dam would improve dam management regulation during large floods. The recommendations developed for environmental flow releases from reservoirs on the Bureya River should help to preserve the important Ramsar wetlands which provide habitats for endangered bird species while avoiding flooding of settlements.
    [Show full text]