Wallerian Degeneration of Injured Axons and Synapses Is Delayed By

Total Page:16

File Type:pdf, Size:1020Kb

Wallerian Degeneration of Injured Axons and Synapses Is Delayed By Overview Introduction Wallerian Degeneration of Background Information Injured Axons and Synapses is Aims Delayed by a Ube4b/Nmnat Results Discussion Chimeric Gene Future Research Mack T, Reiner M, Beirowski B, Weiqian M, Emanuelli M, Wagner D, Thomson D, Gillingwater T, Court F, Conforti L, Questions Fernando F. S, Tarlton A, Andressen C, Addicks K, Magni G, Ribchester R. R, Perry V. H and Coleman M. P. Introduction - Background Introduction - Background Distal axons of injured neurons usually undergo Wallerian s degeneration 24-48 hours after injury. A candidate Wld gene was identified on In C57BL/Wlds mice, injured axons can survive several weeks chromosome 4 (mouse) following injury. This suggests that these mice have a protective mechanism specific to the It is a chimeric gene containing coding axons, and that this protective factor must be present in the axon prior to any injury occurring as the distal part of the axon is separated from the cell body regions for Ube4b/D4Cole1e in the mouse and cannot benefit from new protein synthesis. D4Cole1e was found to be equivalent to the Wallerian degeneration is implicated in several human neuropathologies. human enzyme Nmnat. These include ALS, multiple sclerosis and traumatic disorders such as injury to the spinal cord Both proteins were found to be expressed in An understanding of the mechanisms controlling the slow Wlds mice, strongly suggesting that this Wallerian degeneration exhibited by the C57BL/Wlds mouse could lead to the new therapeutic targets for such diseases. chimeric gene is the Wlds gene Introduction - Aims Transgenic Mice Generated Hypothesis: the Ube4b/Nmnat chimeric gene 4 lines of transgenic mice were generated for is the Wlds gene and produces the slow this study: 4839, 4830, 4858 and 4836. Wallerian degeneration phenotype observed In each line, the expression level of the in the mutant mice. chimeric gene had been altered. To test this, the chimeric gene was The lowest level was expressed in 4839; 4830 expressed in transgenic mice. and 4858 showed a medium level of gene Several strains of mice were produced, each with expression (only 4830 is further discussed in the a different expression level of the chimeric gene. paper); 4836 had the strongest expression which is almost identical to Wlds mouse. Results Results Structural Preservation of Transected Axons Structural preservation was investigated 3-5 days following a unilateral lesion to the sciatic nerve. Electron microscopy showed that the vast majority of axons in the 4836 mouse had preserved cytoskeletons 5 days after injury Successful replication of the Wlds phenotype. WT mice showed clear signs of degeneration in myelinated and unmyelinated axons. Partial protection was observed as expected in 4830 axons Results Results Functionally Competent Motor Axons and Synapses Tested whether the motor axons were still functional as well as structurally preserved. Using intracellular recordings, the response of the muscle to nerve stimulation and the generation of action potentials were recorded No evidence of motor axons still functioning in WT mice. In transgenic mice, there was evidence of functioning motor axons and synapses for at least three days after injury. In homozygous 4836 mice, nerve stimulation led to a functional response in 80% of muscle fibres 3 days after injury. In heterozygous 4836 mice and 4830 mice, the percentage of muscle fibres which responded to nerve stimulation after injury were significantly lower than the 4836 mouse, and the duration after injury which the axons and synapses appeared functional was also reduced. Results Results Functional motor axons and synapses were visualised using immunostaining methods Homozygous 4836 mice demonstrated synaptic vesicle recycling 5 days after injury, indicating synaptic transmission is still able to occur. Homozygous 4836 mice also showed a high proportion of endplates fully occupied 5 days after injury. Proportion of endplates occupied were reduced in hemizygous 4836 mice and in 4830 mice. Results Results Protection Depends on Wld Protein Expression Levels The level of Wld protein expression in the mutant strains was quantified using a Western blot analysis. Homozygous 4836 mutant mice showed similar expression of the protein to the Wlds mouse, again confirming that the Wlds phenotype was successfully recreated. Other strains showed dose-dependent expression of Wld protein. Homozygous 4836 mutant mice also demonstrated a higher proportion of intact axons 5 days after sciatic nerve lesion compared to other stains, which were visualised using electron microscopy. Results Results To further test how expression levels of Wld protein protects axons from degeneration, the degree of neurofilament degradation (measured by Western blot) and the number of intact axons (electron microscopy) were measured after 10- 14 days. In Wlds and homozygous 4836 mice, neurofilament degradation was less than that of other strains. In homozgous 4836 and Wlds mice, axon protection was significantly better than that of WT and other mutant strains. Results Results Wld is a Predominantly Nuclear Protein Wld protein was found to be localised in the nucleus of Wlds and transgenic mice, using immunostaining methods. It was not located in the nucleus of WT mice. There was no detection of Wld protein in the axons of any mouse strain. This study did not find evidence of Wld expression in glial cells, but previous studies have reported detecting Wld protein in Schwann cells using RT-PCR Wld may have roles other than axon protection in other cell types Results Results The Wld protein has Nmnat Enzyme Activity Intrinsic Nmnat activity was initially measured using recombinant protein expression and measuring the activity of the bacterial lysate. In Wlds mice, Nmnat levels were measured in brain homogenates and were found to be four times higher than the control. Total NAD+ levels were not significantly increased however, indicating that Wld protein increases Nmnat levels but not overall NAD+ levels. Discussion And Further Conclusions Research The paper concludes that the Ube4b/Nmnat The role of Ube4b and Nmnat chimeric gene has been successfully identified As the Wld protein is located in the nucleus, the actions as the Wld gene. of Ube4b and Nmnat may be influence downstream s regulatory pathways, which can then go on to directly The Wld phenotype was successfully recreated influence axon protective mechanisms. in the homozygous 4836 transgenic mouse. Ube4b is involved in ubiquitination processes may It was also shown that the level of expression of produce protective effects by influencing the stability of the Wld protein directly relates to the level of protein-protein interactions or RNA, or by affecting axon protection. nuclear transport. Nmnat levels in Wlds mice is increased, but NAD+ levels Wld protein was found to be localised in the remain similar to that of WT. This suggests that the nucleus and that it protects axons through an NAD+ is being metabolised. These metabolites may indirect mechanism involving other factors. produce neuroprotective effects. Discussion And Further Questions Research Wld Protein as a Therapeutic Target How could nuclear Wlds protect severed axons? What is the s significance of constant levels of NAD+? Is the ubiquitin-proteasome Wld phenotype is known to protect axons from system involved? toxic effects of vincristine. Nuclear Wlds most likely protects severed axons by altering Studies have also indicated that Wlds protects regulatory pathways prior to the axon being severed. against a mouse model of motor neurone disease. The constant NAD+ levels observed in Wlds mice indicate that a significant proportion of NAD+ is being metabolised. Metabolites From the identification of the Wld gene, and of NAD+ are known to exert both neuroprotective and neurotoxic through investigation into the mechanisms effects. through which Wld protein exerts its Ube4b is a multi-ubiquitinating enzyme. Although the full Ube4b neuroprotective effects, therapeutic targets for gene is not expressed in the chimeric gene, it is likely that the several neuropathologies could be identified. role of Ube4b in Wlds is likely to be similar to that of the regular enzyme. Therefore, there is a strong possibility that the ubiquitin- proteasome pathway is involved in the protection of axons; possibly through degrading proteins which produce or enhance the process of Wallerian degeneration Age-dependent synapse Outline withdrawal at axotomised neuromuscular junctions in Intro/background Wlds mutant and Aims/hypothesis Methods Ube4b/Nmnat Results transgenic mice Conclusion Thomas H. Gillingwater*†, Derek Thomson*†, Till G. A. Strengths/weaknesses Mack‡, Ellen M. Soffin*, Richard J. Mattison*, Michael P. Coleman‡ and Richard R. Ribchester* BBQs Journal of Physiology (2002), 543.3, pp. 739–755 DOI: 10.1113/jphysiol.2002.022343 Summary © The Physiological Society 2002 Mairi Laverty Background Aims and Hypothesis Wallerian degeneration: the molecular and cellular responses that are involved in the degeneration of distal axons and synaptic terminals after Previous controversy whether age affected lesion or injury the neuroprotective role of the Wlds gene Wlds mutation: overexpression of a chimeric Ube4b/Nmnat (Wld) gene that protects axons from Wallerian degeneration Aim: “to resolve the discrepancy between the Wlds mutation is inherited as a single autosomal dominant characteristic, by a gene located
Recommended publications
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Role of Ube4b in the Ubiquitination of the Htlv-1 Tax Oncoprotein and Nf-B Activation
    ROLE OF UBE4B IN THE UBIQUITINATION OF THE HTLV-1 TAX ONCOPROTEIN AND NF-B ACTIVATION by Teng Han A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Science Baltimore, Maryland April, 2014 © 2014 Teng Han All Rights Reserved i ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia and lymphoma (ATLL), an aggressive CD4+CD25+ malignancy. The HTLV-1 genome encodes the Tax protein that plays essential regulatory roles in oncogenic transformation of T lymphocytes by deregulating different cellular pathways, most notably NF-κB. Lysine 63 (K63)-linked polyubiquitination of Tax provides an important regulatory mechanism that promotes Tax-mediated interaction with the IKK complex and activation of NF-κB. However, the E3 ligase(s) and other host proteins regulating Tax ubiquitination are currently unknown. To identify novel Tax interacting proteins that may regulate its ubiquitination we conducted a yeast two-hybrid screen using Tax as bait. This screen yielded the E3/E4 ligase ubiquitin conjugation E4 B (UBE4B) as a novel binding partner for Tax. Here, we confirmed the interaction between Tax and UBE4B in mammalian cells by co-immunoprecipitation assays and demonstrated that they co- localized in the cytoplasm by confocal microscopy. Overexpression of UBE4B specifically enhanced Tax-induced NF-κB activation, whereas knockdown of UBE4B impaired Tax-induced NF-κB activation and induction of NF-B target genes in Jurkat T cells and ATL cell lines. Although the UBE4B promoter contains putative NF-κB binding sites, its expression was not upregulated by Tax.
    [Show full text]
  • UBE4B Antibody (C-Term) Blocking Peptide Synthetic Peptide Catalog # Bp2111b
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 UBE4B Antibody (C-term) Blocking Peptide Synthetic peptide Catalog # BP2111b Specification UBE4B Antibody (C-term) Blocking Peptide UBE4B Antibody (C-term) Blocking Peptide - - Background Product Information Ubiquitin is a 76 amino acid highly conserved Primary Accession O95155 eukaryotic polypeptide that selectively marks cellular proteins for proteolytic degradation by the 26S proteasome. The process of target UBE4B Antibody (C-term) Blocking Peptide - Additional Information selection, covalent attachment and shuttle to the 26S proteasome is a vital means of regulating the concentrations of key regulatory Gene ID 10277 proteins in the cell by limiting their lifespans. Polyubiquitination is a common feature of this Other Names modification. Serial steps for modification Ubiquitin conjugation factor E4 B, 632-, include the activation of ubiquitin, an UBE4B (<a href="http://www.genenames.or ATP-dependent formation of a thioester bond g/cgi-bin/gene_symbol_report?hgnc_id=125 between ubiquitin and the enzyme E1, transfer 00" target="_blank">HGNC:12500</a>) by transacylation of ubiquitin from E1 to the Target/Specificity ubiquitin conjugating enzyme E2, and covalent The synthetic peptide sequence used to linkage to the target protein directly by E2 or generate the antibody <a href=/product/pr via E3 ligase enzyme. Deubiquitination oducts/AP2111b>AP2111b</a> was enzymes also exist to reverse the marking of selected from the C-term region of human protein substrates. Posttranslational tagging by UBE4B . A 10 to 100 fold molar excess to Ub is involved in a multitude of cellular antibody is recommended.
    [Show full text]
  • The Basis of VCP-Mediated Degeneration: Insights from a Drosophila Model of Disease
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 The Basis of VCP-Mediated Degeneration: Insights From a Drosophila Model of Disease Gillian P. Ritson University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Disease Modeling Commons, Medical Molecular Biology Commons, Medical Neurobiology Commons, Molecular and Cellular Neuroscience Commons, and the Neurosciences Commons Recommended Citation Ritson, Gillian P., "The Basis of VCP-Mediated Degeneration: Insights From a Drosophila Model of Disease" (2010). Publicly Accessible Penn Dissertations. 460. https://repository.upenn.edu/edissertations/460 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/460 For more information, please contact [email protected]. The Basis of VCP-Mediated Degeneration: Insights From a Drosophila Model of Disease Abstract Valosin-containing protein (VCP) is a highly conserved molecular chaperone that regulates a wide array of essential cellular processes. Mutations in VCP are causative of degenerative disease that can affect muscle, brain and bone. Despite VCP being implicated in many major pathways in the cell, the mechanism of disease pathogenesis is unknown. To gain insight into the degeneration associated with mutations in VCP, we developed and characterized a Drosophila model of disease that recapitulated VCP mutation- dependent toxicity. VCP is involved in a diverse array of activities, many of which we may not know. Therefore we employed an unbiased genetic screening method that has the potential to uncover unanticipated pathways affected in the disease. Using this approach, we identified four proteins that dominantly suppressed degeneration; one of which was Ube4b, one of the many known ancillary proteins that bind to VCP and determine its function.
    [Show full text]
  • Novel Mutations in Breast Cancer Patients from Southwestern Colombia
    Genetics and Molecular Biology 43, 4, e20190359 (2020) Copyright © 2020, Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2019-0359 Short Communication Human and Medical Genetics Novel mutations in breast cancer patients from southwestern Colombia Melissa Solarte1,2 , Carolina Cortes-Urrea1,2, Nelson Rivera Franco2, Guillermo Barreto2 and Pedro A. Moreno1 1Universidad del Valle, School of Systems and Computing Engineering, Bioinformatics and Biocomputing Laboratory, Cali, Colombia. 2Universidad del Valle, Biology Department, Human molecular Genetic Laboratory, Cali, Colombia. Abstract Breast cancer is the leading cause of death by cancer among women in less developed regions. In Colombia, few pub- lished studies have applied next-generation sequencing technologies to evaluate the genetic factors related to breast cancer. This study characterized the exome of three patients with breast cancer from southwestern Colombia to identify likely pathogenic or disease-related DNA sequence variants in tumor cells. For this, the exomes of three tumor tissue samples from patients with breast cancer were sequenced. The bioinformatics analysis identified two pathogenic vari- ants in Fgfr4 and Nf1 genes, which are highly relevant for this type of cancer. Specifically, variant FGFR4-c.1162G>A predisposes individuals to a significantly accelerated progression of this pathology, while NF1-c.1915C>T negatively alters the encoded protein and should be further investigated to clarify the role of this variant in this neoplasia. More- over, 27 novel likely pathogenic variants were found and 10 genes showed alterations of pathological interest. These results suggest that the novel variants reported here should be further studied to elucidate their role in breast cancer.
    [Show full text]
  • UBE4B, a Microrna-9 Target Gene, Promotes Autophagy-Mediated Tau
    ARTICLE https://doi.org/10.1038/s41467-021-23597-9 OPEN UBE4B,amicroRNA-9 target gene, promotes autophagy-mediated Tau degradation Manivannan Subramanian1,2,7, Seung Jae Hyeon3,7, Tanuza Das4, Yoon Seok Suh1, Yun Kyung Kim 2, ✉ ✉ ✉ Jeong-Soo Lee 1,2, Eun Joo Song 5 , Hoon Ryu3 & Kweon Yu 1,2,6 The formation of hyperphosphorylated intracellular Tau tangles in the brain is a hallmark of Alzheimer’s disease (AD). Tau hyperphosphorylation destabilizes microtubules, promoting 1234567890():,; neurodegeneration in AD patients. To identify suppressors of tau-mediated AD, we perform a screen using a microRNA (miR) library in Drosophila and identify the miR-9 family as sup- pressors of human tau overexpression phenotypes. CG11070,amiR-9a target gene, and its mammalian orthologue UBE4B, an E3/E4 ubiquitin ligase, alleviate eye neurodegeneration, synaptic bouton defects, and crawling phenotypes in Drosophila human tau overexpression models. Total and phosphorylated Tau levels also decrease upon CG11070 or UBE4B over- expression. In mammalian neuroblastoma cells, overexpression of UBE4B and STUB1, which encodes the E3 ligase CHIP, increases the ubiquitination and degradation of Tau. In the Tau-BiFC mouse model, UBE4B and STUB1 overexpression also increase oligomeric Tau degradation. Inhibitor assays of the autophagy and proteasome systems reveal that the autophagy-lysosome system is the major pathway for Tau degradation in this context. These results demonstrate that UBE4B, a miR-9 target gene, promotes autophagy-mediated Tau degradation together with STUB1, and is thus an innovative therapeutic approach for AD. 1 Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea. 2 Convergence Research Center of Dementia, KIST, Seoul, Korea.
    [Show full text]
  • CHARACTERIZATION of the UBIQUITIN LIGASE, UBE4B, in ENDOCYTIC TRAFFICKING Natalie Sirisaengtaksin
    Texas Medical Center Library DigitalCommons@TMC UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences 5-2017 CHARACTERIZATION OF THE UBIQUITIN LIGASE, UBE4B, IN ENDOCYTIC TRAFFICKING Natalie Sirisaengtaksin Natalie Sirisaengtaksin Follow this and additional works at: http://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biology Commons, and the Cell Biology Commons Recommended Citation Sirisaengtaksin, Natalie and Sirisaengtaksin, Natalie, "CHARACTERIZATION OF THE UBIQUITIN LIGASE, UBE4B, IN ENDOCYTIC TRAFFICKING" (2017). UT GSBS Dissertations and Theses (Open Access). 774. http://digitalcommons.library.tmc.edu/utgsbs_dissertations/774 This Dissertation (PhD) is brought to you for free and open access by the Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in UT GSBS Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. CHARACTERIZATION OF THE UBIQUITIN LIGASE, UBE4B, IN ENDOCYTIC TRAFFICKING by Natalie Sirisaengtaksin, M.S. APPROVED: ______________________________ Andrew J. Bean, Ph.D. Supervisory Professor ______________________________ Chinnaswamy Jagannath, Ph.D. ______________________________ M. Neal Waxham, Ph.D. ______________________________ Jack C. Waymire Ph.D. ______________________________ Peter E. Zage, Ph.D. APPROVED: ____________________________ Dean, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences CHARACTERIZATION OF THE UBIQUITIN LIGASE, UBE4B, IN ENDOCYTIC TRAFFICKING A DISSERTATION Presented to the Faculty of The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Natalie Sirisaengtaksin, M.S. Houston, Texas May, 2017 Dedication This work is dedicated to my father, who is irreplaceable.
    [Show full text]
  • Downloaded As Previously Described [46]
    UC San Diego UC San Diego Previously Published Works Title Neuroblastoma patient outcomes, tumor differentiation, and ERK activation are correlated with expression levels of the ubiquitin ligase UBE4B. Permalink https://escholarship.org/uc/item/5v6473gj Journal Genes & cancer, 7(1-2) ISSN 1947-6019 Authors Woodfield, Sarah E Guo, Rong Jun Liu, Yin et al. Publication Date 2016 DOI 10.18632/genesandcancer.97 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.impactjournals.com/Genes&Cancer Genes & Cancer, Vol. 7 (1-2), January 2016 Neuroblastoma patient outcomes, tumor differentiation, and ERK activation are correlated with expression levels of the ubiquitin ligase UBE4B Sarah E. Woodfield1, Rong Jun Guo2,7, Yin Liu3,4, Angela M. Major2, Emporia Faith Hollingsworth2, Sandra Indiviglio1, Sarah B. Whittle1, Qianxing Mo5, Andrew J. Bean3, Michael Ittmann2,6, Dolores Lopez-Terrada1,2 and Peter E. Zage1 1 Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA 2 Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA 3 Department of Neurobiology and Anatomy, The University of Texas Medical School & Graduate School of Biomedical Sciences, Houston, TX, USA 4 Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA 5 Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA 6 The Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA 7 Department of Pathology, University of Alabama Birmingham, Birmingham, AL, USA Correspondence to: Peter E. Zage, email: [email protected] Keywords: neuroblastoma, UBE4B, differentiation, ERK, retinoic acid Received: October 08, 2015 Accepted: February 14, 2016 Published: February 16, 2016 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • The Identification of Novel Regions for Reproduction Trait in Landrace and Large White Pigs Using a Single Step Genome-Wide Association Study
    Open Access Asian-Australas J Anim Sci Vol. 31, No. 12:1852-1862 December 2018 https://doi.org/10.5713/ajas.18.0072 pISSN 1011-2367 eISSN 1976-5517 The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study Rattikan Suwannasing1, Monchai Duangjinda1,*, Wuttigrai Boonkum1, Rutjawate Taharnklaew2, and Komson Tuangsithtanon3 * Corresponding Author: Monchai Duangjinda Objective: The purpose of this study was to investigate a single step genome-wide association Tel: +66-43-202362, Fax: +66-43-202361, E-mail: [email protected] study (ssGWAS) for identifying genomic regions affecting reproductive traits in Landrace and Large White pigs. 1 Department of Animal Science, Faculty of Agriculture, Methods: The traits included the number of pigs weaned per sow per year (PWSY), the Khon Kaen University, Khon Kaen 40002, Thailand 2 Research and Development Center Betagro Group, number of litters per sow per year (LSY), pigs weaned per litters (PWL), born alive per litters Pathumthani 12120, Thailand (BAL), non-productive day (NPD) and wean to conception interval per litters (W2CL). A 3 Betagro Hybrid International Company Limited, total of 321 animals (140 Landrace and 181 Large White pigs) were genotyped with the Illumina Bangkok 10210, Thailand Porcine SNP 60k BeadChip, containing 61,177 single nucleotide polymorphisms (SNPs), ORCID while multiple traits single-step genomic BLUP method was used to calculate variances of Rattikan Suwannasing 5 SNP windows for 11,048 Landrace and 13,985 Large White data records. https://orcid.org/0000-0002-6950-4384 Monchai Duangjinda Results: The outcome of ssGWAS on the reproductive traits identified twenty-five and twenty- https://orcid.org/0000-0001-7044-8271 two SNPs associated with reproductive traits in Landrace and Large White, respectively.
    [Show full text]
  • The Ubiquitin Ligase Ube4b Is Required for Efficient Epidermal Growth Factor Receptor Degradation
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2010 THE UBIQUITIN LIGASE UBE4B IS REQUIRED FOR EFFICIENT EPIDERMAL GROWTH FACTOR RECEPTOR DEGRADATION Natalie Sirisaengtaksin Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry Commons, and the Cell Biology Commons Recommended Citation Sirisaengtaksin, Natalie, "THE UBIQUITIN LIGASE UBE4B IS REQUIRED FOR EFFICIENT EPIDERMAL GROWTH FACTOR RECEPTOR DEGRADATION" (2010). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 45. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/45 This Thesis (MS) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE UBIQUITIN LIGASE UBE4B IS REQUIRED FOR EFFICIENT EPIDERMAL GROWTH FACTOR RECEPTOR DEGRADATION by Natalie Sirisaengtaksin, B.S. APPROVED:
    [Show full text]
  • Supporting Information
    Supporting Information Friedman et al. 10.1073/pnas.0812446106 SI Results and Discussion intronic miR genes in these protein-coding genes. Because in General Phenotype of Dicer-PCKO Mice. Dicer-PCKO mice had many many cases the exact borders of the protein-coding genes are defects in additional to inner ear defects. Many of them died unknown, we searched for miR genes up to 10 kb from the around birth, and although they were born at a similar size to hosting-gene ends. Out of the 488 mouse miR genes included in their littermate heterozygote siblings, after a few weeks the miRBase release 12.0, 192 mouse miR genes were found as surviving mutants were smaller than their heterozygote siblings located inside (distance 0) or in the vicinity of the protein-coding (see Fig. 1A) and exhibited typical defects, which enabled their genes that are expressed in the P2 cochlear and vestibular SE identification even before genotyping, including typical alopecia (Table S2). Some coding genes include huge clusters of miRNAs (in particular on the nape of the neck), partially closed eyelids (e.g., Sfmbt2). Other genes listed in Table S2 as coding genes are [supporting information (SI) Fig. S1 A and C], eye defects, and actually predicted, as their transcript was detected in cells, but weakness of the rear legs that were twisted backwards (data not the predicted encoded protein has not been identified yet, and shown). However, while all of the mutant mice tested exhibited some of them may be noncoding RNAs. Only a single protein- similar deafness and stereocilia malformation in inner ear HCs, coding gene that is differentially expressed in the cochlear and other defects were variable in their severity.
    [Show full text]
  • Characterization of the Ubiquitin Ligase, Ube4b, in Endocytic Trafficking
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2017 CHARACTERIZATION OF THE UBIQUITIN LIGASE, UBE4B, IN ENDOCYTIC TRAFFICKING Natalie Sirisaengtaksin Natalie Sirisaengtaksin Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biology Commons, and the Cell Biology Commons Recommended Citation Sirisaengtaksin, Natalie and Sirisaengtaksin, Natalie, "CHARACTERIZATION OF THE UBIQUITIN LIGASE, UBE4B, IN ENDOCYTIC TRAFFICKING" (2017). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 774. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/774 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. CHARACTERIZATION OF THE UBIQUITIN LIGASE, UBE4B, IN ENDOCYTIC TRAFFICKING by Natalie Sirisaengtaksin, M.S. APPROVED: ______________________________
    [Show full text]