Prior to December 12Th Caused the Soil to Become Very Dry And

Total Page:16

File Type:pdf, Size:1020Kb

Prior to December 12Th Caused the Soil to Become Very Dry And prior to December 12th caused the soil ies of storms are bringing welcome to become very dry and considerable rains to Southern California.—Claude irrigation was necessary before that A. Cole, U. S. Weather Bureau, Fruit- date. On December 30 to Jan. 1, Frost Service, Azusa, Calif. District there occurred a storm which shat- (excerpts from Supplemental Re- tered records of heavy rain of many port, Season of 1933-34). years' standing and did many thou- The mildness of Oregon's weather sands of dollars of damage to the in contrast to the severity of New citrus industry in this district, as well England's in the same latitude, led as other sections, particularly to the the Portland Oregonian to philoso- westward of the San Gabriel Valley. phize on the "small wonder that the The total precipitation for the storm pioneers came West," to which the was 16.33 inches at Azusa and Boston Transcript retorts: "The Ore- amounts ranging from 10 to 16 inch- gonians are becoming enervated by es elsewhere in this section. their soft climate. If the hardy pion- The rains of the winter were warm eers who went West had not been and but little snow has been deposited toughened by chilly weather like that in the mountains. As the season of ours of a week or two ago there closes at the end of February, a ser- would have been no Oregon. SIDELIGHTS ON THE COLD WINTER IN THE EAST Compiled by CHARLES F. BROOKS Though warm weather has re- The waters gathered in the short turned there are some features of the streams of southern New England, winter of 1933-34, necessarily omitted and the Charles on the 7th reached from the general article by C. H. its highest stage in many years. Cold Pierce, in the March BULLETIN, which weather again however, held some of may still be of interest. The human the waters, and not until April did effects of a cold winter in the eastern the main floods of the longer rivers, United States were surprising, yet in and those of northern New England, general much the same as in other come from the melting of the great severe winters. Accounts of the win- accumulations of snow. ter of 1917-18,1 which averaged much Iced ducks and highways.—When colder than the past winter and was tropical air overran a layer of very cold over more of the East, though cold polar air over New York and also very warm in the West, could New England, Dec. 15, rain made almost be taken for that of 1933-34. glaze so rapidly that ducks dropped The similarity holds even with re- from the sky at Worcester, their spect to the suddenness with which feathers covered with ice. One died, the winter ended. With the begin- the other was picked up and taken ning of March, 1934, the temperature indoors where its ice soon melted and rose rapidly and for a week there it was fed. Motorists found hilly was a great thaw, with the maximum highways unnavigable, so smooth and temperature at Boston reaching 63°F. hard was the ice, and a traffic delay of some 3 hours occurred on the New- 1 C. F. Brooks, The "old-fashioned" winter of 1917-18, Geogr. Rev., May, 1918, v. 5, pp. 405- buryport turnpike, part of U. S. 414; and Science, June 7, 1918, N.S. v. 47, Route 1, till it could be heavily sand- pp. 565-566. P. C. Day, The cold winter of 1917-18. Mo. ed throughout. One baker bound for Weather Rev., Dec., 1918, v. 46, pp. 570-580, 4 figs, 24 charts. Boston, sold out to the other stalled Unauthenticated | Downloaded 10/06/21 10:06 AM UTC May Bulletin American Meteorological Society 145 motorists and was saved the trip. 39° 15' N, long. 62° 10' W. The wind There were an "unprecedented" num- was NNW, force 4 and drove the ber of accidents, skidding automobiles spout with it toward the south-south- being responsible for 3 deaths and east at about 15 knots. The air tem- numerous injuries in New England. perature was 40 and the intake water Eight more weather deaths followed, 73°F. There were snow-squalls about. Dec. 16-17. Reports in the Mo. The pressure was 30.24 inches.—A. Weather Rev., for Dec., 1933, p. 376, Bryde of Panaman motor ship Wink- indicate that in New York City there ler, in Hydro g. Bull., Jan. 10, 1934. were 3 deaths, and all railroad and Well-defined spouts were observed by motor service was interrupted. Serv- C. L. Cluett on the same date 200 ice was abandoned on some elevated miles to the north from the American lines. Trenton, N. J., reported 6 per- steamer Washington (lat. 42° 11', sons seriously injured. Scranton, Pa., long. 62° 10'), where the air tempera- had dangerous streets and highways, ture was 28-30. The spouts were on Buffalo experienced much traffic de- the front of a heavy snowsquall.— lay and numerous accidents; and sim- Hydrog. Bull., Dec. 6, 1933. ilar conditions in Wisconsin, Dec. 14, The invasion of the tropics by the killed one person and injured 24 in polar continental air of December Milwaukee, of which 9 were in auto- produced waterspouts on the 12th and mobile accidents and 15 from falls. the 27th over the Gulf Stream. The Strong winds blew ice-laden wires principal one observed the 12th, in down. lat. 30° 26' N, long. 74° 54' W, passed Polar front tornado.—As polar air over the forward part of the Italian displaced the tropical, a tornado ship Maria within 15 feet of the formed near Shreveport, La., killing 4 bridge, without bursting. It was and injuring 19 people. At one plan- about 60 feet in diameter. "Heavy tation three negro cabins were blown water and spray rotating clockwise away with such force that the ground from the sea to a height of about 80 was left bare. An A.P. dispatch quot- feet covered the forward part of the ing Dr. L. T. Baker, says: ship for about 1 minute. The spout continued then in a southerly direc- "the Negroes didn't have any warn- ing of the tornado. They were stand- tion disappearing in about 1% hours. ing or sitting around in their homes There were several other spouts on one minute and the next minute the the eastern horizon from 6 to 8 miles storm had passed, their homes and possessions had vanished and they away. The sky was overcast; cumu- were wondering what it was all about. lo-nimbus; wind NW., force 3; sea Three or four of the less seriously in- temperature 74° F., of the air (dry jured were stripped of their clothes bulb 68° F. and (wet) 65° F.—Hy- by the wind and left stark naked." drog. Bull., Feb. 14, 1934. Polar front tornodoes on Feb. 25 On the 27th another spout was ob- took two score lives in the South. served almost at the same spot, lat. Polar front waterspouts.—The cold 30° 09' N, long. 74° 24' W, by O. Do- waves of the past winter were prolif- scher, of the German ship Kattegat, ic sources of waterspouts over the for 17 minutes. When the spout was tropical waters of the Atlantic. Near nearest the ship the wind shifted the front of the record-breaking cold from N to NNE and the temperature mass of mid-November a small wa- fell six degrees.—Hydrog. Bull., Jan. terspout formed on Nov. 17 in lat. 31, 1934. At the same time as this Unauthenticated | Downloaded 10/06/21 10:06 AM UTC waterspout, five others in a bunch published in the Meteorologische were sighted from the American ship Zeitschrift, in October, 1931. ."— Texas in lat. 25° 32', long. 79° 39', C. F. Talman, in Why the Weather ? (S.S.), Jan. 4, 1934. several hundred miles southwest of the first. F. B. Tymoszko reports The snowstorm and cold wind of that all were rotating counterclock- Dec. 26-28, before the severe cold wise. wave struck, claimed 23 lives in New England, from heart-failure due to On the arrival of the Pastores in over-exertion, from traffic and coast- New York, Mar. 12, Capt. W. J. Close ing accidents, from exploding oil told of having to zig-zag his ship to stoves, from freezing, and from avoid numerous waterspouts off the drowning at sea. Twelve more suc- Delaware Capes. He saw a dozen at cumbed on the cold 29th, and nearly one time, while Dr. John H. Cunning- 2000 were treated for frostbite at ham, of Boston, said he had counted hospitals in Boston. Then four more a total of three dozen.—A. P. died, mostly on account of traffic ac- Snow rollers again.—After a two- cidents in a sudden thaw. When inch fall of soft, moist snow which frozen sprinkler systems in New covered the ground evenly Dec. 18, at York thawed, the fire department an- Howe, Ind., and vicinity, people were swered 128 false alarms in one day. called to their windows during the "Vapor."—Ships at sea were not evening by the sound of a sudden only weighed down with tons and tons gale of wind. Where there was suf- of frozen spray, but also had to pro- ficient light watchers were astonished ceed slowly in the bitter cold fog that to see on every side snowballs rolling rose like steam from the cold though along apparently of their own voli- relatively warm water.
Recommended publications
  • Module 4.2D Short Range Forecasting of Cloud
    MODULE 4.2D SHORT RANGE FORECASTING OF CLOUD, PRECIPITATION AND RESTRICTIONS TO VISIBILITY Convective Cloud and Precipitation Table of Contents 1. INTRODUCTION ...................................................................................................................................................1 2. WARM SEASON CONVECTIVE WEATHER...................................................................................................1 ANALYSIS OF REAL TIME DATA ................................................................................................................................1 MODIFYING THE TEPHIGRAM.....................................................................................................................................1 DIURNAL AND SEASONAL TRENDS ............................................................................................................................2 SYNOPTIC CORRELATIONS TECHNIQUES....................................................................................................................3 PHYSICAL PROCESSES APPROACH .............................................................................................................................4 THUNDERSTORMS: WHAT TO DO WITH THEM ONCE YOU KNOW WHERE THEY ARE..............................................8 3. WINTERTIME CONVECTION - SNOWSQUALLS .........................................................................................9 AIR MODIFICATION TABLE................................................................................................................................9
    [Show full text]
  • Conditions Météorologiques Et Routières Lexique Français-Anglais Introduction Les Entrées Sont Classées Selon L'ordre Al
    Conditions météorologiques et routières Lexique français-anglais Introduction Les entrées sont classées selon l’ordre alphabétique strict des mots. Les expressions ou termes en anglais sont présentés en italique. Il y a lieu de noter que la liste des équivalents n’est pas exhaustive. Il existe d’autres équivalents corrects. Dans certains cas, les équivalents diffèrent d’une province à l’autre et d’un domaine juridique à l’autre. Il existe aussi des régionalismes qui sont propres à un territoire ou à une seule province. L’Institut Joseph-Dubuc tient à remercier les nombreux juristes et spécialistes qui lui ont transmis leurs commentaires et proposé des ajouts ou des corrections concernant ces lexiques. - 1 - Conditions météorologiques et routières Lexique français-anglais - A - accès de rage d'un automobiliste road rage accotement shoulder air air air arctique arctic air Alerte Météo WeatherAlert amas de neige bank of snow; snowbank amoncellement de neige bank of snow; snowbank atmosphère atmosphere avalanche avalanche avalanche de neige snow avalanche; snow slide averse shower; downpour averse de grêle hail shower averse de neige flurry; snow flurry; snow shower averse de neige fondante wet flurry averse de pluie rain shower averse torrentielle cloudburst avertissement de blizzard blizzard warning avertissement de bourrasques de neige snow squall warning avertissement de coup de vent gale warning avertissement de gel frost warning avertissement de gel rapide flash freeze warning avertissement de marée de tempête storm surge warning avertissement
    [Show full text]
  • CLIMATE CHANGE and PUBLIC HEALTH in GREY BRUCE HEALTH UNIT Current Conditions and Future Projections
    CLIMATE CHANGE AND PUBLIC HEALTH IN GREY BRUCE HEALTH UNIT Current Conditions and Future Projections 2017 0 ABOUT THIS REPORT This report was completed as part of a Master of Public Health practicum placement by Gillian Jordan of Lakehead University during the summer of 2017 under the supervision of Robert Hart and Alanna Leffley of Grey Bruce Health Unit. Acknowledgements Much of this report was inspired by past work conducted by Stephen Lam, Krista Youngblood, and Dr. Ian Arra. This report is meant to build upon and accompany these previous reports to assist in furthering climate change-related understanding and planning of adaptation activities in Grey Bruce. Special thanks to Bob Hart and Alanna Leffley for their guidance and assistance throughout the report process; additional thanks to Virginia McFarland for her help with data analysis. Suggested Citation: Grey Bruce Health Unit. (2017). Climate Change and Public Health in Grey Bruce Health Unit: Current conditions and future projections. Owen Sound, Ontario. Grey Bruce Health Unit. 0 CONTENTS Table of Figures ............................................................................................................................................. ii Executive Summary ...................................................................................................................................... iii Introduction .................................................................................................................................................. 1 Climate Change
    [Show full text]
  • Weather Direct Alerts
    Version 1.5, 05/05/15 Weather Alerts from Weather Direct Definition: Alerts is the entire collection of U.S. National Weather Service and Canadian Weather Office warnings, watches, advisories and statements (see Appendix A for the supported list). We also call alerts Severe Weather Alerts or Weather Alerts.1 Alerts is an optional feature that must be activated. Customers may receive alerts on the weather direct device (scrolling on non-audio units), via e-mail or as SMS (Short Message Service) text on a cell phone. Preview Alerts on My Web Forecasts Note: This feature is available to all users. My Web Forecasts does not deliver alerts. It allows you to confirm that an alert is active at the selected location. Login to your Weather Direct account at www.weatherdirect.com. Find the My Web Forecasts section (right side of browser screen). Select Click to Add Web Forecasts. When the Edit Settings box appears, type the location you wish to monitor in the blank provided, press the search button to find it, highlight the correct item in the list with the mouse, and then press the Save button to display it: 1 Version 1.5, 05/05/15 A colored alert scrolling above the location (as below), means the location has a valid alert active. An expired alert will almost instantly stop scrolling on the web site because our web servers do not have to wait for the transfers involved in alert message delivery. The square button on the forecast location will display the last 3 months of alerts history; however, the 3 month history is not always an exact replica of what scrolled on the device because the history cannot receive a “cancel” notice (if issued before the published expiration).
    [Show full text]
  • Winter Weather Chapter 4.6
    WINTER WEATHER CHAPTER 4.6 The winter months in New York City can be brutal. They are often characterized by periods of extremely cold temperatures and by storms that haul in large amounts of snow, ice, sleet, and freezing rain in addition to strong winds. The number of storms per season, the amount of snow from each storm, and prolonged periods of extreme cold can take a toll on people, buildings, infrastructure, and the economy. Hazardous wintry conditions also induce dangers like traffic accidents, power outages, and hypothermia and frostbite. WHAT IS THE HAZARD? SNOW and ICE The term heavy snow generally means snowfall accumulating to a depth of four inches or more within 12 hours or less, or six inches or more within 24 hours. Sleet is pellets of ice composed of frozen or mostly frozen raindrops, or refrozen partially melted snowflakes. Freezing rain is precipitation that falls as rain, but freezes on contact with a surface, forming a glaze of ice. The severity of a winter storm depends on temperature, wind speed, type of precipitation, accumulation rate, and timing. A storm that occurs during early winter, when trees still have leaves, may result in more downed trees and power lines due to the additional weight of snow and ice. Our city can experience a variety of winter storms: The intensity of a winter storm can be classified by meteorological measurements and societal Snow showers are brief, intense periods of snowfall impacts. The Northeast Snowfall Impact Scale resulting in accumulations of one inch or less. (NESIS) characterizes and ranks high-impact Northeast snowstorms – those with large areas of A blizzard is a severe snowstorm with winds snowfall accumulations of 10 inches and greater.
    [Show full text]
  • Transportation Management Center and SRIC
    Transportation Management Center and SRIC 1 OM‐1 Road Condition Report • SRIC season is November thru mid March • TMC prepares daily OM‐1 Reports. • The report is received from the Districts every weekday morning between 5 and 6 am. • TMC will request further reports as needed. • If conditions are changing the report should be updated every two hours during adverse weather conditions to insure the public has current information on our heavily traveled routes. • This information is sent to the NWS. 2 SRIC Color Codes • Counties and Expressway orgs are to follow the SRIC Guidelines set forth by the Maintenance Division Director. • Once an Org is called out they are to update their color code status to blue which indicates they are on standby anticipating a storm or spot treating. • Code blue usually means at least one person is out patrolling the roadway monitoring for ice and or snow conditions. • Once actual treatment begins the org is to update their status to code yellow to show SRIC operations are in full force for that particular org. • If your Org is manned let the TMC know. 3 SRIC Temperature Monitoring Policy 32 Degree Rule 4 TMC/SRIC • The national weather service inputs weather watches, advisories, and warnings into the 511 system and info is displayed on the map overlay. This is available to the public. • TMC Updates road conditions on statewide 511 platform. 5 WV Pathfinder • NWS and the WVDOH/TMC collaborate with WV Pathfinder. • WVDOH provides the following to NWS – OM‐1 report – Camera Feeds – RWIS data • NWS Pathfinder Chat ‐ it is restricted to NWS and WVDOH representatives – This is for weather impacts to the public, timing, and potential travel impacts across the entire state.
    [Show full text]
  • 100% Pickering Asked to Consult with First Nations on Seaton
    The Pickering 52 PAGES ✦ Metroland Durham Region Media Group ✦ WEDNESDAY, DECEMBER 12, 2007 ✦ Optional delivery charge $6 / Newsstand charge $1 Hundreds send greetings to troops ‘WE ARE SO PROUD OF THE WORK YOU ARE DOING’ Page B3 LEARNING THE FINE ART OF WEAVING Urgent repairs needed to Pickering police station: Chief Police ask Region for $218,000 to fix access ramp and front door By Erin Hatfield [email protected] DURHAM — The Region’s finance and administration committee didn’t commit to all of the funding needs identified by police recently. Terry Clayton, Chairman of the Police Services Board, and Durham Regional Police (DRPS) Chief Mike Photo by Jennifer Roberts Ewles on Dec. 5 were before the com- PICKERING — Hannah Reid, 11, and her eight-year-old sister, Sophie, enjoyed learning how to weave at the Christmas Craft Club sponsored by the Pickering Museum mittee to ask for money to make what Village. The workshop ran at the Pickering Recreation Complex on Saturday afternoon. they called urgent repairs. The DRPS wants to replace its un- interruptible power supply (UPS) sys- tem and repair the entrances to the Ajax/ Pickering community police of- fice. The UPS system provides continu- Pickering asked to consult ous power to computer and com- munications systems in the event of a power outage. The current system is 17 years old and has exceeded its recommended life. A new one would cost $280,000. with First Nations on Seaton If the system failed it could have serious consequences, Chief Ewles Native activist ing,” David Grey Eagle Sanford said in and without our total involvement on around mid-January.
    [Show full text]
  • CDRP HRA Atmospheric (Pdf)
    Hazard Risk Analysis Atmospheric (related to weather and climate) Blizzards Climate Change Droughts Extreme Cold Fog Frost Hailstorms Heat Waves Hurricanes Ice Fogs, Ice Storms, and Freezing Rain Lake-Effect Storms Lightning and Thunderstorms Microbursts Sea Storms and Sea Surges Seiches Snowstorms Tornadoes and Waterspouts Windstorms Atmospheric Hazards This section introduces a number of atmospheric hazards: Blizzards, Climate Change, Droughts, Extreme Cold, Fog, Frost, Hailstorms, Heat Waves, Hurricanes, Ice Fogs, Ice Storms and Freezing Rain, Lake Effect Storms, Lightning and Thunderstorms, Microbursts (strong wind caused by downdraft), Sea Storms and Storm Surges, Seiche (atmospheric disturbance over water), Snowstorms, Tornadoes and Waterspouts, and Windstorms. As you will see when completing the risk analysis, all are caused by nature but a few are also caused by people (human-caused). The following hazards are weather related. Don’t confuse your community’s ability to cope with the hazard (e.g., a blizzard) with the likelihood of it occurring. For example, you may experience blizzards regularly and thus cope very well – but that doesn’t change the fact that blizzards are very likely to occur. www.cdrp.jibc.ca CDRP: Hazard Risk Analysis Blizzards - Natural Definition Although blizzard is often used to describe any major snow storm with strong winds, a true blizzard lasts at least 3 hours in duration; has low temperatures (usually less than minus 7°Celsius or 20F); strong winds (greater than 55 km/h or 35 mph); and blowing snow which reduces visibility to less that 1 kilometre (0.6 miles). Snow does not need to be falling as long as the amount of snow in the air (falling or blowing) reduces visibility to less than 400m(0.2miles).
    [Show full text]
  • Officers List EWC'98 Officers*
    Officers List EWC'98 Officers* International Advisory Board American National Academy of Sciences, Na­ tional Research Council, USA William J. R. Alexander, IDNDR-Scientific and Hans Kienholz, International Association of Technical Committee (STC), Sub-Committee Geomorphology (lAG), Mountain Hazards on Early Warning, Dept. of Civil Engineer­ Project, University of Bern, Switzerland ing, Univ. of Pretoria, Republic of South Afri­ William H. K. Lee, U.S. Geological Survey, Men­ ca lo Park, USA Miriam Baltuck, Natural Hazards Research and Sir James Lighthill t, WMO/ICSU Tropical Cy­ Applications Lead Scientist, Solid Earth clone Disasters, University College London, Branch, NASA, USA, currently at Yaralumla, United Kingdom Australia Isaac 0. Nyambok, University of Nairobi, Re­ Cyril E. Berridge, Caribbean Meteorological Or­ gional Center for the Global Seismic Hazard ganization, Port of Spain, Trinidad Assessment Program (GSHAP), Member of Michael E. Blackford, UNESCO/IOC Interna­ IDNDR-STC, Kenya tional Tsunami Information Center, Hawaii, Raymundo S. Punongbayan, Philippine Institute USA of Volcanology & Seismology, Quezon City, Zhangli Chen, State Seismological Bureau of Philippines China, Beijing, China Robert I. Tilling, U.S. Geological Survey, Menlo Rainer Dombrowsky, National Weather Service, Park, USA Silver Springs, USA Seiya Uyeda, RIKEN International Frontier Pro­ James Dooge, University College Dublin, Ire­ gram, Tokai University, Earthquake Predic­ land tion Research Center, ICSU IDNDR Scientific Thomas E. Downing, Environmental Change Committee on Earthquake Research, Shimi­ Unit, School of Geography, Oxford, United zu, Japan Kingdom Fritjof Voss, Technical University of Berlin, Rolando Duran, Centro de Coordination para la Dept. Geography, Germany Prevencion de Desastres Naturales en Ameri­ John Zillman, Dept. of Environment, Sport and ca Central ( CEPREDENAC), Panama Territories, Bureau of Meteorology, Mel­ Juan Manuel Espinoza-Aranda, Centro de In­ bourne, Australia strumentacion y Registro Sismica, A.C., Del.
    [Show full text]
  • Supplementary Guidelines on Performance Assessment of Public Weather Services
    World Meteorological Organization SUPPLEMENTARY GUIDELINES ON PERFORMANCE ASSESSMENT OF PUBLIC WEATHER SERVICES PWS-7 WMO/TD No. 1103 World Meteorological Organization SUPPLEMENTARY GUIDELINES ON PERFORMANCE ASSESSMENT OF PUBLIC WEATHER SERVICES PWS-7 WMO/TD No. 1103 Geneva, Switzerland 2002 Lead author and coordinator of text: Joseph Shaykewich (Contributions by: C.C.Chan, Robert Landis, Wolfgang Kusch,Yung-Fong Hwang, Samuel Shongwe) Edited by: Haleh Kootval Cover: Josiane Bagès © 2002, World Meteorological Organization WMO/TD No. 1103 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of any of the participating agencies concerning the legal status of any country, territory, city or area, or of its authorities, or concern- ing the delimitation of its frontiers or boundaries. CONTENTS Page CHAPTER 1 – INTRODUCTION . 1 CHAPTER 2 – PERSPECTIVES ON THE PERFORMANCE ASSESSMENT PROCESS . 2 2.1 As a Component of a Service Improvement Strategy . 2 2.2 As Part of a Quality Management System . 2 CHAPTER 3 - CLIENTS OF ASSESSMENT & REPORTING REQUIREMENTS . 4 3.1 Operations . 4 3.2 Management . 4 3.3 Funding Agency . 4 3.4 Public . 4 CHAPTER 4 - THE ASSESSMENT PROCESS . 5 4.1 Assessment as a Continuous Process . 5 4.2 User-Based Assessment . 5 4.3 Scientific Program Assessment . 6 4.4 Assessment of End-user Requirements . 6 4.5 Assessment for the Development or Modification of a Program . 7 4.6 Assessment of the Value of Weather Forecast Services . 7 4.7 Assessment of the Performance of the Scientific Programs . 9 4.7.1 For External Reporting .
    [Show full text]
  • Historical Spatiotemporal Trends in Snowfall Extremes Over the Canadian Domain of the Great Lakes Basin
    Hindawi Advances in Meteorology Volume 2018, Article ID 5404123, 20 pages https://doi.org/10.1155/2018/5404123 Research Article Historical Spatiotemporal Trends in Snowfall Extremes over the Canadian Domain of the Great Lakes Basin Janine A. Baijnath-Rodino and Claude R. Duguay Department of Geography and Environmental Management and Interdisciplinary Centre on Climate Change, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1, Correspondence should be addressed to Janine A. Baijnath-Rodino; [email protected] Received 20 March 2018; Revised 1 August 2018; Accepted 18 October 2018; Published 10 December 2018 Academic Editor: Stefano Dietrich Copyright © 2018 Janine A. Baijnath-Rodino and Claude R. Duguay. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. *e Laurentian Great Lakes Basin (GLB) is prone to snowfall events developed from extratropical cyclones or lake-effect processes. Monitoring extreme snowfall trends in response to climate change is essential for sustainability and adaptation studies because climate change could significantly influence variability in precipitation during the 21st century. Many studies in- vestigating snowfall within the GLB have focused on specific case study events with apparent under examinations of regional extreme snowfall trends. *e current research explores the historical extremes in snowfall by assessing the intensity, frequency, and duration of snowfall within Ontario’s GLB. Spatiotemporal snowfall and precipitation trends are computed for the 1980 to 2015 period using Daymet (Version 3) monthly gridded interpolated datasets from the Oak Ridge National Laboratory.
    [Show full text]
  • Climatological Trends and Predictions in Snowfall Over the Canadian Snowbelts of the Laurentian Great Lakes Basin
    Climatological trends and predictions in snowfall over the Canadian snowbelts of the Laurentian Great Lakes Basin by Janine A. Baijnath-Rodino A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Geography Waterloo, Ontario, Canada, 2018 © Janine A. Baijnath-Rodino 2018 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner Dr. Jia Wang Supervisor(s) Dr. Claude R. Duguay Internal Member Dr. Ellsworth LeDrew Internal Member Dr. Richard Kelly Internal-external Member Dr. Andrea Scott ii AUTHOR’S DECLARATION This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions This thesis contains six chapters. Chapters 1, 2, and 6 provide a general introduction, background, and overall conclusion, respectively. Chapters 3,4, and 5 comprise three separate journal articles that examine the role of lake-induced snowfall within the understudied region of the Canadian Laurentian Great Lakes Basin. The first paper focuses on the climatological trends of snowfall over the Laurentian Great Lakes Basin and is published in the peer reviewed journal, International Journal of Climatology. The second paper assesses the historical spatiotemporal trends in snowfall extremes over the Canadian domain and has been submitted to the international peer reviewed journal entitled, Advances in Meteorology.
    [Show full text]