GUIDE to Cement-Stabilized Subgrade Soils
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessment of Pavement Foundation Stiffness Using Cyclic Plate Load Test
Assessment of Pavement Foundation Stiffness using Cyclic Plate Load Test Mark H. Wayne & Jayhyun Kwon Tensar International Corporation, Alpharetta, U.S.A. David J. White R.L. Handy Associate Professor of Civil Engineering, Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, Iowa ABSTRACT: The quality of the pavement foundation layer is critical in performance and sustainability of the pavement. Over the years, various soil modification or stabilization methods were developed to achieve sufficient bearing performance of soft subgrade. Geogrid, through its openings, confine aggre- gates and forms a stabilized composite layer of aggregate fill and geogrid. This mechanically stabilized layer is used to provide a stable foundation layer for roadways. Traditional density-based QC plans and associated QA test methods such as nuclear density gauge are limited in their ability to assess stiffness of stabilized composite layers. In North America, non-destructive testing methods, such as falling weight de- flectometer (FWD) and light weight deflectometer (LWD) are used as stiffness- or strength-based QA test methods. In Germany and some other European countries, a static strain modulus (Ev2) is more commonly used to verify bearing performance of paving layers. Ev2 is a modulus measured on second load stage of the static plate load test. In general, modulus determined from first load cycle is not reliable because there is too much re-arrangement of the gravel particles. However, a small number of load cycles may not be sufficiently dependable or reliable to be used as a design parameter. Experiments were conducted to study the influence of load cycles in bearing performance. -
Division 2 Earthwork
Division 2 Earthwork 2-01 Clearing, Grubbing, and Roadside Cleanup 2-01.1 Description The Contractor shall clear, grub, and clean up those areas staked or described in the Special Provisions. This Work includes protecting from harm all trees, bushes, shrubs, or other objects selected to remain. “Clearing” means removing and disposing of all unwanted material from the surface, such as trees, brush, down timber, or other natural material. “Grubbing” means removing and disposing of all unwanted vegetative matter from underground, such as sod, stumps, roots, buried logs, or other debris. “Roadside cleanup”, whether inside or outside the staked area, means Work done to give the roadside an attractive, finished appearance. “Debris” means all unusable natural material produced by clearing, grubbing, or roadside cleanup. 2-01.2 Disposal of Usable Material and Debris The Contractor shall meet all requirements of state, county, and municipal regulations regarding health, safety, and public welfare in the disposal of all usable material and debris. The Contractor shall dispose of all debris by one or more of the disposal methods described below. 2-01.2(1) Disposal Method No. 1 – Open Burning The open burning of residue resulting from land clearing is restricted by Chapter 173-425 of the Washington Administrative Code (WAC). No commercial open burning shall be conducted without authorization from the Washington State Department of Ecology or the appropriate local air pollution control authority. All burning operations shall be strictly in accordance with these authorizations. 2-01.2(2) Disposal Method No. 2 – Waste Site Debris shall be hauled to a waste site obtained and provided by the Contractor in accordance with Section 2-03.3(7)C. -
Soil Stabilization | Lime Treated Soils Save Time & Money
QUALITY LIME & STONE PRODUCTS THAT IMPROVE YOUR WORLD QUALITY LIME & STONE PRODUCTS About Graymont THAT IMPROVE YOUR WORLD Graymont is a family owned company whose management team and employees are dedicated to meeting or exceeding customer needs. The company is focused on high calcium and dolomitic lime, value added lime based products such as specialty hydrates and precipitated calcium carbonates, and the aggre- gate and pulverized stone business. Graymont takes a long term view of its business and the lime industry. Graymont has been in the lime business for over 50 years and operates facilities on sites that have been in operation for up to 200 years. Graymont is among the leaders in the industry in adding new efficient plants and equipment and operates some of the most modern facilities on the continent. Since 1989 Graymont has built close to 2 million tons of new state of the art capacity and will continue to add new capacity to meet market demand. Graymont is the third largest producer of lime in North America. In Canada, Graymont subsidiaries have operations from New Brunswick to British Columbia. In the United States, subsidiary companies operate in Ohio, Pennsylvania, Washington, Oregon, Montana, Utah and Nevada while serving markets in a much wider geographic area. In addition to Graymont's lime interests, Graymont Materials, located in upstate New York and the province of Quebec, provides construction stone, sand and gravel, asphalt products and ready mix concrete for the infrastructure and general construction needs of the area. In 2003, Graymont became a part owner of Grupo Calidra. -
Guidelines for the Stabilization of Subgrade Soils in California Authors: David Jones, Ashraf Rahim, Shadi Saadeh, and John T
July 2010 Guideline: UCPRC-GL-2010-01 GGGuuuiiidddeeellliiinnneeesss fffooorrr ttthhheee SSStttaaabbbiiillliiizzzaaatttiiiooonnn ooofff SSSuuubbbgggrrraaadddeee SSSoooiiilllsss IIInnn CCCaaallliiifffooorrrnnniiiaaa Authors: D. Jones, A. Rahim, S. Saadeh, and J.T. Harvey Partnered Pavement Research Center (PPRC) Contract Strategic Plan Element 3.14: Subgrade Soil Stabilization Guide PREPARED FOR: PREPARED BY: California Department of Transportation University of California Division of Research and Innovation Pavement Research Center Office of Roadway Research UC Davis, UC Berkeley DOCUMENT RETRIEVAL PAGE Guideline: UCPRC-GL-2010-01 Title: Guidelines for the Stabilization of Subgrade Soils in California Authors: David Jones, Ashraf Rahim, Shadi Saadeh, and John T. Harvey Prepared for: FHWA No: Work submitted: Date: Caltrans CA122201A 05/23/2011 July 2011 Strategic Plan Element No.: Status: Version No.: 3.14 Stage 6, Final 1 Abstract: This document provides guidelines on subgrade soil stabilization and covers mechanical, cementitious, and asphalt methods. The following aspects are discussed: An overview of subgrade stabilization methods Project investigation Mechanical stabilization Cementitious stabilization Asphalt stabilization Construction considerations A list of further reading is provided. Keywords: Subgrade soil stabilization Proposals for implementation: Related documents: None Signatures: D. Jones J.T. Harvey D. Spinner J.T. Harvey T.J. Holland 1st Author Technical Review Editor Principal Investigator Caltrans Contract Manager UCPRC-GL-2010-01 i DISCLAIMER The contents of this guideline reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This guideline does not constitute a standard, specification, or regulation. -
Engineering Geological Characterisation and Slope Stability
Engineering Geological Characterisation and Slope Stability Assessment of Whitehall Quarry, Waikato. A Thesis submitted in partial fulfilment of the requirements of the degree of Master of Science in Engineering Geology at the University of Canterbury by Daniel Rodney Strang UNIVERSITY OF CANTERBURY 2010 I Frontispiece Whitehall Quarry “Over 4,000 tonnes of aggregate goes into every 1 km of a two lane road” II Abstract Whitehall Quarry is located 4 km east of Karapiro, near Cambridge within the Waikato District. Current quarrying operations produce between 150,000 and 300,000 tonnes of aggregate for use in the surrounding region. This study is an investigation into the engineering geological model for the quarry and pit slope stability assessment. Pit slope stability is an integral aspect of quarrying and open-pit mining since slopes should be as steep as possible to minimise waste material which needs to be removed, yet shallow enough to minimise potential hazards to personnel and equipment below pit slopes. This study also assesses the stability of complex wedge located within the north western corner of the quarry. Initial estimates approximate a wedge mass volume of 500,000 m3; failure was triggered during the late 80‟s due a stripping programme at the head of the mass. Field and laboratory investigations were carried out to identify and quantify engineering geological parameters. Photogrammetric and conventional scanline analytical techniques identified two domains within the quarry divided by the Main Quarry Shear Zone (MQSZ). Discontinuity orientations are the key differences between the two domains. Bedding planes appear to have slightly different orientations and each domain has very different joint sets identified. -
Green Terramesh Rock Fall Protection Bund
Double Twist Mesh Project: 112 Bridle Path Road Date: May 2016 Client: Private Residence, Heathcote Valley Designer: Engeo Consulting Ltd Contractor: Higgins Contractors Location: Christchurch Green Terramesh Rock Fall Protection Bund The 22 February 2010 Christchurch earthquake triggered numerous rock falls causing damage to homes built close to cliffs. Many of those that survived were red zoned by the Government due of the risk of further rock fall or cliff collapse. The area around Heathcote Valley and in particular Bridle Path road was identified as an area of high risk requiring some form of rock fall protection structure to be constructed in order to protect dwellings from rock fall in the event of any further earthquakes. Geofabrics offers a range of solutions that includes certified catch fences and Green Terramesh rockfall embankments. A rockfall embankment was the preferred solution for this site which has the potential to experience multiple rock fall events. The use of Green Site Preparation Terramesh allows the embankment slopes to be steepened and the footprint reduced to form a stable and robust bund having high energy absorption characteristics. The structure is typically filled with compacted granular material or engineered soil fill with horizontal soil reinforcement (geogrid or DT mesh) inclusions. The front face can either be vegetated or finished with a rock veneer. Rockfall embankments have undergone extensive full scale testing in Europe. Actual rock impacts in excess of 5000kJ into Green Terramesh rockfall embankments located in Northern Italy have been back-analysed and the design methodology verified using numerical modelling (FEM) techniques. This research has resulted in the development of design charts to provide designers with a Bund Design simplified design method based on rock penetration depth. -
Accelerated Load Testing of Pavements HVS-Nordic Tests at VTI Sweden 2003–2004
VTI rapport 544A www.vti.se/publications Published 2006 Accelerated load testing of pavements HVS-Nordic tests at VTI Sweden 2003–2004 Leif G Wiman Publisher: Publication: VTI rapport 544A Published: Project code: 2006 60813 SE-581 95 Linköping Sweden Project: Accelerated load testing of pavement using Heavy Vehicle Simulator (HVS) Author: Sponsor: Leif G Wiman Swedish Road Administration Title: Accelerated load testing of pavements – HVS-Nordic tests at VTI Sweden 2003–2004 Abstract (background, aim, method, result) max 200 words: During 2003 and 2004 two accelerated load tests were performed at the VTI test facility in Sweden (SE05 and SE06). The objective of SE05 was to investigate the deformation behaviour of two different unbound base materials. Half of the test area was constructed with a base layer of natural granular material and the other half with a base layer of crushed rock aggregate. This means that the two structures were tested simultaneously. The objective of SE06 was to be the third test in a series of structural design tests with stepwise higher bearing capacity. The previous two tests in this series are SE01 and SE02. In the unbound base material test, SE05, the surface rut depth propagation during the accelerated load testing was greater on the crushed rock aggregate structure especially in wet condition. This was not expected and more than half of the difference in surface rut depth was found in the difference in the base layer deformations. One main reason for this unexpected behaviour is believed to be unsatisfactory compaction of the crushed rock aggregate. The performance of the pavement structures SE01, SE02 and SE06 during the accelerated load testing will be analysed in more detail in the future. -
Section 31 22 13 ‐ Site Grading
University of Houston Master Construction Specifications Insert Project Name SECTION 31 22 13 ‐ SITE GRADING PART 1 ‐ GENERAL 1.1 SCOPE OF WORK A. This Section pertains to the earthwork generally consisting of excavation, filling, backfilling and subgrade preparation as required for construction of site retaining walls/structures, slab on grade walks, pavement surfaces, landscaped areas and the general shaping of the site as shown, described or reasonably inferred on the drawings. B. Subsurface data is available from the *Owner. Contractor is urged to carefully analyze the site conditions. C. This section excludes work necessary for building pad preparations. Work within the building footprint and surrounding 5 feet shall be accomplished under technical specification 31 23 00 Excavation and Fill prepared by *STRUCTURAL ENGINEER]. D. Construction Means, Methods, Techniques, Sequences and Procedures: 1. The Contractor is solely responsible for, and has sole control over, construction means, methods, techniques, sequences and procedures, and for coordinating all portions of the Work. 2. Shoring that is required to complete the Work, is considered a method or technique and is the sole responsibility of the Contractor. If a regulatory agency requires a licensed engineer to design, approve or provide drawings for shoring, then it is the sole responsibility of the Contractor to engage the services of a qualified Engineer for shoring design services. 1.2 RELATED WORK SPECIFIED ELSEWHERE A. Drawings and general provisions of the Contract, including A‐procurement and Contracting Requirements, Division 00 and Division 01 apply to this section. B. Section 31 11 00 Clearing and Grubbing C. Section 31 23 33 Trenching, Backfilling and Compaction D. -
Design of Riprap Revetment HEC 11 Metric Version
Design of Riprap Revetment HEC 11 Metric Version Welcome to HEC 11-Design of Riprap Revetment. Table of Contents Preface Tech Doc U.S. - SI Conversions DISCLAIMER: During the editing of this manual for conversion to an electronic format, the intent has been to convert the publication to the metric system while keeping the document as close to the original as possible. The document has undergone editorial update during the conversion process. Archived Table of Contents for HEC 11-Design of Riprap Revetment (Metric) List of Figures List of Tables List of Charts & Forms List of Equations Cover Page : HEC 11-Design of Riprap Revetment (Metric) Chapter 1 : HEC 11 Introduction 1.1 Scope 1.2 Recognition of Erosion Potential 1.3 Erosion Mechanisms and Riprap Failure Modes Chapter 2 : HEC 11 Revetment Types 2.1 Riprap 2.1.1 Rock Riprap 2.1.2 Rubble Riprap 2.2 Wire-Enclosed Rock 2.3 Pre-Cast Concrete Block 2.4 Grouted Rock 2.5 Paved Lining Chapter 3 : HEC 11 Design Concepts 3.1 Design Discharge 3.2 Flow Types 3.3 Section Geometry 3.4 Flow in Channel Bends 3.5 Flow Resistance 3.6 Extent of Protection 3.6.1 Longitudinal Extent 3.6.2 Vertical Extent 3.6.2.1 Design Height 3.6.2.2 Toe Depth Chapter 4 : HEC 11 Design Guidelines for Rock Riprap 4.1 Rock Size Archived 4.1.1 Particle Erosion 4.1.1.1 Design Relationship 4.1.1.2 Application 4.1.2 Wave Erosion 4.1.3 Ice Damage 4.2 Rock Gradation 4.3 Layer Thickness 4.4 Filter Design 4.4.1 Granular Filters 4.4.2 Fabric Filters 4.5 Material Quality 4.6 Edge Treatment 4.7 Construction Chapter 5 : HEC 11 Rock -
Reinforced Earth: Principles and Applications in Engineering Construction
International Journal of Advanced Academic Research | Sciences, Technology & Engineering | ISSN: 2488-9849 Vol. 2, Issue 6 (June 2016) REINFORCED EARTH: PRINCIPLES AND APPLICATIONS IN ENGINEERING CONSTRUCTION Okechukwu, S.I; Okeke, O. C; Akaolisa, C. C. Z; Jack, L. And Akinola, A. O. Department of Geology, Federal University of Technology, Owerri, Imo State, Nigeria Abstract Reinforced earth is a material formed by combining earth and reinforcement material. The reinforced soil is obtained by placing extensible or inextensible materials such as metallic strips or polymeric reinforcement within the soil to obtain the requisite properties. The reinforcement enables the soil mass to resist tension in a way which the earth alone could not. The source of this resistance to tension is the internal friction of soil, because the stresses that are created within the mass are transferred from soil to the reinforcement strips by friction. Reinforcement of soil is practiced to improve the mechanical properties of the soil being reinforced by the inclusion of structural elements. The reinforcement improves the earth by increasing the bearing capacity of the soil. It also reduces the liquefaction behavior of the soil. Reinforced earth is not complex to achieve. The components of reinforced earth are soil, skin and reinforcing material. The reinforcing material may include steel, concrete, glass, planks etc. Reinforced earth has so many applications in construction work. Some of the applications include its use in stabilization of soil, construction of retaining walls, bridge abutments for highways, industrial and mining structures. Keywords: Reinforcement, Reinforced earth. 1.0 Introduction An internally stabilized system such as reinforced earth involves reinforcements installed within and extending beyond the potential failure mass. -
Scheduling SS-1
Scheduling SS-1 BMP Objectives ● Soil Stabilization ● Sediment Control ● Tracking Control ● Wind Erosion Control ● Non-Storm Water Management ● Materials and Waste Management Definition and Purpose This BMP involves developing a schedule for every project that includes sequencing of construction activities with the implementation of construction site BMPs such as temporary soil stabilization (erosion control) and temporary sediment controls measures. The purpose is to reduce the amount and duration of soil exposed to erosion by wind, rain, runoff, and vehicle tracking. Appropriate Applications Any construction project where soils will be disturbed will benefit from a BMP sequencing schedule that is generated in conjunction with the construction-sequencing schedule. BMP sequencing can help minimize land disturbance during construction. Limitations The BMP sequencing schedule must be agreed upon between MDT and the construction contractor. BMP scheduling is only effective if the scheduled is followed closely and modified as required throughout the construction project. Design Guidelines and Considerations n Plan the project and develop an implementation schedule of construction site BMPs. The schedule is designed to clearly show how the BMPs relate to soil-disturbing and re- stabilization activities. The construction schedule is typically incorporated into the SWPPP. n A BMP schedule includes details on the implementation and deployment of: - temporary soil stabilization BMPs, - temporary sediment control BMPs, 10 - tracking control BMPs, - wind erosion control BMPs, - non-storm water BMPs, and - waste management and materials pollution control BMPs. n Also included in the BMP schedule are dates for significant long-term operations or activities that may have planned non-storm water discharges such as dewatering, saw cutting, grinding, drilling, boring, crushing, blasting, painting, hydro-demolition, mortar mixing, bridge cleaning, etc. -
Final Addendum Geotechnical Report No.2 Ground Anchor Design White Point Landslide W.O
Final Addendum Geotechnical Report No.2 Ground Anchor Design White Point Landslide W.O. E1907483 Task Order Solicitation 11-087 San Pedro District Los Angeles, California April 17, 2013 Submitted to: Mr. Christopher F. Johnson, P.E., G.E. Geotechnical Engineering Group 1149 S. Broadway, Suite 120 Los Angeles, CA 90015 By: Shannon & Wilson, Inc. 664 West Broadway Glendale, California 91204 51-1-10052-031 TABLE OF CONTENTS Page 1.0 INTRODUCTION ..................................................................................................................1 2.0 SCOPE OF SERVICES .........................................................................................................1 3.0 PROJECT DOCUMENTATAION ........................................................................................2 3.1 Shannon & Wilson Reports ........................................................................................2 3.2 Final Report: ...............................................................................................................2 3.3 Addendum-1 Report: ..................................................................................................2 3.4 Plans and Specifications .............................................................................................3 3.5 Existing County of Los Angeles Storm Drains ..........................................................3 4.0 SUBSURFACE CONDITIONS .............................................................................................4 4.1 General .......................................................................................................................4