Seyda Ipek UC Irvine
Total Page:16
File Type:pdf, Size:1020Kb
Baryogenesis and Particle—Antiparticle Oscillations Seyda Ipek UC Irvine SI, John March-Russell, arXiv:1604.00009 Sneak peek • There is more matter than antimatter - baryogenesis • SM cannot explain this • There is baryon number violation • Not enough CP violation • No out-of-equilibrium processes • CP violation is enhanced in particle—antiparticle oscillations • Can these oscillations play a role in baryogenesis? Seyda Ipek (UCI) 2 There is more matter than antimatter ⌦ 0.69 ⇤ ⇠ ⌦ 0.27 DM ⇠ ⌦ 0.04 B ⇠ number of baryons: n n ¯ ⌘ = B − B nγ 10 CMB 6 10− ' ⇥ PDG Seyda Ipek (UCI) 3 How Fermilab produces its baryons Seyda Ipek (UCI) 4 How the Universe would do Need to produce 1 extra quark for every 10 billion antiquarks! Sakharov Conditions Sakharov, JETP Lett. 5, 24 (1967) Three conditions must be satisfied: 1) Baryon number (B) must be violated ✔ can’t have a baryon asymmetry w/o violating baryon number! 2) C and CP must be violated a way to differentiate matter from antimatter ✘ 3) B and CP violating processes must happen out of equilibrium equilibrium destroys the produced baryon number ✘ Seyda Ipek (UCI) 5 We need New Physics Couple to the SM Extra CP violation Some out-of-equilibrium process Seyda Ipek (UCI) 6 Old New Physics First-order phase transition Extra scalar fields CP violation in the scalar sector 2HDM, MSSM, NMSSM, … Out-of-equilibrium decays Leptogenesis CP violation from interference Heavy right-handed neutrinos,…of tree-level and loop processes Asymmetry Asymmetry in the in the dark sector visible sector asymmetric dark matter + Affleck-Dine Seyda Ipek (UCI) 7 We need New Physics Couple to the SM Let’s re-visit SM CP violation Extra CP violation Some out-of-equilibrium process Seyda Ipek (UCI) 8 CP Violation in Neutral Meson Mixing We see SM CP violation through neutral meson mixing K K Bd Bd Bs Bs D D − − − − • A few Nobel prizes • CKM matrix Are particle—antiparticle oscillations special for CP • Top quark violation? Seyda Ipek (UCI) 9 Particle—Antiparticle Oscillations Take a Dirac fermion with an approximately broken U(1) charge m = M + ( c + c) −Lmass 2 Dirac mass Majorana mass with interactions = g XY + g c XY +h.c. −Lint 1 2 We will want the final state XY : pseudo-Dirac fermion to carry either baryon or lepton number Seyda Ipek (UCI) 10 Particle—Antiparticle Oscillations Mm M = i mM Hamiltonian: H = M Γ ✓ ◆ − 2 12reiφΓ Γ Γ iφ ' 2 re− Γ 1 ✓ ◆ c g2 eigenvalues: H,L = p q r = | | 1 g ⌧ | i | i ± | i | 1| mass states ≠ interaction states OSCILLATIONS! Seyda Ipek (UCI) 11 Particle—Antiparticle Oscillations 1.0 0.8 important parameter: 1/Γ 0.6 ∆m x Probability 0.4 ⌘ Γ 1/∆m 0.2 ∆m = M M 2m H − L ' 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 time Goldilocks principle for oscillations x 1 x 1 x 1 ⇠ ⌧ Too fast Just right To o s l o w Seyda Ipek (UCI) 12 CP Violation in Oscillations c c 1 Γ( / f) Γ( / f¯) ✏ = dt ! − ! Γ( / c f)+Γ( / c f¯) Z0 ! ! g2 10-1 For r = | | 1 g ⌧ r =0.1 | 1| -2 sin φΓ =0.5 10 2xrsin φ ✏ Γ -3 2 ϵ 10 ' 1+x 10-4 exact approximation CP violation is 10-5 10-4 10-2 1 100 104 maximized for x ~ 1 x = 2m / Γ Seyda Ipek (UCI) 13 CP Violation ✔ 2xrsin φ ✏ Γ ' 1+x2 Baryon Number Violation ✔ e.g. RPV SUSY Say the final state f has baryon number +1 gudd˜ Baryon asymmetry is produced due to oscillations and decays: n n ¯ = ✏ n B − B Seyda Ipek (UCI) 14 How to decay out of thermal equilibrium? Oscillations in the early Universe? Seyda Ipek (UCI) 15 Oscillations in the early Universe are complicated M 300 GeV 1 ⇠ 10-2 Rates (eV) Hubble rate 10-4 Big Bang? 10-6 1 10 100 z = M/T Time Seyda Ipek (UCI) 16 Oscillations in the early Universe are complicated M 300 GeV 1 ⇠ 10-2 Rates (eV) Hubble rate 10-4 Decay rate Big Bang? 10-6 1 10 100 z = M/T Time Out-of-equilibrium decay: Γ H(T M) . ⇠ Seyda Ipek (UCI) 17 Oscillations in the early Universe are complicated M 300 GeV 1 ⇠ Oscillations start when 10-2 !osc >H Rates (eV) Hubble rate 10-4 ωosc = 2m Decay rate Big Bang? 10-6 1 10 100 z = M/T Time Out-of-equilibrium decay: Γ H(T M) . ⇠ Seyda Ipek (UCI) 18 Oscillations in the early Universe are complicated Particles/antiparticles are 1 ¯ a ¯ in a hot/dense plasma scat = 2 Γ f Γaf with interactions −L ⇤ Seyda Ipek (UCI) 19 Oscillations in the early Universe are complicated What if interactions can tell the difference between a particle and antiparticle? Quantum Zeno effect Oscillations delayed till !osc > Γann, Γscat Seyda Ipek (UCI) 20 Oscillations in the early Universe are complicated M 300 GeV 1 Annihilation rate ⇠ Elastic scattering rate 10-2 Rates (eV) Hubble rate 10-4 ωosc = 2m Decay rate Big Bang? 10-6 1 10 100 z = M/T Time oscillations are further delayed Seyda Ipek (UCI) 21 Oscillations in the early Universe are complicated Described by the time evolution of the density matrix Vanishes if scatterings Oscillations are flavor blind dY Γ zH = i HY YH† ± [O , [O , Y]] dz − − − 2 ± ± 1 ¯ 2 s σv Y,O YO Yeq − h i± 2{ ± ±} − ✓ ◆ H : Hamiltonian Annihilations Y: Density matrix O = diag(1, 1) z = M/T not redshift! ± ± Seyda Ipek (UCI) 22 Oscillations + Decays 6 M = 300 GeV, Γ = 10− eV ∆(z) Y Y c : particle asymmetry ⌘ − 0.000014 m = 5 x 10-6 eV, x = 10 Symmetric initial 0.000012 m = 2 x 10-6 eV, x = 4 conditions: ∆(0) = 0 0.00001 m = 0.25 x 10-6 eV, x = 0.5 8. × 10-6 r =0.1 Oscillations are delayed Δ(z) 6. × 10-6 sin φΓ =0.5 for smaller m 4. × 10-6 2. × 10-6 0 Smaller asymmetry 0 10 20 30 40 50 z =z M/T Γ m ∆(z)=✏ Y (1) exp sin2 eq −2H(z) 2H(z) ✓ ◆ ✓ ◆ Seyda Ipek (UCI) 23 Oscillations + Decays + Annihilations/Scatterings Two types of interactions flavor-blind flavor-sensitive c : ! L ! L L !L e.g. scalar e.g. vector 1 1 = ¯ ff¯ = ¯ µ f¯γ f −L ⇤2 −L ⇤2 µ f : (massless) fermion ⇤: interaction scale Seyda Ipek (UCI) 24 Elastic scatterings/Annihilations delay oscillations Ignoring decays, particle asymmetry is given by 2 d ∆(y) d∆(y) 2 2 +2⇠! + ! ∆(y)=0 y = z dy2 0 dy 0 z = M/T S V m Γann/Γscat ∆(z) Y Y c !0 , ⇠ ⌘ − ⌘ yH ⌘ 2m ⇠ 1 overdamped, no oscillations ⇠ < 1 underdamped, system oscillates Seyda Ipek (UCI) 25 Elastic scatterings/Annihilations delay oscillations flavor-sensitive interactions flavor-blind interactions !osc = Γscat(zosc) !osc = Γann(zosc) when 100 oscillations 50 start zzoscosc 10 σ0 =1fb σ0 = 1 ab 1 10-6 10-4 10-2 1 z = M/T mass differencem (eV) (eV) Seyda Ipek (UCI) 26 Oscillations + Decays + Annihilations/Scatterings ⌃(z) Y + Y c : total number of particles ⌘ M = 300 GeV 10-3 6 m 2 10− eV − ⇥ 6 No annihilation Γ = 10− eV 10-6 <σv>=10-2 ab Σ(z) sin φΓ =0.5 <σv>=1 ab r =0.1 0.3 -9 − 10 ⌘ 10-12 1 10 100 flavor-sensitive z = zM/T Seyda Ipek (UCI) 27 Oscillations + Decays + Annihilations/Scatterings Γ m ∆(z) ✏ Y (z )exp sin2 ' eq osc −2H(z) 2H(z) ✓ ◆ ✓ ◆ M = 300 GeV -3 No annihilation 10 6 m 2 10− eV <σv>=10-2 ab − ⇥ 6 <σv>=1 ab Γ = 10− eV 10-6 sin φΓ =0.5 Δ(z) r =0.1 0.3 − -9 10 Oscillations are delayed 10-12 1 10 100 Smaller asymmetry z = M/Tz Seyda Ipek (UCI) 28 How about baryon asymmetry? 1 Annihilation rate Annihilations freeze-out 10-2 z 20 f ' Hubble rate -4 Rates 10 (eV) ωosc 10-6 Decay rate 10-8 1 5 10 50 100 z = M/T Seyda Ipek (UCI) 29 How about baryon asymmetry? 1 Annihilation rate Elastic scattering rate Annihilations freeze-out 10-2 z 20 f ' Hubble rate -4 Rates 10 Oscillations start (eV) ωosc zosc 60 10-6 ' Decay rate 10-8 1 5 10 50 100 z = M/T Seyda Ipek (UCI) 30 How about baryon asymmetry? 1 Annihilation rate Elastic scattering rate Annihilations freeze-out 10-2 z 20 f ' Hubble rate -4 Rates 10 Oscillations start (eV) ωosc zosc 60 10-6 ' Decay rate Annihilations are 10-8 Boltzmann suppressed Γ Γ 1 5 10 50 100 ann ⌧ z = M/T Oscillate a few times Produce the baryon asymmetry 10 ⌘ ✏ ⌃(z ) 10− ' osc ⇠ Seyda Ipek (UCI) 31 Let there be baryons! d∆B(z) ✏ Γ For z>zosc baryon asymmetry is given by: ⌃(z) dz ' zH Flavor-sensitive 10-3 ⌃(z) M = 300 GeV 2 6 σ0 = 10− ab m =2 10− eV 10-6 ⇥ 6 BARYONS!!! Γ = 10− eV σ = 1 ab φΓ = ⇡/6 0 Abundancies -9 ∆(z) 10 ⌘ ∆B(z) 10-12 1 10 100 z = M/Tz ∆ = Y Y : baryon asymmetry B B − B Seyda Ipek (UCI) 32 My history of the Universe hot 1014 K 1013 K 1010 K 3,000 K Temperature p n n p p n n p n Inflation BigBang p n p n p n Equal number Antiparticles of particles and Particles decay turn into antiparticles into protons Atoms, particles stars, Time and neutrons galaxies… are formed 1 ns 10 ns 1 s 300,000 13.7 billion years years Seyda Ipek (UCI) 33 What kind of model? Oscillations Pseudo-Dirac fermions Approximately broken U(1) symmetry DM theories with a global U(1) ? global symmetries are broken by gravity Seyda Ipek (UCI) 34 Hall, Randall, Nuc.Phys.B-352.2 1991 Kribs, Poppitz, Weiner, arXiv: 0712.2039 Frugiuele, Gregoire, arXiv:1107.4634 SI, McKeen, Nelson, arXiv: 1407.8193 SI, John March-Russell, arXiv:1604.00009 Pilar Coloma, SI, arXiv:1606.06372 My favorite model for everything! U(1)R -symmetric SUSY Has Dirac gauginos Dirac gauginos are awesome - less tuning for heavier stops Solves SUSY CP and flavor problems, … Seyda Ipek (UCI) 35 U(1)R symmetric SUSY Sfermions have +1 R-charge Fields SU(3)c SU(2)L U(1)Y U(1)R Q =˜q + ✓ q 3 2 1/6 1 U¯ = u¯˜ + ✓ u¯ 3¯ 1 -2/3 1 D¯ = d¯˜+ ✓ d¯ 3¯ 1 1/3 1 ¯ ΦD¯ = φD¯ + ✓ D¯ 3 1 1/3 1 ΦD = φD + ✓ D 3 1 -1/3 1 W ˜ B˜ 1 1 0 1 B,↵ ⊃ ↵ ΦS = φs + ✓ S 1 1 0 0 Bino has +1 R-charge (pseudo)-Dirac Singlino (S) has -1 R-charge gauginos! Seyda Ipek (UCI) 36 U(1)R symmetric SUSY Fields SU(3)c SU(2)L U(1)Y U(1)R Q =˜q + ✓ q 3 2 1/6 1 U¯ = u¯˜ + ✓ u¯ 3¯ 1 -2/3 1 D¯ = d¯˜+ ✓ d¯ 3¯ 1 1/3 1 ¯ ΦD¯ = φD¯ + ✓ D¯ 3 1 1/3 1 ΦD = φD + ✓ D 3 1 -1/3 1 W ˜ B˜ 1 1 0 1 B,↵ ⊃ ↵ ΦS = φs + ✓ S 1 1 0 0 New superfields non-gauge couplings for Dirac partners Seyda Ipek (UCI) 37 Pseudo-Dirac gauginos Take the bino and the singlino: Fox, Nelson, Weiner, hep-ph/0206096 B˜ (1, 1, 0) +1 ˜ ˜ ⌘ mass MD BS + MD⇤ B†S† S (1, 1, 0) 1 −L ⊃ ⌘ − U(1)R must be broken …because (anomaly mediation) β(g) m = F B˜ g φ (Small) Majorana mass some conformal for the bino parameter 3 m3/2 2 2 .