Aeolidia Papillosa (Linnaeus, 1761)

Total Page:16

File Type:pdf, Size:1020Kb

Aeolidia Papillosa (Linnaeus, 1761) Aeolidia papillosa (Linnaeus, 1761) AphiaID: 138709 NUDIBRÂNQUIO-CINZENTO Animalia (Reino) > Mollusca (Filo) > Gastropoda (Classe) > Heterobranchia (Subclasse) > Euthyneura (Infraclasse) > Nudipleura (Superordem) > Nudibranchia (Ordem) > Cladobranchia (Subordem) > Aeolidioidea (Superfamilia) > Aeolidiidae (Familia) Viktor V. Grøtan Rainer Borcherding - Schutzstation Wattenmeer, via beachexplorer.org Steve Lonhart / NOAA MBNMSDomínio Público Facilmente confundível com: 1 Aeolidiella glauca Aeolidiella sanguinea Nudibrânquio nudibrânquio Aeolidia filomenae Aeolidiella alderi nudibrânquio nudibrânquio Sinónimos Aeolidia papillosa var. pacifica Bergh, 1879 Aeolis lesliana MacGillivray, 1843 Aeolis murrayana MacGillivray, 1843 Doris bodoensis Gunnerus, 1770 Doris vermigera Turton, 1807 Eolis farinacea Stimpson, 1853 Eolis obtusalis Alder & Hancock, 1842 Eolis papillosa (Linnaeus, 1761) Eolis plumata Dalyell, 1853 Eolis rosea Alder & Hancock, 1842 Limax papillosus Linnaeus, 1761 Referências Linnaeus, C. (1761). Fauna Suecica sistens Animalia Sueciae Regni: Mammalia, Aves, Amphibia, Pisces, Insecta, Vermes. Distributa per Classes, Ordines, Genera, Species, cum Differentiis Specierum, Synonymis Auctorum, Nominibus Incolarum, Locis Natalium, Descriptionibus insectorum. Editio altera, auctior. Stockholmiae: L. Salvii, 48 +578disponível pp., online em http://www.biodiversitylibrary.org/item/100333 original description Linnaeus, C. (1761). Fauna Suecica sistens Animalia Sueciae Regni: Mammalia, Aves, Amphibia, Pisces, Insecta, Vermes. Distributa per Classes, Ordines, Genera, Species, cum Differentiis Specierum, Synonymis Auctorum, Nominibus Incolarum, Locis Natalium, Descriptionibus insectorum. Editio altera, auctior. Stockholmiae: L. Salvii, 48 + 578 pp., available online at http://www.biodiversitylibrary.org/item/100333 [details] 2 additional source Carmona L., Pola M., Gosliner T.M. & Cervera J.L. 2013. A tale that morphology fails to tell: A molecular phylogeny of Aeolidiidae (Aeolidida, Nudibranchia, Gastropoda). PLoS ONE 8(5): e63000. doi:10.1371/journal.pone.0063000, available online at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0063000 [details] basis of record Kienberger K., Carmona L., Pola M., Padula V., Gosliner T.M. & Cervera J.L. (2016). Aeolidia papillosa (Linnaeus, 1761) (Mollusca: Heterobranchia: Nudibranchia), single species or a cryptic species complex? A morphological and molecular study. Zoological Journal of the Linnean Society. 177: 481-506., available online at https://doi.org/10.1111/zoj.12379 [details] context source (Schelde) Maris, T.; Beauchard, O.; Van Damme, S.; Van den Bergh, E.; Wijnhoven, S.; Meire, P. (2013). Referentiematrices en Ecotoopoppervlaktes Annex bij de Evaluatiemethodiek Schelde-estuarium Studie naar “Ecotoopoppervlaktes en intactness index”. Monitor Taskforce Publication Series, 2013-01. NIOZ: Yerseke. 35 pp.[details] additional source Carmona L., Pola M., Gosliner T.M. & Cervera J.L. 2013. A tale that morphology fails to tell: A molecular phylogeny of Aeolidiidae (Aeolidida, Nudibranchia, Gastropoda). PLoS ONE 8(5): e63000. doi:10.1371/journal.pone.0063000, available online at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0063000 [details] basis of record Kienberger K., Carmona L., Pola M., Padula V., Gosliner T.M. & Cervera J.L. (2016). Aeolidia papillosa (Linnaeus, 1761) (Mollusca: Heterobranchia: Nudibranchia), single species or a cryptic species complex? A morphological and molecular study. Zoological Journal of the Linnean Society. 177: 481-506., available online at https://doi.org/10.1111/zoj.12379 [details] additional source Carmona L., Pola M., Gosliner T.M. & Cervera J.L. 2013. A tale that morphology fails to tell: A molecular phylogeny of Aeolidiidae (Aeolidida, Nudibranchia, Gastropoda). PLoS ONE 8(5): e63000. doi:10.1371/journal.pone.0063000, available online at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0063000 [details] basis of record Kienberger K., Carmona L., Pola M., Padula V., Gosliner T.M. & Cervera J.L. (2016). Aeolidia papillosa (Linnaeus, 1761) (Mollusca: Heterobranchia: Nudibranchia), single species or a cryptic species complex? A morphological and molecular study. Zoological Journal of the Linnean Society. 177: 481-506., available online at https://doi.org/10.1111/zoj.12379 [details] Última atualização: 06 Out. 2018 3.
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • A Radical Solution: the Phylogeny of the Nudibranch Family Fionidae
    RESEARCH ARTICLE A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae Kristen Cella1, Leila Carmona2*, Irina Ekimova3,4, Anton Chichvarkhin3,5, Dimitry Schepetov6, Terrence M. Gosliner1 1 Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, California, United States of America, 2 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, 3 Far Eastern Federal University, Vladivostok, Russia, 4 Biological Faculty, Moscow State University, Moscow, Russia, 5 A.V. Zhirmunsky Instutute of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia, 6 National Research University Higher School of Economics, Moscow, Russia a11111 * [email protected] Abstract Tergipedidae represents a diverse and successful group of aeolid nudibranchs, with approx- imately 200 species distributed throughout most marine ecosystems and spanning all bio- OPEN ACCESS geographical regions of the oceans. However, the systematics of this family remains poorly Citation: Cella K, Carmona L, Ekimova I, understood since no modern phylogenetic study has been undertaken to support any of the Chichvarkhin A, Schepetov D, Gosliner TM (2016) A Radical Solution: The Phylogeny of the proposed classifications. The present study is the first molecular phylogeny of Tergipedidae Nudibranch Family Fionidae. PLoS ONE 11(12): based on partial sequences of two mitochondrial (COI and 16S) genes and one nuclear e0167800. doi:10.1371/journal.pone.0167800 gene (H3). Maximum likelihood, maximum parsimony and Bayesian analysis were con- Editor: Geerat J. Vermeij, University of California, ducted in order to elucidate the systematics of this family. Our results do not recover the tra- UNITED STATES ditional Tergipedidae as monophyletic, since it belongs to a larger clade that includes the Received: July 7, 2016 families Eubranchidae, Fionidae and Calmidae.
    [Show full text]
  • Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
    Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims.
    [Show full text]
  • Nudibranchia: Flabellinidae) from the Red and Arabian Seas
    Ruthenica, 2020, vol. 30, No. 4: 183-194. © Ruthenica, 2020 Published online October 1, 2020. http: ruthenica.net Molecular data and updated morphological description of Flabellina rubrolineata (Nudibranchia: Flabellinidae) from the Red and Arabian seas Irina A. EKIMOVA1,5, Tatiana I. ANTOKHINA2, Dimitry M. SCHEPETOV1,3,4 1Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, RUSSIA; 2A.N. Severtsov Institute of Ecology and Evolution, Leninskiy prosp. 33, 119071 Moscow, RUSSIA; 3N.K. Koltzov Institute of Developmental Biology RAS, Vavilov str. 26, 119334 Moscow, RUSSIA; 4Moscow Power Engineering Institute (MPEI, National Research University), 111250 Krasnokazarmennaya 14, Moscow, RUSSIA. 5Corresponding author; E-mail: [email protected] ABSTRACT. Flabellina rubrolineata was believed to have a wide distribution range, being reported from the Mediterranean Sea (non-native), the Red Sea, the Indian Ocean and adjacent seas, and the Indo-West Pacific and from Australia to Hawaii. In the present paper, we provide a redescription of Flabellina rubrolineata, based on specimens collected near the type locality of this species in the Red Sea. The morphology of this species was studied using anatomical dissections and scanning electron microscopy. To place this species in the phylogenetic framework and test the identity of other specimens of F. rubrolineata from the Indo-West Pacific we sequenced COI, H3, 16S and 28S gene fragments and obtained phylogenetic trees based on Bayesian and Maximum likelihood inferences. Our morphological and molecular results show a clear separation of F. rubrolineata from the Red Sea from its relatives in the Indo-West Pacific. We suggest that F. rubrolineata is restricted to only the Red Sea, the Arabian Sea and the Mediterranean Sea and to West Indian Ocean, while specimens from other regions belong to a complex of pseudocryptic species.
    [Show full text]
  • Phidiana Lynceus Berghia Coerulescens Doto Koenneckeri
    Cuthona abronia Cuthona divae Austraeolis stearnsi Flabellina exoptata Flabellina fusca Calma glaucoides Hermosita hakunamatata Learchis poica Anteaeolidiella oliviae Aeolidiopsis ransoni Phidiana militaris Baeolidia moebii Facelina annulicornis Protaeolidiella juliae Moridilla brockii Noumeaella isa Cerberilla sp. 3 Cerberilla bernadettae Aeolidia sp. A Aeolidia sp. B Baeolidia sp. A Baeolidia sp. B Cerberilla sp. A Cerberilla sp. B Cerberilla sp. C Facelina sp. C Noumeaella sp. A Noumeaella sp. B Facelina sp. A Marionia blainvillea Aeolidia papillosa Hermissenda crassicornis Flabellina babai Dirona albolineata Doto sp. 15 Marionia sp. 10 Marionia sp. 5 Tritonia sp. 4 Lomanotus sp. E Piseinotecus sp. Dendronotus regius Favorinus elenalexiarum Janolus mirabilis Marionia levis Phyllodesmium horridum Tritonia pickensi Babakina indopacifica Marionia sp. B Godiva banyulensis Caloria elegans Favorinus brachialis Flabellina baetica 1 Facelinidae sp. A Godiva quadricolor 0.99 Limenandra fusiformis Limenandra sp. C 0.71 Limenandra sp. B 0.91 Limenandra sp. A Baeolidia nodosa 0.99 Crosslandia daedali Scyllaea pelagica Notobryon panamica Notobryon thompsoni 0.98 Notobryon sp. B Notobryon sp. C Notobryon sp. D Notobryon wardi 0.97 Tritonia sp. 3 Marionia arborescens 0.96 Hancockia cf. uncinata Hancockia californica 0.94 Spurilla chromosoma Pteraeolidia ianthina 0.92 Noumeaella sp. 3 Noumeaella rehderi 0.92 Nanuca sebastiani 0.97 Dondice occidentalis Dondice parguerensis 0.92 Pruvotfolia longicirrha Pruvotfolia pselliotes 0.88 Marionia sp. 14 Tritonia sp. G 0.87 Bonisa nakaza 0.87 Janolus sp. 2 0.82 Janolus sp. 1 Janolus sp. 7 Armina sp. 3 0.83 Armina neapolitana 0.58 Armina sp. 9 0.78 Dermatobranchus sp. 16 0.52 Dermatobranchus sp. 21 0.86 Dermatobranchus sp.
    [Show full text]
  • Gastropoda: Opisthobranchia)
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 1977 A MONOGRAPHIC STUDY OF THE NEW ENGLAND CORYPHELLIDAE (GASTROPODA: OPISTHOBRANCHIA) ALAN MITCHELL KUZIRIAN Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation KUZIRIAN, ALAN MITCHELL, "A MONOGRAPHIC STUDY OF THE NEW ENGLAND CORYPHELLIDAE (GASTROPODA: OPISTHOBRANCHIA)" (1977). Doctoral Dissertations. 1169. https://scholars.unh.edu/dissertation/1169 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Sexual Conflict in Hermaphrodites
    Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Sexual Conflict in Hermaphrodites Lukas Scha¨rer1, Tim Janicke2, and Steven A. Ramm3 1Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland 2Centre d’E´cologie Fonctionnelle et E´volutive, CNRS UMR 5175, 34293 Montpellier Cedex 05, France 3Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany Correspondence: [email protected] Hermaphrodites combine the male and female sex functions into a single individual, either sequentially or simultaneously. This simple fact means that they exhibit both similarities and differences in the way in which they experience, and respond to, sexual conflict compared to separate-sexed organisms. Here, we focus on clarifying how sexual conflict concepts can be adapted to apply to all anisogamous sexual systems and review unique (or especially im- portant) aspects of sexual conflict in hermaphroditic animals. These include conflicts over the timing of sex change in sequential hermaphrodites, and in simultaneous hermaphrodites, over both sex roles and the postmating manipulation of the sperm recipient by the sperm donor. Extending and applying sexual conflict thinking to hermaphrodites can identify general evolutionary principles and help explain some of the unique reproductive diversity found among animals exhibiting this widespread but to date understudied sexual system. onceptual and empirical work on sexual strategy of making more but smaller gam- Cconflict is dominated by studies on gono- etes—driven by (proto)sperm competition— chorists (species with separate sexes) (e.g., Par- likely forced the (proto)female sexual strategy ker 1979, 2006; Rice and Holland 1997; Holland into investing more resources per gamete (Par- and Rice 1998; Rice and Chippindale 2001; ker et al.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Tergipes Tergipes Cadlina Laevis Cuthona Fulgens Dendronotus
    Austraeolis stearnsi Flabellina fusca Hermosita hakunamatata Learchis poica Protaeolidiella atra Phidiana militaris Protaeolidiella juliae Moridilla brockii Cerberilla bernadettae Cerberilla sp. A Facelina sp. D Noumeaella sp. B Facelina sp. A Flabellina verrucosa Flabellina affinis Tritoniella belli Flabellina babai Tethys fimbria Armina lovenii Flabellina pedata Dirona albolineata Flabellina trilineata Armina sp. 3 Armina sp. 9 Piseinotecus sp. Janolus mirabilis Babakina indopacifica Leminda millecra Marianina rosea Flabellina baetica 1 Flabellina confusa Calmella cavolini Piseinotecus gaditanus 1 Godiva banyulensis Dicata odhneri 1 Glaucus atlanticus Glaucus marginatus 0.99 Spurilla chromosoma Anteaeolidiella oliviae 0.99 Hancockia californica 0.93 Hancockia uncinata Hancockia cf. uncinata 0.99 Flabellina exoptata Caloria indica 0.99 Phidiana hiltoni Phidiana lynceus 0.97 Marionia sp. 14 0.99 Tritonia sp. G 0.95 Marionia blainvillea 0.52 Marionia sp. B 0.92 Tritonia sp. 3 0.55 Marionia arborescens 0.97 Tritonia sp. 4 0.91 Marionia sp. A 0.82 Marionia levis 0.87 Marionia sp. 10 0.82 Marionia sp. 5 Marionia distincta 0.99 Limenandra sp. B 0.94 Limenandra fusiformis 0.55 Limenandra sp. C 0.72 Limenandra sp. A Baeolidia nodosa 0.97 Aeolidia sp. B Aeolidia papillosa 0.96 Piseinotecus gabinierei Flabellina ischitana 0.92 Facelina sp. B 0.99 0.74 Favorinus elenalexiarum Favorinus brachialis 0.91 Spurilla sargassicola 0.62 Spurilla sp. A 0.91 Spurilla braziliana Spurilla neapolitana Spurilla creutzbergi 0.87 0.71 Aeolidiella stephanieae Berghia rissodominguezi 0.99 0.64 Berghia columbina Berghia sp. A 0.66 Berghia coerulescens Berghia verrucicornis 0.84 Scyllaea pelagica 0.83 Notobryon sp.
    [Show full text]
  • Two New Species of the Tropical Facelinid Nudibranch Moridilla Bergh, 1888 (Heterobranchia: Aeolidida) from Australasia Leila Carmona1,* and Nerida G
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 33 095–102 (2018) DOI: 10.18195/issn.0312-3162.33(1).2018.095-102 Two new species of the tropical facelinid nudibranch Moridilla Bergh, 1888 (Heterobranchia: Aeolidida) from Australasia Leila Carmona1,* and Nerida G. Wilson2 1 Department of Marine Sciences, University of Gothenburg, Box 460, Gothenburg 40530, Sweden; Gothenburg Global Biodiversity Centre, Box 461, Gothenburg SE-405 30, Sweden. 2 Molecular Systematics Unit, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia. * Corresponding author: [email protected] ABSTRACT – The Indo-Pacifc aeolid nudibranch Moridilla brockii Bergh, 1888 comprises a species complex. Here we describe two morphs from the complex as new species. Using morphological comparisons, we show the new species to be closely related but distinct from each other and from M. brockii. Distributed across north-western Australia, M. ffo sp. nov. is known from Exmouth, Western Australia to the Wessel Islands, Northern Territory, whereas M. hermanita sp. nov. is known only from Madang, Papua New Guinea. Differences between the two species include colouration, the size of the receptaculum seminis and some distinction in the jaws. Unravelling the entire complex will take much wider geographic sampling, and will require recollection from the type locality of M. brockii. This group is yet another example of a purportedly widespread aeolid species comprising a complex of species. KEYWORDS: nudibranchia, morphology, cryptic species complex urn:lsid:zoobank.org:pub:2D0B250B-74DC-4E55-814B-0B2FB304200A INTRODUCTION India, which reported some important differences, such As our understanding of the ocean’s biodiversity as the position of the anus, the papillate patterning of improves, so does the recognition of previously the rhinophores and general body colouration (Rao, undetected cryptic diversity.
    [Show full text]
  • The Extraordinary Genus Myja Is Not a Tergipedid, but Related to the Facelinidae S
    A peer-reviewed open-access journal ZooKeys 818: 89–116 (2019)The extraordinary genusMyja is not a tergipedid, but related to... 89 doi: 10.3897/zookeys.818.30477 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The extraordinary genus Myja is not a tergipedid, but related to the Facelinidae s. str. with the addition of two new species from Japan (Mollusca, Nudibranchia) Alexander Martynov1, Rahul Mehrotra2,3, Suchana Chavanich2,4, Rie Nakano5, Sho Kashio6, Kennet Lundin7,8, Bernard Picton9,10, Tatiana Korshunova1,11 1 Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia 2 Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3 New Heaven Reef Conservation Program, 48 Moo 3, Koh Tao, Suratthani 84360, Thailand 4 Center for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn Univer- sity, Bangkok 10330, Thailand5 Kuroshio Biological Research Foundation, 560-I, Nishidomari, Otsuki, Hata- Gun, Kochi, 788-0333, Japan 6 Natural History Museum, Kishiwada City, 6-5 Sakaimachi, Kishiwada, Osaka Prefecture 596-0072, Japan 7 Gothenburg Natural History Museum, Box 7283, S-40235, Gothenburg, Sweden 8 Gothenburg Global Biodiversity Centre, Box 461, S-40530, Gothenburg, Sweden 9 National Mu- seums Northern Ireland, Holywood, Northern Ireland, UK 10 Queen’s University, Belfast, Northern Ireland, UK 11 Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia Corresponding author: Alexander Martynov ([email protected]) Academic editor: Nathalie Yonow | Received 10 October 2018 | Accepted 3 January 2019 | Published 23 January 2019 http://zoobank.org/85650B90-B4DD-4FE0-8C16-FD34BA805C07 Citation: Martynov A, Mehrotra R, Chavanich S, Nakano R, Kashio S, Lundin K, Picton B, Korshunova T (2019) The extraordinary genus Myja is not a tergipedid, but related to the Facelinidae s.
    [Show full text]
  • Integrative Systematics of the Genus Limacia in the Eastern Pacific
    Mar Biodiv DOI 10.1007/s12526-017-0676-5 ORIGINAL PAPER Integrative systematics of the genus Limacia O. F. Müller, 1781 (Gastropoda, Heterobranchia, Nudibranchia, Polyceridae) in the Eastern Pacific Roberto A. Uribe1 & Fabiola Sepúlveda2 & Jeffrey H. R. Goddard3 & Ángel Valdés4 Received: 6 December 2016 /Revised: 22 February 2017 /Accepted: 27 February 2017 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017 Abstract Morphological examination and molecular analy- from Baja California to Panama. Species delimitation analyses ses of specimens of the genus Limacia collected in the based on molecular data and unique morphological traits from Eastern Pacific Ocean indicate that four species of Limacia the dorsum, radula, and reproductive systems are useful in occur in the region. Limacia cockerelli,previouslyconsidered distinguishing these species to range from Alaska to Baja California, is common only in the northern part of its former range. An undescribed Keywords Mollusca . New species . Molecular taxonomy . pseudocryptic species, previously included as L. cockerelli, Pseudocryptic species occurs from Northern California to the Baja California Peninsula and is the most common species of Limacia in Southern California and Northern Mexico. Another new spe- Introduction cies similar to L. cockerelli is described from Antofagasta, Chile and constitutes the first record of the genus Limacia in Molecular markers have become a powerful tool in tax- the Southeastern Pacific Ocean. These two new species are onomy, systematics and phylogeny, allowing researchers formally described herein. Finally, Limacia janssi is a genet- to assess whether morphological variations correspond to ically and morphologically distinct tropical species ranging different species or merely represent intra-specific pheno- typic expression due to environmental variation (Hebert Communicated by V.
    [Show full text]