Indicator Help DICATORS

Total Page:16

File Type:pdf, Size:1020Kb

Indicator Help DICATORS ® TAME INDICATORS & PATTERNS Help Document NSE TAME ® (Technical Analysis Made Easy) is a technical analysis tool provided by NSE to its Trading members. This tool provides users an exhilarating experience in carrying out technical analysis. TAME provides a variety of charts, and most of the popular technical indicators. It has a friendly and interactive user – interface which gives great flexibility to customize, view and analyse charts and indicators. The interface presents the data in a manner most suitable to support trading decisions. TAME charting is available to all NSE markets. National Stock Exchange of India Limited June 2010 HELP DOCUMENT Contents 1. Accumulation / Distribution (AD) ...................................................................................................... 4 Concept ............................................................................................................................................................ 4 Calculation ........................................................................................................................................................ 4 Use ................................................................................................................................................................... 4 2. ADX .................................................................................................................................................... 5 Concept ............................................................................................................................................................ 5 Calculation ........................................................................................................................................................ 5 Use ................................................................................................................................................................... 5 3. Average True Range (ATR) ................................................................................................................. 6 Concept ............................................................................................................................................................ 6 Calculation ........................................................................................................................................................ 6 Use ................................................................................................................................................................... 6 4. Bollinger Bands (BBands) ................................................................................................................... 7 Concept ............................................................................................................................................................ 7 Formula ............................................................................................................................................................ 7 Use ................................................................................................................................................................... 7 5. Chaikin Money Flow (ChMF) .............................................................................................................. 8 Concept ............................................................................................................................................................ 8 Calculation ........................................................................................................................................................ 8 Use ................................................................................................................................................................... 8 6. Chaikin Volatility(ChV) ....................................................................................................................... 9 Concept ............................................................................................................................................................ 9 Calculation ........................................................................................................................................................ 9 Use ................................................................................................................................................................... 9 7. Commodity Channel Index (CCI) ...................................................................................................... 10 Concept .......................................................................................................................................................... 10 Calculation ...................................................................................................................................................... 10 Use ................................................................................................................................................................. 10 8. Detrended Price Oscillator (DPO) ..................................................................................................... 11 Concept .......................................................................................................................................................... 11 Calculation ...................................................................................................................................................... 11 Use ................................................................................................................................................................. 11 9. Ease Of Movement (EMV) ................................................................................................................ 12 Concept .......................................................................................................................................................... 12 Calculation ...................................................................................................................................................... 12 Use ................................................................................................................................................................. 12 10. Exponential moving average (EMA) ................................................................................................. 13 Concept .......................................................................................................................................................... 13 Formula .......................................................................................................................................................... 13 Use ................................................................................................................................................................. 13 11. Fibonacci Retracement (FR) ............................................................................................................. 14 Concept .......................................................................................................................................................... 14 Page | 1 Formula .......................................................................................................................................................... 14 Use ................................................................................................................................................................. 14 12. Fibonacci extension (FE)................................................................................................................... 15 Concept .......................................................................................................................................................... 15 Formula .......................................................................................................................................................... 15 Use ................................................................................................................................................................. 15 13. Full Stochastic (FS) ........................................................................................................................... 16 Concept .......................................................................................................................................................... 16 Formula .......................................................................................................................................................... 16 Use ................................................................................................................................................................. 16 14. Money Flow Index (MFI) .................................................................................................................. 17 Concept .......................................................................................................................................................... 17 Formula .......................................................................................................................................................... 17 Use ................................................................................................................................................................
Recommended publications
  • “Dividend Policy and Share Price Volatility”
    “Dividend policy and share price volatility” Sew Eng Hooi AUTHORS Mohamed Albaity Ahmad Ibn Ibrahimy Sew Eng Hooi, Mohamed Albaity and Ahmad Ibn Ibrahimy (2015). Dividend ARTICLE INFO policy and share price volatility. Investment Management and Financial Innovations, 12(1-1), 226-234 RELEASED ON Tuesday, 07 April 2015 JOURNAL "Investment Management and Financial Innovations" FOUNDER LLC “Consulting Publishing Company “Business Perspectives” NUMBER OF REFERENCES NUMBER OF FIGURES NUMBER OF TABLES 0 0 0 © The author(s) 2021. This publication is an open access article. businessperspectives.org Investment Management and Financial Innovations, Volume 12, Issue 1, 2015 Sew Eng Hooi (Malaysia), Mohamed Albaity (Malaysia), Ahmad Ibn Ibrahimy (Malaysia) Dividend policy and share price volatility Abstract The objective of this study is to examine the relationship between dividend policy and share price volatility in the Malaysian market. A sample of 319 companies from Kuala Lumpur stock exchange were studied to find the relationship between stock price volatility and dividend policy instruments. Dividend yield and dividend payout were found to be negatively related to share price volatility and were statistically significant. Firm size and share price were negatively related. Positive and statistically significant relationships between earning volatility and long term debt to price volatility were identified as hypothesized. However, there was no significant relationship found between growth in assets and price volatility in the Malaysian market. Keywords: dividend policy, share price volatility, dividend yield, dividend payout. JEL Classification: G10, G12, G14. Introduction (Wang and Chang, 2011). However, difference in tax structures (Ho, 2003; Ince and Owers, 2012), growth Dividend policy is always one of the main factors and development (Bulan et al., 2007; Elsady et al., that an investor will focus on when determining 2012), governmental policies (Belke and Polleit, 2006) their investment strategy.
    [Show full text]
  • Predicting SARS-Cov-2 Infection Trend Using Technical Analysis Indicators
    medRxiv preprint doi: https://doi.org/10.1101/2020.05.13.20100784; this version posted May 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Predicting SARS-CoV-2 infection trend using technical analysis indicators Marino Paroli and Maria Isabella Sirinian Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy ABSTRACT COVID-19 pandemic is a global emergency caused by SARS-CoV-2 infection. Without efficacious drugs or vaccines, mass quarantine has been the main strategy adopted by governments to contain the virus spread. This has led to a significant reduction in the number of infected people and deaths and to a diminished pressure over the health care system. However, an economic depression is following due to the forced absence of worker from their job and to the closure of many productive activities. For these reasons, governments are lessening progressively the mass quarantine measures to avoid an economic catastrophe. Nevertheless, the reopening of firms and commercial activities might lead to a resurgence of infection. In the worst-case scenario, this might impose the return to strict lockdown measures. Epidemiological models are therefore necessary to forecast possible new infection outbreaks and to inform government to promptly adopt new containment measures. In this context, we tested here if technical analysis methods commonly used in the financial market might provide early signal of change in the direction of SARS-Cov-2 infection trend in Italy, a country which has been strongly hit by the pandemic.
    [Show full text]
  • Tradescript.Pdf
    Service Disclaimer This manual was written for use with the TradeScript™ language. This manual and the product described in it are copyrighted, with all rights reserved. This manual and the TradeScript™ outputs (charts, images, data, market quotes, and other features belonging to the product) may not be copied, except as otherwise provided in your license or as expressly permitted in writing by Modulus Financial Engineering, Inc. Export of this technology may be controlled by the United States Government. Diversion contrary to U.S. law prohibited. Copyright © 2006 by Modulus Financial Engineering, Inc. All rights reserved. Modulus Financial Engineering and TradeScript™ are registered trademarks of Modulus Financial Engineering, Inc. in the United States and other countries. All other trademarks and service marks are the property of their respective owners. Use of the TradeScript™ product and other services accompanying your license and its documentation are governed by the terms set forth in your license. Such use is at your sole risk. The service and its documentation (including this manual) are provided "AS IS" and without warranty of any kind and Modulus Financial Engineering, Inc. AND ITS LICENSORS (HEREINAFTER COLLECTIVELY REFERRED TO AS “MFE”) EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND AGAINST INFRINGEMENT. MFE DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SERVICE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE SERVICE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE SERVICE OR ERRORS IN THE DATA WILL BE CORRECTED. FURTHERMORE, MFE DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THE SERVICE OR ITS DOCUMENTATION IN TERMS OF THEIR CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.
    [Show full text]
  • Putting Volatility to Work
    Wh o ’ s afraid of volatility? Not anyone who wants a true edge in his or her trad i n g , th a t ’ s for sure. Get a handle on the essential concepts and learn how to improve your trading with pr actical volatility analysis and trading techniques. 2 www.activetradermag.com • April 2001 • ACTIVE TRADER TRADING Strategies BY RAVI KANT JAIN olatility is both the boon and bane of all traders — The result corresponds closely to the percentage price you can’t live with it and you can’t really trade change of the stock. without it. Most of us have an idea of what volatility is. We usually 2. Calculate the average day-to-day changes over a certain thinkV of “choppy” markets and wide price swings when the period. Add together all the changes for a given period (n) and topic of volatility arises. These basic concepts are accurate, but calculate an average for them (Rm): they also lack nuance. Volatility is simply a measure of the degree of price move- Rt ment in a stock, futures contract or any other market. What’s n necessary for traders is to be able to bridge the gap between the Rm = simple concepts mentioned above and the sometimes confus- n ing mathematics often used to define and describe volatility. 3. Find out how far prices vary from the average calculated But by understanding certain volatility measures, any trad- in Step 2. The historical volatility (HV) is the “average vari- er — options or otherwise — can learn to make practical use of ance” from the mean (the “standard deviation”), and is esti- volatility analysis and volatility-based strategies.
    [Show full text]
  • A Test of Macd Trading Strategy
    A TEST OF MACD TRADING STRATEGY Bill Huang Master of Business Administration, University of Leicester, 2005 Yong Soo Kim Bachelor of Business Administration, Yonsei University, 200 1 PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION In the Faculty of Business Administration Global Asset and Wealth Management MBA O Bill HuangIYong Soo Kim 2006 SIMON FRASER UNIVERSITY Fall 2006 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. APPROVAL Name: Bill Huang 1 Yong Soo Kim Degree: Master of Business Administration Title of Project: A Test of MACD Trading Strategy Supervisory Committee: Dr. Peter Klein Senior Supervisor Professor, Faculty of Business Administration Dr. Daniel Smith Second Reader Assistant Professor, Faculty of Business Administration Date Approved: SIMON FRASER . UNI~ER~IW~Ibra ry DECLARATION OF PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the "lnstitutional Repository" link of the SFU Library website <www.lib.sfu.ca> at: ~http:llir.lib.sfu.calhandlell8921112~)and, without changing the content, to translate the thesislproject or extended essays, if .technically possible, to any medium or format for the purpose of preservation of the digital work.
    [Show full text]
  • Keep up the Momentum∗
    Keep Up The Momentum∗ Thierry Roncalli Quantitative Research Amundi Asset Management, Paris [email protected] December 2017 Abstract The momentum risk premium is one of the most important alternative risk premia alongside the carry risk premium. However, it appears that it is not always well under- stood. For example, is it an alpha or a beta exposure? Is it a skewness risk premium or a market anomaly? Does it pursue a performance objective or a hedging objective? What are the differences between time-series and cross-section momentum? What are the main drivers of momentum returns? What does it mean when we say that it is a convex and not a concave strategy? Why is the momentum risk premium a diversifying engine, and not an absolute return strategy? The goal of this paper is to provide specific and relevant answers to all these ques- tions. The answers can already be found in the technical paper \Understanding the Momentum Risk Premium" published recently by Jusselin et al. (2017). However, the underlying mathematics can be daunting to readers. Therefore, this discussion paper presents the key messages and the associated financial insights behind these results. Among the main findings, one result is of the most importance. To trend is to diversify in bad times. In good times, trend-following strategies offer no significant diversification power. Indeed, they are beta strategies. This is not a problem, since investors do not need to be diversified at all times. In particular, they do not need diversification in good times, because they do not want that the positive returns gen- erated by some assets to be cancelled out by negative returns on other assets.
    [Show full text]
  • Explanations for the Momentum Premium
    CAPITAL MANAGEMENT Tobias Moskowitz, Ph.D. Summer 2010 Fama Family Professor of Finance University of Chicago Booth School of Business EXPLANATIONS FOR THE MOMENTUM PREMIUM Momentum is a well established empirical fact whose premium is evident in over 83 years of U.S. data, in 20 years of out of sample evidence from its original discovery, in 40 other countries, and in more than a dozen other asset classes. Its presence and robustness are remarkably stable and, along with the size and value premia, these investment styles have become the preeminent empirical regularities studied by academics and practitioners. And, like size and value, there is much debate and little consensus regarding the explanation driving this premium, though there are some compelling theories. In this short note, we summarize briefly the risk-based and non-risk based explanations for momentum. While the jury is still out on which of these explanations better fit the data, we emphasize that similar uncertainty regarding the explanation behind the size and value premium also exists. Much like momentum, stories for the size and value premium range from risk-based to behavioral and there is a healthy debate over which of these theories is most consistent with the facts. These debates are likely to continue for the foreseeable future, but as we discuss below there are many viable candidate theories for their existence—and the truth behind the source of these premia probably contains elements from several explanations. Non Risk-Based Explanations Some argue that the momentum premium is driven by non-risk factors, many of which have a behavioral flavor.
    [Show full text]
  • Forecasting Direction of Exchange Rate Fluctuations with Two Dimensional Patterns and Currency Strength
    FORECASTING DIRECTION OF EXCHANGE RATE FLUCTUATIONS WITH TWO DIMENSIONAL PATTERNS AND CURRENCY STRENGTH A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MUSTAFA ONUR ÖZORHAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PILOSOPHY IN COMPUTER ENGINEERING MAY 2017 Approval of the thesis: FORECASTING DIRECTION OF EXCHANGE RATE FLUCTUATIONS WITH TWO DIMENSIONAL PATTERNS AND CURRENCY STRENGTH submitted by MUSTAFA ONUR ÖZORHAN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Engineering Department, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver _______________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Adnan Yazıcı _______________ Head of Department, Computer Engineering Prof. Dr. İsmail Hakkı Toroslu _______________ Supervisor, Computer Engineering Department, METU Examining Committee Members: Prof. Dr. Tolga Can _______________ Computer Engineering Department, METU Prof. Dr. İsmail Hakkı Toroslu _______________ Computer Engineering Department, METU Assoc. Prof. Dr. Cem İyigün _______________ Industrial Engineering Department, METU Assoc. Prof. Dr. Tansel Özyer _______________ Computer Engineering Department, TOBB University of Economics and Technology Assist. Prof. Dr. Murat Özbayoğlu _______________ Computer Engineering Department, TOBB University of Economics and Technology Date: ___24.05.2017___ I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: MUSTAFA ONUR ÖZORHAN Signature: iv ABSTRACT FORECASTING DIRECTION OF EXCHANGE RATE FLUCTUATIONS WITH TWO DIMENSIONAL PATTERNS AND CURRENCY STRENGTH Özorhan, Mustafa Onur Ph.D., Department of Computer Engineering Supervisor: Prof.
    [Show full text]
  • 8 Best Bearish Candlestick Patterns for Day Trading [Free Guide & Video]
    8 Best Bearish Candlestick Patterns for Day Trading [Free Guide & Video] Recently, we discussed the general history of candlesticks and their patterns in a prior post. We also have a great tutorial on the most reliable bullish patterns. But for today, we’re going to dig deeper, and more practical, explaining 8 bearish candlestick patterns every day trader should know. We’ll cover the following: What these patterns look like The criteria for confirming them The story these candles tell How to set entries and risk for each Some common mistakes when interpreting them. 8 Bearish Candlesticks Video Tutorial If you have a few minutes, our in-house trading expert, Aiman Almansoori has cut out a lot of the leg-work for us in this fantastic webinar. We’ve time-stamped the exact spot in the recording where he begins speaking about these 8 bearish candlestick patterns. Have a watch while you read! Also, feel free to use our quick reference guide below for bearish candlestick patterns! Be sure to save the image for your use with your trading and training in the market! What Bearish Candlesticks Tell Us Hopefully at this point in your trading career you’ve come to know that candlesticks are important. Not only do they provide a visual representation of price on a chart, but they tell a story. Behind this story is the belief that the chart tells us everything we need to know: the what being more important than the why. Each candlestick is a representation of buyers and sellers and their emotions, regardless of the underlying “value” of the stock.
    [Show full text]
  • A Guide to WL Indicators
    A GUIDE TO WL INDICATORS GETTING TECHNICAL ABOUT TRADING: USING EIGHT COMMON INDICATORS TO How is it different from other MAs? MAKE SENSE OF TRADING While other MA calculations may weigh price or time frame differently, the SMA is calculated by weighing the closing prices equally. What’s a technical indicator and why should I use them? Traders usually use more than one SMA to determine market momentum; when an SMA with a short- term time What’s the market going to do next? It is a question that’s almost always on traders’ minds. Over time, traders period (for instance, a 15-day SMA) crosses above an SMA with a long-term time frame (a 50-day SMA), it usually have looked at price movements on charts and struggled to make sense of the ups, downs, and sometimes means that the market is in an uptrend. sideways movements of a particular market. When an SMA with a shorter time period crosses below an SMA with a longer time period, it usually means That’s given rise to technical indicators - a set of tools that use the real-time market moves of an instrument to that the market is in a downtrend. Traders also use SMAs to detect areas of support when a trend changes give traders a sense of what the market will do next. There are hundreds of different indicators that traders can direction. Generally, an SMA with a longer time period identifies a stronger level of support. use, but whether you’re a new trader or an old hand at it, you need to know how to pick one, how to adjust its settings, and when to act on its signals.
    [Show full text]
  • My Favorite Trading Strategy Indicators
    Trade Ideas My Favorite Trading Strategy Indicators by Dave Mabe | Dir. of Software Development My Favorite Trading Stratey Indicators | 2020 1 About Dave Mabe Director of Software Development Dave Mabe has been an active trader for over 15 years. Prior to joining Trade Ideas in 2011, Dave started StockTickr, an online trading journal. Dave created Holly, Trade Ideas Artificial Intelligence implementation, drawing from machine learning and data analysis techniques that he’s used in trading strategies for many years. Dave also was the architect behind Brokerage Plus and the Trade Ideas stock charts. @davemabe www.davemabe.com www.trade-ideas.com My Favorite Trading Stratey Indicators | 2020 2 Chapter 1 Clean Charts Too many trading indicators on a chart is a sign of mediocrity. Your charts should be nice and clean showing you exactly what you need to see to make your pre- planned decisions and no more. Many traders take this to heart and have simple charts that aren’t littered with indicators, but too many draw the wrong conclusion at this point: that all indicators are worthless. A trader’s clean chart is not recognition that all indicators are garbage – it should represent that the trader has gone through the thorough and painstaking work of determining which indicators are most important to their trading and why. It should represent countless ideas of what indicators make their trading tick and lots of decisions about the trade offs of including or excluding certain ones. A simple chart should represent the quantifiable tests that have gone into determining which indicators contribute to profit.
    [Show full text]
  • Technical Analysis, Liquidity, and Price Discovery∗
    Technical Analysis, Liquidity, and Price Discovery∗ Felix Fritzy Christof Weinhardtz Karlsruhe Institute of Technology Karlsruhe Institute of Technology This version: 27.08.2016 Abstract Academic literature suggests that Technical Analysis (TA) plays a role in the decision making process of some investors. If TA traders act as uninformed noise traders and generate a relevant amount of trading volume, market quality could be affected. We analyze moving average (MA) trading signals as well as support and resistance levels with respect to market quality and price efficiency. For German large-cap stocks we find excess liquidity demand around MA signals and high limit order supply on support and resistance levels. Depending on signal type, spreads increase or remain unaffected which contra- dicts the mitigating effect of uninformed TA trading on adverse selection risks. The analysis of transitory and permanent price components demonstrates increasing pricing errors around TA signals, while for MA permanent price changes tend to increase of a larger magnitude. This suggests that liquidity demand in direction of the signal leads to persistent price deviations. JEL Classification: G12, G14 Keywords: Technical Analysis, Market Microstructure, Noise Trading, Liquidity ∗Financial support from Boerse Stuttgart is gratefully acknowledged. The Stuttgart Stock Exchange (Boerse Stuttgart) kindly provided us with databases. The views expressed here are those of the authors and do not necessarily represent the views of the Boerse Stuttgart Group. yE-mail: [email protected]; Karlsruhe Institute of Technology, Research Group Financial Market Innovation, Englerstrasse 14, 76131 Karlsruhe, Germany. zE-mail: [email protected]; Karlsruhe Institute of Technology, Institute of Information System & Marketing, Englerstrasse 14, 76131 Karlsruhe, Germany.
    [Show full text]