On the Structure and Function of the Wandering Cells in the Wall of the Alimentary Canal of Nudi- Branchiate Mollusca
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum -
A Radical Solution: the Phylogeny of the Nudibranch Family Fionidae
RESEARCH ARTICLE A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae Kristen Cella1, Leila Carmona2*, Irina Ekimova3,4, Anton Chichvarkhin3,5, Dimitry Schepetov6, Terrence M. Gosliner1 1 Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, California, United States of America, 2 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, 3 Far Eastern Federal University, Vladivostok, Russia, 4 Biological Faculty, Moscow State University, Moscow, Russia, 5 A.V. Zhirmunsky Instutute of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia, 6 National Research University Higher School of Economics, Moscow, Russia a11111 * [email protected] Abstract Tergipedidae represents a diverse and successful group of aeolid nudibranchs, with approx- imately 200 species distributed throughout most marine ecosystems and spanning all bio- OPEN ACCESS geographical regions of the oceans. However, the systematics of this family remains poorly Citation: Cella K, Carmona L, Ekimova I, understood since no modern phylogenetic study has been undertaken to support any of the Chichvarkhin A, Schepetov D, Gosliner TM (2016) A Radical Solution: The Phylogeny of the proposed classifications. The present study is the first molecular phylogeny of Tergipedidae Nudibranch Family Fionidae. PLoS ONE 11(12): based on partial sequences of two mitochondrial (COI and 16S) genes and one nuclear e0167800. doi:10.1371/journal.pone.0167800 gene (H3). Maximum likelihood, maximum parsimony and Bayesian analysis were con- Editor: Geerat J. Vermeij, University of California, ducted in order to elucidate the systematics of this family. Our results do not recover the tra- UNITED STATES ditional Tergipedidae as monophyletic, since it belongs to a larger clade that includes the Received: July 7, 2016 families Eubranchidae, Fionidae and Calmidae. -
Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims. -
Nudibranchia: Flabellinidae) from the Red and Arabian Seas
Ruthenica, 2020, vol. 30, No. 4: 183-194. © Ruthenica, 2020 Published online October 1, 2020. http: ruthenica.net Molecular data and updated morphological description of Flabellina rubrolineata (Nudibranchia: Flabellinidae) from the Red and Arabian seas Irina A. EKIMOVA1,5, Tatiana I. ANTOKHINA2, Dimitry M. SCHEPETOV1,3,4 1Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, RUSSIA; 2A.N. Severtsov Institute of Ecology and Evolution, Leninskiy prosp. 33, 119071 Moscow, RUSSIA; 3N.K. Koltzov Institute of Developmental Biology RAS, Vavilov str. 26, 119334 Moscow, RUSSIA; 4Moscow Power Engineering Institute (MPEI, National Research University), 111250 Krasnokazarmennaya 14, Moscow, RUSSIA. 5Corresponding author; E-mail: [email protected] ABSTRACT. Flabellina rubrolineata was believed to have a wide distribution range, being reported from the Mediterranean Sea (non-native), the Red Sea, the Indian Ocean and adjacent seas, and the Indo-West Pacific and from Australia to Hawaii. In the present paper, we provide a redescription of Flabellina rubrolineata, based on specimens collected near the type locality of this species in the Red Sea. The morphology of this species was studied using anatomical dissections and scanning electron microscopy. To place this species in the phylogenetic framework and test the identity of other specimens of F. rubrolineata from the Indo-West Pacific we sequenced COI, H3, 16S and 28S gene fragments and obtained phylogenetic trees based on Bayesian and Maximum likelihood inferences. Our morphological and molecular results show a clear separation of F. rubrolineata from the Red Sea from its relatives in the Indo-West Pacific. We suggest that F. rubrolineata is restricted to only the Red Sea, the Arabian Sea and the Mediterranean Sea and to West Indian Ocean, while specimens from other regions belong to a complex of pseudocryptic species. -
Subtidal Ecology of Frenchman Bay Establishing Long-Term Monitoring Sites J
Subtidal Ecology of Frenchman Bay Establishing long-term monitoring sites J. Alex Brett College of the Atlantic Spring, 2011 Abstract Long-term monitoring programs are an essential component of understanding population dynamics, particularly in response to anthropogenic activity. The marine environment of Downeast Maine is subject to a wide range of factors resulting from human actions, including commercial fishing, climate change, and species introductions. In order to provide baseline data to understand the impacts of these actions I used photoquadrats to survey the rocky subtidal zone at two sites in Frenchman Bay, Maine. The data demonstrated interesting trends in population distribution patterns in the Bay; I found high levels of variation both between sites and between individual quadrats within sites. The site at Bar Island had a significantly higher density of filamentous red algae than Long Porcupine. As predicted by past studies, percent cover estimates of filter feeders were found to vary significantly between horizontal and vertical surfaces. The data from this study support earlier conclusions about marine invertebrate population patterns, and indicate the importance of fixed plots for long-term surveys to reduce the effect of environmental variation on survey results. Introduction At present there appears to be little current understanding of the population dynamics of the benthic marine life of Downeast Maine, which is a knowledge gap that needs to be addressed. The bulk of population studies on marine life have focused on commercially important species, such as scallops (Hart 2006) and bony fishes (Brodziak and Traver 2006, Mayo and O’Brien 2006), or ecologically sensitive species such as eelgrass (Disney and Kidder 2010). -
Phidiana Lynceus Berghia Coerulescens Doto Koenneckeri
Cuthona abronia Cuthona divae Austraeolis stearnsi Flabellina exoptata Flabellina fusca Calma glaucoides Hermosita hakunamatata Learchis poica Anteaeolidiella oliviae Aeolidiopsis ransoni Phidiana militaris Baeolidia moebii Facelina annulicornis Protaeolidiella juliae Moridilla brockii Noumeaella isa Cerberilla sp. 3 Cerberilla bernadettae Aeolidia sp. A Aeolidia sp. B Baeolidia sp. A Baeolidia sp. B Cerberilla sp. A Cerberilla sp. B Cerberilla sp. C Facelina sp. C Noumeaella sp. A Noumeaella sp. B Facelina sp. A Marionia blainvillea Aeolidia papillosa Hermissenda crassicornis Flabellina babai Dirona albolineata Doto sp. 15 Marionia sp. 10 Marionia sp. 5 Tritonia sp. 4 Lomanotus sp. E Piseinotecus sp. Dendronotus regius Favorinus elenalexiarum Janolus mirabilis Marionia levis Phyllodesmium horridum Tritonia pickensi Babakina indopacifica Marionia sp. B Godiva banyulensis Caloria elegans Favorinus brachialis Flabellina baetica 1 Facelinidae sp. A Godiva quadricolor 0.99 Limenandra fusiformis Limenandra sp. C 0.71 Limenandra sp. B 0.91 Limenandra sp. A Baeolidia nodosa 0.99 Crosslandia daedali Scyllaea pelagica Notobryon panamica Notobryon thompsoni 0.98 Notobryon sp. B Notobryon sp. C Notobryon sp. D Notobryon wardi 0.97 Tritonia sp. 3 Marionia arborescens 0.96 Hancockia cf. uncinata Hancockia californica 0.94 Spurilla chromosoma Pteraeolidia ianthina 0.92 Noumeaella sp. 3 Noumeaella rehderi 0.92 Nanuca sebastiani 0.97 Dondice occidentalis Dondice parguerensis 0.92 Pruvotfolia longicirrha Pruvotfolia pselliotes 0.88 Marionia sp. 14 Tritonia sp. G 0.87 Bonisa nakaza 0.87 Janolus sp. 2 0.82 Janolus sp. 1 Janolus sp. 7 Armina sp. 3 0.83 Armina neapolitana 0.58 Armina sp. 9 0.78 Dermatobranchus sp. 16 0.52 Dermatobranchus sp. 21 0.86 Dermatobranchus sp. -
Gastropoda: Opisthobranchia)
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 1977 A MONOGRAPHIC STUDY OF THE NEW ENGLAND CORYPHELLIDAE (GASTROPODA: OPISTHOBRANCHIA) ALAN MITCHELL KUZIRIAN Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation KUZIRIAN, ALAN MITCHELL, "A MONOGRAPHIC STUDY OF THE NEW ENGLAND CORYPHELLIDAE (GASTROPODA: OPISTHOBRANCHIA)" (1977). Doctoral Dissertations. 1169. https://scholars.unh.edu/dissertation/1169 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Tergipes Tergipes Cadlina Laevis Cuthona Fulgens Dendronotus
Austraeolis stearnsi Flabellina fusca Hermosita hakunamatata Learchis poica Protaeolidiella atra Phidiana militaris Protaeolidiella juliae Moridilla brockii Cerberilla bernadettae Cerberilla sp. A Facelina sp. D Noumeaella sp. B Facelina sp. A Flabellina verrucosa Flabellina affinis Tritoniella belli Flabellina babai Tethys fimbria Armina lovenii Flabellina pedata Dirona albolineata Flabellina trilineata Armina sp. 3 Armina sp. 9 Piseinotecus sp. Janolus mirabilis Babakina indopacifica Leminda millecra Marianina rosea Flabellina baetica 1 Flabellina confusa Calmella cavolini Piseinotecus gaditanus 1 Godiva banyulensis Dicata odhneri 1 Glaucus atlanticus Glaucus marginatus 0.99 Spurilla chromosoma Anteaeolidiella oliviae 0.99 Hancockia californica 0.93 Hancockia uncinata Hancockia cf. uncinata 0.99 Flabellina exoptata Caloria indica 0.99 Phidiana hiltoni Phidiana lynceus 0.97 Marionia sp. 14 0.99 Tritonia sp. G 0.95 Marionia blainvillea 0.52 Marionia sp. B 0.92 Tritonia sp. 3 0.55 Marionia arborescens 0.97 Tritonia sp. 4 0.91 Marionia sp. A 0.82 Marionia levis 0.87 Marionia sp. 10 0.82 Marionia sp. 5 Marionia distincta 0.99 Limenandra sp. B 0.94 Limenandra fusiformis 0.55 Limenandra sp. C 0.72 Limenandra sp. A Baeolidia nodosa 0.97 Aeolidia sp. B Aeolidia papillosa 0.96 Piseinotecus gabinierei Flabellina ischitana 0.92 Facelina sp. B 0.99 0.74 Favorinus elenalexiarum Favorinus brachialis 0.91 Spurilla sargassicola 0.62 Spurilla sp. A 0.91 Spurilla braziliana Spurilla neapolitana Spurilla creutzbergi 0.87 0.71 Aeolidiella stephanieae Berghia rissodominguezi 0.99 0.64 Berghia columbina Berghia sp. A 0.66 Berghia coerulescens Berghia verrucicornis 0.84 Scyllaea pelagica 0.83 Notobryon sp. -
Seasearch Seasearch Wales 2012 Summary Report Summary Report
Seasearch Wales 2012 Summary Report report prepared by Kate Lock, South and West Wales coco----ordinatorordinator Liz MorMorris,ris, North Wales coco----ordinatorordinator Chris Wood, National coco----ordinatorordinator Seasearch Wales 2012 Seasearch is a volunteer marine habitat and species surveying scheme for recreational divers in Britain and Ireland. It is coordinated by the Marine Conservation Society. This report summarises the Seasearch activity in Wales in 2012. It includes summaries of the sites surveyed and identifies rare or unusual species and habitats encountered. These include a number of Welsh Biodiversity Action Plan habitats and species. It does not include all of the detailed data as this has been entered into the Marine Recorder database and supplied to Natural Resources Wales for use in its marine conservation activities. The data is also available on-line through the National Biodiversity Network. During 2012 we continued to focus on Biodiversity Action Plan species and habitats and on sites that had not been previously surveyed. Data from Wales in 2012 comprised 192 Observation Forms, 154 Survey Forms and 1 sea fan record. The total of 347 represents 19% of the data for the whole of Britain and Ireland. Seasearch in Wales is delivered by two Seasearch regional coordinators. Kate Lock coordinates the South and West Wales region which extends from the Severn estuary to Aberystwyth. Liz Morris coordinates the North Wales region which extends from Aberystwyth to the Dee. The two coordinators are assisted by a number of active Seasearch Tutors, Assistant Tutors and Dive Organisers. Overall guidance and support is provided by the National Seasearch Coordinator, Chris Wood. -
Two New Species of the Tropical Facelinid Nudibranch Moridilla Bergh, 1888 (Heterobranchia: Aeolidida) from Australasia Leila Carmona1,* and Nerida G
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 33 095–102 (2018) DOI: 10.18195/issn.0312-3162.33(1).2018.095-102 Two new species of the tropical facelinid nudibranch Moridilla Bergh, 1888 (Heterobranchia: Aeolidida) from Australasia Leila Carmona1,* and Nerida G. Wilson2 1 Department of Marine Sciences, University of Gothenburg, Box 460, Gothenburg 40530, Sweden; Gothenburg Global Biodiversity Centre, Box 461, Gothenburg SE-405 30, Sweden. 2 Molecular Systematics Unit, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia. * Corresponding author: [email protected] ABSTRACT – The Indo-Pacifc aeolid nudibranch Moridilla brockii Bergh, 1888 comprises a species complex. Here we describe two morphs from the complex as new species. Using morphological comparisons, we show the new species to be closely related but distinct from each other and from M. brockii. Distributed across north-western Australia, M. ffo sp. nov. is known from Exmouth, Western Australia to the Wessel Islands, Northern Territory, whereas M. hermanita sp. nov. is known only from Madang, Papua New Guinea. Differences between the two species include colouration, the size of the receptaculum seminis and some distinction in the jaws. Unravelling the entire complex will take much wider geographic sampling, and will require recollection from the type locality of M. brockii. This group is yet another example of a purportedly widespread aeolid species comprising a complex of species. KEYWORDS: nudibranchia, morphology, cryptic species complex urn:lsid:zoobank.org:pub:2D0B250B-74DC-4E55-814B-0B2FB304200A INTRODUCTION India, which reported some important differences, such As our understanding of the ocean’s biodiversity as the position of the anus, the papillate patterning of improves, so does the recognition of previously the rhinophores and general body colouration (Rao, undetected cryptic diversity. -
Tese Ricardo Cyrne V15122015
UNIVERSIDADE DO ALGARVE Faculdade de Ciências e Tecnologia Long-term seasonal changes in the abundance of Dendrodoris nudibranchs: a five-year survey Ricardo Sousa Cyrne Dissertação Mestrado em Biologia Marinha Trabalho efectuado sob a orientação de: Alexandra Teodósio, PhD Rui Rosa, PhD 2015 UNIVERSIDADE DO ALGARVE Faculdade de Ciências e Tecnologia Long-term seasonal changes in the abundance of Dendrodoris nudibranchs: a five-year survey Ricardo Sousa Cyrne Dissertação Mestrado em Biologia Marinha Trabalho efectuado sob a orientação de: Alexandra Teodósio, PhD Rui Rosa, PhD 2015 Long-term seasonal changes in the abundance of Dendrodoris nudibranchs: a five-year survey Declaração de autoria de trabalho Declaro ser o autor deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída. __________________ Ricardo Sousa Cyrne Copyright em nome de Ricardo Sousa Cyrne. A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. INDEX: 1. Introduction ................................................................................................................