Renin–Angiotensin–Aldosterone System and Immunomodulation: a State-Of-The-Art Review

Total Page:16

File Type:pdf, Size:1020Kb

Renin–Angiotensin–Aldosterone System and Immunomodulation: a State-Of-The-Art Review cells Review Renin–Angiotensin–Aldosterone System and Immunomodulation: A State-of-the-Art Review Driss Laghlam , Mathieu Jozwiak and Lee S. Nguyen * Research and Innovation of CMC Ambroise Paré (RICAP), CMC Ambroise Paré, 25-27 Boulevard Victor Hugo, 92200 Neuilly-sur-Seine, France; [email protected] (D.L.); [email protected] (M.J.) * Correspondence: [email protected] Abstract: The renin–angiotensin system (RAS) has long been described in the field of cardiovascular physiology as the main player in blood pressure homeostasis. However, other effects have since been described, and include proliferation, fibrosis, and inflammation. To illustrate the immunomodulatory properties of the RAS, we chose three distinct fields in which RAS may play a critical role and be the subject of specific treatments. In oncology, RAS hyperactivation has been associated with tumor migration, survival, cell proliferation, and angiogenesis; preliminary data showed promise of the benefit of RAS blockers in patients treated for certain types of cancer. In intensive care medicine, vasoplegic shock has been associated with severe macro- and microcirculatory imbalance. A relative insufficiency in angiotensin II (AngII) was associated to lethal outcomes and synthetic AngII has been suggested as a specific treatment in these cases. Finally, in solid organ transplantation, both AngI and AngII have been associated with increased rejection events, with a regional specificity in the RAS activity. These elements emphasize the complexity of the direct and indirect interactions of RAS with immunomodulatory pathways and warrant further research in the field. Keywords: renin–angiotensin system; oncology; shock; transplantation; immunomodulation Citation: Laghlam, D.; Jozwiak, M.; Nguyen, L.S. Renin–Angiotensin– Aldosterone System and Immunomodulation: A State-of- 1. Introduction the-Art Review. Cells 2021, 10, 1767. The renin–angiotensin system (RAS) has long been considered the pinnacle of home- https://doi.org/10.3390/cells10071767 ostasis in cardiovascular physiology. Its main function involves regulation of blood pres- Academic Editor: András Balla sure, via direct and indirect means, through electrolyte balance, and trophic and vasomotor functions. While historically associated with these basic functions, the role of inflammation Received: 9 May 2021 in cardiovascular diseases has been more and more described, and a critical role of RAS in Accepted: 9 July 2021 inflammation regulation has been suggested. Published: 13 July 2021 Using three different fields of application, we hereafter describe non-classical RAS functions, relying on the immunomodulatory features of RAS: oncology, intensive care, Publisher’s Note: MDPI stays neutral and transplantation (see Figure1). with regard to jurisdictional claims in published maps and institutional affil- iations. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Cells 2021, 10, 1767. https://doi.org/10.3390/cells10071767 https://www.mdpi.com/journal/cells Cells 2021, 10, x 1767 FOR PEER REVIEW 2 2of of 27 28 Figure 1. 1. EffectsEffects of of the the renin–angiotensin renin–angiotensin system system (RAS) (RAS) and and its its featur featureses in in oncology, oncology, vasoplegic vasoplegic shock, shock, and and transplantation. transplantation. Abbreviations: AngI: angiotensin I, AngII: angiotensin II. 2.2. Part Part 1: 1: Renin–Angiotensin Renin–Angiotensin System System Blockers Blockers and and Malignancies Malignancies Renin–angiotensinRenin–angiotensin system system blockers blockers (RASBs (RASBs),), which include angiotensin-converting enzymeenzyme inhibitors inhibitors (ACEIs) (ACEIs) and and angiotensin-2 angiotensin-2 re receptorceptor 1 1 blockers blockers (ARB (ARBs),s), have been used asas antihypertensive antihypertensive drugs drugs for for several several decades, decades, showing showing benefits benefits in terms terms of morbidity morbidity and and mortalitymortality in in cardiovascular cardiovascular diseases. diseases. OnlyOnly recently havehave other other organ-protective organ-protective effects effects been been described. described. These These encompassed encom- passedinhibition inhibition of cardiac of cardiac hypertrophy, hypertrophy, remodeling, remodeling, fibrosis, fibrosis, and reactive and oxygenreactive species oxygen (ROS) spe- ciesproduction. (ROS) production. Notably, numerous Notably, numerous observations obse ofrvations RASB treatments of RASB treatments in patients in with patients solid withcancers solid showed cancers some showed benefits, some even benefits, towards even survival towards that survival was free that of cancer was free evolution. of cancer In evolution.the following In the section, following we describe section, thewe interactionsdescribe the betweeninteractions RAS between and cancer. RAS and cancer. 2.1.2.1. Pathways Pathways Related Related to to RAS RAS AngiotensinogenAngiotensinogen (synthesized (synthesized in in the the liver) liver) is is the the only only precursor precursor protein protein of RAS and thethe source source of of all all angiotensin angiotensin peptides. peptides. Angiot Angiotensinogenensinogen is primarily is primarily cleaved cleaved in blood in blood cir- culationcirculation by byrenin renin (protease (protease sy synthesizednthesized in in the the kidney), kidney), to to angiotensin angiotensin I I(AngI), (AngI), which which in turnturn is processed byby angiotensinangiotensin converting converting enzyme enzyme (ACE) (ACE) (secreted (secreted in lung)in lung) to produceto produce the theactive active octapeptide, octapeptide, angiotensin angiotensin II (AngII). II (Ang AngIIII). actions AngII are actions primary are mediated primary through mediated the throughbinding ofthe its binding two receptors, of its two type receptors, 1 (AT1R) type and type1 (AT1R) 2 (AT2R), and whichtype 2 belong(AT2R), to which the G protein-belong tocoupled the G protein-coupled receptor superfamily. receptor The superfamily important cardiovascular. The important actions cardiovascular of AngII, actions including of AngII,regulation including of arterial regulation blood pressure of arterial with blood short-term pressure vasoconstriction, with short-term aldosterone vasoconstriction, release, aldosteroneand water and release, salt balance, and water are and predominantly salt balance, mediated are predominantly by AT1R in mediated target tissues, by AT1R such in as targetblood tissues, vessels, such kidney, as blood brain, vessels, and heart kidney, [1]. brain, and heart [1]. On the other hand, increasing evidence supports the concept of a counter regulatory renin–angiotensin system with opposite effects in cardiovascular physiology and disease Cells 2021, 10, 1767 3 of 28 Cells 2021, 10, x FOR PEER REVIEW 3 of 27 On the other hand, increasing evidence supports the concept of a counter regulatory renin–angiotensin system with opposite effects in cardiovascular physiology and disease [2]. [2].Angiotensin Angiotensin converting converting enzyme enzyme 1 (ACE2) 1 (ACE2) and and neprilysin neprilysin (NEP) (NEP) are are part part of of this this counter coun- terregulatory regulatory system. system. ACE2 ACE2 and and NEP NEP can can cleave clea AngIIve AngII to produce to produce angiotensin angiotensin 1–7 (Ang1–7 (Ang 1–7), 1–7),and ACE2and ACE2 cleaves cleaves AngI AngI to generate to generate angiotensin angiotensin 1–9 (Ang1–9 (Ang 1–9) 1–9) (see Figure(see Figure2). These 2). These two twopeptides peptides mediate mediate the the antagonistic antagonistic effects effects of of AngII. AngII. Angiotensin Angiotensin 1–7 1–7 bindsbinds toto the proto- proto- oncogenoncogen Mas Mas receptor, receptor, which which leads leads to to vasodila vasodilation,tion, antihypertensive, antihypertensive, and and antifibrosis antifibrosis ef- fectseffects [3], [3 while], while Ang Ang 1–9 1–9 can can activate activate AT2R AT2R to to trigger trigger natriuresis natriuresis and and NO NO production, production, thus thus mediatingmediating vasodilatory effects an andd reducing blood pressure [[4].4]. Figure 2. Renin–angiotensinRenin–angiotensin system: system: classical classical and and counter counter regulato regulatoryry pathways. pathways. Abbreviations: Abbreviations: ACE: ACE: angiotensin angiotensin convert- con- ing enzyme; ACE 2: angiotensin-converting enzyme type 2, ACEIs: angiotensin-converting enzyme inhibitors; ARBs: an- verting enzyme; ACE 2: angiotensin-converting enzyme type 2, ACEIs: angiotensin-converting enzyme inhibitors; ARBs: giotensin-2 receptor 1 blockers, AT1R: angiotensin II receptor type1, AT2R: angiotensin II receptor type 2. angiotensin-2 receptor 1 blockers, AT1R: angiotensin II receptor type1, AT2R: angiotensin II receptor type 2. OverOver the the past decade, growing evidence ha hass shown that an altered immune system isis likely likely to to be be a a key contributor to the deve developmentlopment of hypertension. Consistent evidence demonstratesdemonstrates that that various various immune immune cell cell subsets subsets infiltrate infiltrate blood vessels, kidneys, heart, heart, and/orand/or the the autonomic autonomic nervous systemsystem duringduring hypertension, hypertension, and and that that the the targeted targeted depletion deple- tionof specific of specific immune immune cell subsets cell subsets or inhibition
Recommended publications
  • Aldosterone and Parathyroid Hormone: Evidence for a Clinically Relevant Relationship
    Journal of Endocrinology and Thyroid Research ISSN: 2573-2188 Review Article J Endocrinol Thyroid Res Volume 4 Issue 3 - May 2019 Copyright © All rights are reserved by Vismay Naik DOI: 10.19080/JETR.2019.04.555637 Aldosterone and Parathyroid Hormone: Evidence for a Clinically Relevant Relationship Vismay Naik* PG Diploma in Endocrinology and Diabetes, Ashirvad Heart and Diabetes Centre, India Submission: April 13, 2019; Published: May 06, 2019 *Corresponding author: Vismay Naik, MD, MRCP(UK), PG Diploma in Endocrinology and Diabetes, Ashirvad Heart and Diabetes Centre, India Introduction hyperparathyroidism due to increased renal and faecal calcium A ‘new endocrine axis’, involving the bi-directional relati- excretion. PTH is increased as a result of the MR (mineralocorticoid onship between the parathyroid hormone (PTH) and the renin– receptor) mediated calciuretic and magnesiuretic effects, with a angiotensin–aldosterone system (RAAS) has been established trend towards hypocalcemia, hypomagnesemia and the direct recently. Individually these have long been recognized, althou- effects of aldosterone on parathyroid cells via binding to the MR. gh it is only in recent times that we are realizing the interplay Moreover, the angiotensin II receptor is expressed by human between the two and the corresponding effects this has on the parathyroid tissue, and angiotensin may therefore directly physiological and pathological roles within the body. Other cal- stimulate PTH secretion [6]. ciotropic hormones such as Vitamin D are also impacting on this relationship [1]. This report aims to highlight the cyclic nature of RAAS and Vitamin D these relationships, through the physiological pathways, which Aldosterone acts through the mineralocorticoid receptor, will then lead into pathological disease in multiple areas such as which belongs to the same superfamily of nuclear receptors as heart failure, cardiovascular health and bone homeostasis.
    [Show full text]
  • Hormones and Fluid Balance During Pregnancy, Labor and Post Partum
    !" #$%#&$'($ )&)#&%%&%)&( * * **+ &#(## !"# $ % # #&$ $ ' #( )*+$ , -, $* .%/**0 # % % */ * 123*"1 * *4-52366""162"26* +$ # $ $, , , % % *4 %$ % # % % $ # $ $ # # ,$ ## $ $# %$ ## % # * % , 784-/!% , $ 9* #6 , , % % ##6 % * +$ , % ,$ $ % , $ % % % * & , % * # , , $ % %% ## % , ## $ 6% * : ,$, % ' , % # ) ## $ , ,$ % #, ,$# % # *+$% ,$ , $ , $ $ $ *& # , $## $ # , % # */ , # , ## ,$ % # * - % ,$%$ % # % $ $$%$ ' ;8)$*4 %$,$$ % # $$%$% *4 # % % $ # # $ $ $ % % * & $ %# % % $ *& $ $ # % * % % % 6 $ % Integrativ Fysiologi, Box 571, %&'()*+ Sweden </ $.% 4--5="6== 4-52366""162"26 ! !!! 623'$ !;; **; > ? ! !!! 623) In memory of my beloved father Ove I lift up my eyes to the hills -- where does my help come from? My help comes from the Lord, the Maker of heaven and earth. He will not let your foot slip -- He who watches over you will not slumber; indeed, He who watches over Israel will neither slumber nor sleep. The Lord watches over you -- the Lord is your shade at your right hand; the sun will not harm you by day, nor the moon by night. The Lord will keep you from all harm He will watch over your life; the Lord will
    [Show full text]
  • Hypertension: Shall We Focus on Adipose Tissue?
    www.jasn.org EDITORIALS Hypertension: Shall We Focus associated with incident hypertension among women with- out diabetes. The authors prospectively studied 872 women on Adipose Tissue? without diabetes or hypertension from the Nurses’ Health Study. After a follow-up of 14 years, 361 (41.4%) women Simona Bo and Paolo Cavallo-Perin developed hypertension. Plasma resistin values were signif- Department of Internal Medicine, University of Turin, Turin, Italy icantly associated with incident hypertension: The highest resistin tertile conferred a 75% higher risk for hypertension J Am Soc Nephrol 21: 1067–1068, 2010. doi: 10.1681/ASN.2010050524 than the lowest (relative risk 1.75; 95% confidence interval 1.19 to 2.56). The relative risk did not substantially change after adjustment for multiple potential metabolic and nu- Adipose tissue is an active endocrine organ that produces sub- tritional confounding factors and for other adipokines. The stances having local and systemic actions on blood vessels, kid- risk was greater among older women. In a secondary analy- neys, and the heart. Leptin, adiponectin, resistin, angiotensin sis, inflammatory and endothelial biomarkers were mea- ␣ II, adipsin, TNF- , IGF-1, plasminogen-activator inhibitor 1, sured in a subset of women. Resistin levels were significantly and prostaglandins compose an incomplete list.1 associated with both groups of biomarkers. After further Resistin, an adipokine belonging to the cysteine-rich secre- adjustment for C-reactive protein, IL-6, soluble TNF recep- tory protein family, was described as an adipocyte-derived tor 2, intercellular adhesion molecule 1, vascular adhesion polypeptide that links obesity and insulin resistance in mice2; molecule 1, and E-selectin, resistin concentrations re- however, striking differences in the genomic organization and mained positively associated with an increased risk for inci- cellular source of resistin in rodents versus humans and the dent hypertension.
    [Show full text]
  • Molecular Signatures of Tissue-Specific
    Developmental Cell Resource Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration Daniel J. Nolan,1,6 Michael Ginsberg,1,6 Edo Israely,1 Brisa Palikuqi,1 Michael G. Poulos,1 Daylon James,1 Bi-Sen Ding,1 William Schachterle,1 Ying Liu,1 Zev Rosenwaks,2 Jason M. Butler,1 Jenny Xiang,4 Arash Rafii,1,7 Koji Shido,1 Sina Y. Rabbany,1,8 Olivier Elemento,3 and Shahin Rafii1,5,* 1Department of Genetic Medicine, Howard Hughes Medical Institute 2Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine 3HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine 4Genomics Resource Core Facility Weill Cornell Medical College, New York, NY 10065, USA 5Ansary Stem Cell Institute, New York, NY 10065, USA 6Angiocrine Bioscience, New York, NY 10065, USA 7Weill Cornell Medical College-Qatar, Stem Cell and Microenvironment Laboratory, Education City, Qatar Foundation, Doha 24144, Qatar 8Bioengineering Program, Hofstra University, Hempstead, NY 11549, USA *Correspondence: srafi[email protected] http://dx.doi.org/10.1016/j.devcel.2013.06.017 SUMMARY been appreciated. Capillary ECs of the blood brain barrier (BBB) form a restrictive environment for passage between the Microvascular endothelial cells (ECs) within different brain tissue and the circulating blood. Many of the trafficking pro- tissues are endowed with distinct but as yet unrecog- cesses that are passive in other vascular beds are tightly nized structural, phenotypic, and functional attri- controlled in the brain (Rubin and Staddon, 1999). As opposed butes. We devised EC purification, cultivation, to the BBB, the capillary ECs of the kidney glomeruli are fenes- profiling, and transplantation models that establish trated for the filtration of the blood (Churg and Grishman, tissue-specific molecular libraries of ECs devoid of 1975).
    [Show full text]
  • Medicines That Affect Fluid Balance in the Body
    the bulk of stools by getting them to retain liquid, which encourages the Medicines that affect fluid bowels to push them out. balance in the body Osmotic laxatives e.g. Lactulose, Macrogol - these soften stools by increasing the amount of water released into the bowels, making them easier to pass. Older people are at higher risk of dehydration due to body changes in the ageing process. The risk of dehydration can be increased further when Stimulant laxatives e.g. Senna, Bisacodyl - these stimulate the bowels elderly patients are prescribed medicines for chronic conditions due to old speeding up bowel movements and so less water is absorbed from the age. stool as it passes through the bowels. Some medicines can affect fluid balance in the body and this may result in more water being lost through the kidneys as urine. Stool softener laxatives e.g. Docusate - These can cause more water to The medicines that can increase risk of dehydration are be reabsorbed from the bowel, making the stools softer. listed below. ANTACIDS Antacids are also known to cause dehydration because of the moisture DIURETICS they require when being absorbed by your body. Drinking plenty of water Diuretics are sometimes called 'water tablets' because they can cause you can reduce the dry mouth, stomach cramps and dry skin that is sometimes to pass more urine than usual. They work on the kidneys by increasing the associated with antacids. amount of salt and water that comes out through the urine. Diuretics are often prescribed for heart failure patients and sometimes for patients with The major side effect of antacids containing magnesium is diarrhoea and high blood pressure.
    [Show full text]
  • Why Is Plasma Renin Activity Lower in Populations of African Origin?
    Journal of Human Hypertension (2001) 15, 17–25 2001 Macmillan Publishers Ltd All rights reserved 0950-9240/01 $15.00 www.nature.com/jhh REVIEW ARTICLE Why is plasma renin activity lower in populations of African origin? GA Sagnella Blood Pressure Unit, St George’s Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK Plasma renin activity is significantly lower in black the molecular level suggests that the lower PRA may people compared with whites independent of age and arise from gene variation in the renal epithelial sodium blood pressure status. The lower PRA appears to be due channel. The functional significance of the lower PRA in to a reduction in the rate of secretion of renin but the relation to the different pattern of cardiovascular and exact mechanistic events underlying such differences in renal disease between blacks and whites remains renin release between blacks and whites are still not unclear. Moreover, direct investigations of pre-treat- fully understood. Nevertheless, given the paramount ment renin status in hypertensive blacks in relation to importance of the renin-angiotensin system in the con- blood pressure response have demonstrated that the trol of sodium balance, a most likely explanation is that pre-treatment PRA is not a good index of subsequent the lower renin is a consequence of differences in renal blood pressure response to pharmacological treatment. sodium handling between blacks and whites. The lower Nevertheless, the blood pressure reduction to short PRA does not reflect differences in dietary sodium term sodium restriction is greater in blacks compared intake but the evidence available suggests that the low with whites and, in the black subjects, the greater PRA could be part of the corrective mechanisms reduction in blood pressure to sodium restriction designed to maintain sodium balance in the presence appears to be related, at least in part, to the decreased of an increased tendency for sodium retention in black responsiveness of the renin-angiotensin system.
    [Show full text]
  • High and Non-Suppressible Plasma Renin Activity in a Patient with Aldosterone Producing Adenoma: Pathophysiologic and Diagnostic Implications
    Journal of Human Hypertension (1999) 13, 75–78 1999 Stockton Press. All rights reserved 0950-9240/99 $12.00 http://www.stockton-press.co.uk/jhh CASE REPORT High and non-suppressible plasma renin activity in a patient with aldosterone producing adenoma: pathophysiologic and diagnostic implications E Shyong Tai and PHK Eng Department of Endocrinology, Singapore General Hospital, Singapore We describe a case of primary aldosteronism due to an possible pathophysiological causes of a rise in PRA in aldosterone producing adenoma with high and non-sup- this clinical setting and suggest that underlying arteri- pressible plasma renin activity (PRA). She had sup- olar disease due to prolonged hypertension may be the pressed PRA at initial diagnosis. This rose above the cause of increased and non-suppressible PRA in pri- reference range for normal individuals over a period of mary aldosteronism. 7 years with untreated hypertension. We discuss the Keywords: primary aldosteronism; plasma renin activity; diagnosis Introduction Case report Primary aldosteronism is classically associated with Our patient was a 34-year-old woman who was hypertension, hypokalaemia and suppressed plasma found to have hypertension during the fifteenth renin activity (PRA). Most cases are due to an aldo- week of pregnancy. Plasma aldosterone was sterone producing adenoma (APA). We present a 2039 pmol/l, PRA Ͻ0.15 ␮g/l/h and a diagnosis of case of prolonged, untreated, primary aldosteronism primary aldosteronism was made. Following the due to an APA. She had suppressed PRA at the time delivery of her child, she defaulted follow-up and of diagnosis, which became elevated and non-sup- was not treated with any antihypertensives nor pot- pressible by intravenous salt loading.
    [Show full text]
  • Aldosterone-Renin Ratio (Arr)
    RENIN -ALDOSTERONE PROFILING: ALDOSTERONE-RENIN RATIO (ARR) 1. Obtain a morning specimen for serum aldosterone (redtop tube) and plasma renin (lavender-top) tube from an upright patient sitting for a period of 15 min prior to (being seated for) blood drawing. Fasting is not required and no salt restriction is necessary. 2. Spironolactone. The ratio cannot be assessed in patients receiving spironlactone. If primary aldosteronism (PA) is suspected in a patient receiving this drug, treatment should be discontinued for 4-6 weeks (1). 3. Hypokalemia should be corrected before ARR is measured as a low K will lower aldosterone and can lead to a falsely negative ARR (1). 4. Preferred antihypertensives that have a minimal effect on the ARR are doxazozin (Cardura), prazosin (Minipress), verapramil slow release, or hydralazine, singly or in combination for one month before sampling (1). 5. False-positive ARR: Beta-blockers, clonidine, methyldopa, and NSAID’s lower levels of renin and can cause a falsely positive ARR (1). A minimum 3-day cessation prior to sampling is recommended (3). The renin direct assay is also lower in patients on oral contraceptives and hormone replacement therapy potentially causing the ARR to be falsely increased. Measurement of plasma renin activity is preferred in this situation, calculating the aldosterone/PRA ratio (positive if >20/1). 6. False-negative ARR: Diuretics cause false negatives by causing K loss lowering aldosterone and stimulating renin through volume loss. Angiotensin blockers (ARB’s), ACE inhibitors, and some calcium channel blockers raise renin and can cause false negatives (1). A minimum three-day cessation prior to sampling is recommended (3).
    [Show full text]
  • Hormonal and Thirst Modulated Maintenance of Fluid Balance in Young Women with Different Levels of Habitual Fluid Consumption
    nutrients Article Hormonal and Thirst Modulated Maintenance of Fluid Balance in Young Women with Different Levels of Habitual Fluid Consumption Evan C. Johnson 1,2,*, Colleen X. Muñoz 1,3, Liliana Jimenez 4, Laurent Le Bellego 4, Brian R. Kupchak 1,5, William J. Kraemer 1,6, Douglas J. Casa 1, Carl M. Maresh 1,6 and Lawrence E. Armstrong 1 1 Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA; [email protected] (C.X.M.); [email protected] (B.R.K.); [email protected] (W.J.K.); [email protected] (D.J.C.); [email protected] (C.M.M.); [email protected] (L.E.A.) 2 Division of Kinesiology and Health, University of Wyoming, Laramie, WY 82071, USA 3 Department of Health Sciences and Nursing, University of Hartford, West Hartford, CT 06117, USA 4 Hydration & Health Department, Danone Research, Palaiseau 91767, France; [email protected] (L.J.); [email protected] (L.L.B.) 5 Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA 6 Department of Human Sciences, the Ohio State University, Columbus, OH 43210, USA * Correspondence: [email protected]; Tel.: +1-307-766-5282; Fax: +1-307-766-4098 Received: 22 February 2016; Accepted: 11 May 2016; Published: 18 May 2016 Abstract: Background: Surprisingly little is known about the physiological and perceptual differences of women who consume different volumes of water each day. The purposes of this investigation were to (a) analyze blood osmolality, arginine vasopressin (AVP), and aldosterone; (b) assess the responses of physiological, thirst, and hydration indices; and (c) compare the responses of individuals with high and low total water intake (TWI; HIGH and LOW, respectively) when consuming similar volumes of water each day and when their habitual total water intake was modified.
    [Show full text]
  • Terminology Resource File
    Terminology Resource File Version 2 July 2012 1 Terminology Resource File This resource file has been compiled and designed by the Northern Assistant Transfusion Practitioner group which was formed in 2008 and who later identified the need for such a file. This resource file is aimed at Assistant Transfusion Practitioners to help them understand the medical terminology and its relevance which they may encounter in the patient’s medical and nursing notes. The resource file will not include all medical complaints or illnesses but will incorporate those which will need to be considered and appreciated if a blood component was to be administered. The authors have taken great care to ensure that the information contained in this document is accurate and up to date. Authors: Jackie Cawthray Carron Fogg Julia Llewellyn Gillian McAnaney Lorna Panter Marsha Whittam Edited by: Denise Watson Document administrator: Janice Robertson ACKNOWLEDGMENTS We would like to acknowledge the following people for providing their valuable feedback on this first edition: Tony Davies Transfusion Liaison Practitioner Rose Gill Transfusion Practitioner Marie Green Transfusion Practitioner Tina Ivel Transfusion Practitioner Terry Perry Transfusion Specialist Janet Ryan Transfusion Practitioner Dr. Hazel Tinegate Consultant Haematologist Reviewed July 2012 Next review due July 2013 Version 2 July 2012 2 Contents Page no. Abbreviation list 6 Abdominal Aortic Aneurysm (AAA) 7 Acidosis 7 Activated Partial Thromboplastin Time (APTT) 7 Acquired Immune Deficiency Syndrome
    [Show full text]
  • Role of the Renin-Angiotensin-Aldosterone
    International Journal of Molecular Sciences Review Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension Natalia Muñoz-Durango 1,†, Cristóbal A. Fuentes 2,†, Andrés E. Castillo 2, Luis Martín González-Gómez 2, Andrea Vecchiola 2, Carlos E. Fardella 2,* and Alexis M. Kalergis 1,2,* 1 Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025 Santiago, Chile; [email protected] 2 Millenium Institute on Immunology and Immunotherapy, Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, 8330074 Santiago, Chile; [email protected] (C.A.F.); [email protected] (A.E.C.); [email protected] (L.M.G.-G.); [email protected] (A.V.) * Correspondence: [email protected] (C.E.F.); [email protected] (A.M.K.); Tel.: +56-223-543-813 (C.E.F.); +56-223-542-842 (A.M.K.) † These authors contributed equally in this manuscript. Academic Editor: Anastasia Susie Mihailidou Received: 24 March 2016; Accepted: 10 May 2016; Published: 23 June 2016 Abstract: Arterial hypertension is a common condition worldwide and an important predictor of several complicated diseases. Arterial hypertension can be triggered by many factors, including physiological, genetic, and lifestyle causes. Specifically, molecules of the renin-angiotensin-aldosterone system not only play important roles in the control of blood pressure, but they are also associated with the genesis of arterial hypertension, thus constituting a need for pharmacological interventions. Chronic high pressure generates mechanical damage along the vascular system, heart, and kidneys, which are the principal organs affected in this condition.
    [Show full text]
  • Lymphatic Tissue Engineering and Regeneration Laura Alderfer1, Alicia Wei1 and Donny Hanjaya-Putra1,2,3,4,5,6*
    Alderfer et al. Journal of Biological Engineering (2018) 12:32 https://doi.org/10.1186/s13036-018-0122-7 REVIEW Open Access Lymphatic Tissue Engineering and Regeneration Laura Alderfer1, Alicia Wei1 and Donny Hanjaya-Putra1,2,3,4,5,6* Abstract The lymphatic system is a major circulatory system within the body, responsible for the transport of interstitial fluid, waste products, immune cells, and proteins. Compared to other physiological systems, the molecular mechanisms and underlying disease pathology largely remain to be understood which has hindered advancements in therapeutic options for lymphatic disorders. Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes and has also been speculated as a route to rescue healthy phenotypes in areas including cardiovascular disease, metabolic syndrome, and neurological conditions. This review will discuss lymphatic system functions and structure, cell sources for regenerating lymphatic vessels, current approaches for engineering lymphatic vessels, and specific therapeutic areas that would benefit from advances in lymphatic tissue engineering and regeneration. Keywords: Lymphangiogenesis, Tissue Engineering, Disease Modeling, Wound Healing, Lymphedema, Stem Cells, Biomaterials, Interstitial Fluid, Regeneration I. Introduction to the Lymphatic System and its role Interstitial fluid (IF) is a plasma filtrate that is generated Function by transcapillary filtration and is governed by Starling The lymphatic system is nearly ubiquitous in the human forces, the net difference between hydrostatic and body, present in all tissues except the epidermis, cartil- osmotic pressures, at the microcirculatory level [9]. In age, eye lens, cornea, retina, and bone marrow [1, 2]. order to maintain fluid homeostasis, lymph formation in The main functions of the lymphatic system include the initial lymphatic vessels must be balanced by the net fluid homeostasis and interstitial fluid drainage, immune flux of plasma being filtered out [4].
    [Show full text]