Space Shuttle Transition and Retirement

Total Page:16

File Type:pdf, Size:1020Kb

Space Shuttle Transition and Retirement National Aeronautics and Space Administration Space Shuttle Transition and Retirement Three NASA space shuttles shuttle was being flown on are undergoing an extensive the back of a modified 747 transition and retirement (T&R) jet called the Shuttle Carrier phase at the agency’s Kennedy Aircraft (SCA). Space Center in Florida. Enterprise is targeted to be Technicians are removing flown to New York shortly after some hardware for possible Discovery is delivered to the future use and technical and Smithsonian. engineering studies. But the For more on the museum’s T&R work primarily is focused display plans, go to http:// on making the shuttles safe www.intrepidmuseum. facts and ready for public display. Courtesy of Kennedy Space Center Visitor Complex org/. An artist’s conception shows space shuttle Atlantis as the centerpiece Artifacts of a new exhibit for NASA’s Space Shuttle Program at the Kennedy Public Display Space Center Visitor Complex. Various shuttle simulators Sites and how the shuttle was the Endeavour to be displayed will go to the Adler go-to vehicle for transporting in the vertical configuration Planetarium in Chicago, the Atlantis International Space Station similar to how it looked on Evergreen Aviation and Space laboratories, modules and launch day. Endeavour is Museum of McMinnville, Ore., Shuttle Atlantis, which flew solar panels to low Earth orbit. targeted to be flown to and Texas A&M’s Aerospace its final mission, STS-135, in For more on the complex’s California in the second half Engineering Department. July 2011, is the only shuttle NASA display plans, go to www. of 2012. A full fuselage trainer will NASA will keep and it will kennedyspacecenter.com. For more on the center’s go to the Museum of Flight in remain on Florida’s Space display plans, go to www. Seattle. A nose cap assembly Coast. Discovery californiasciencecenter. and crew compartment Atlantis will join NASA’s org. trainer will go to the National rockets, capsules and artifacts Shuttle Discovery, which Museum of the U.S. Air Force flew its final mission, from the Mercury, Gemini and Enterprise at Wright-Patterson Air Force Apollo eras at the Kennedy STS-133, in February/ Base in Dayton, Ohio. Space Center Visitor Complex March 2011, will go to the Shuttle Enterprise, which Orbital maneuvering system in early 2013. Smithsonian’s National Air was the prototype vehicle and engines will go to the U.S. Plans call for the 87-ton and Space Museum Steven F. used in NASA’s approach and Space and Rocket Center spacecraft is expected to look Udvar-Hazy Center in Chantilly, landing tests in 1977, will of Huntsville, Ala., National like it’s soaring through space Va., for exhibition. Plans call move from the Smithsonian’s Air and Space Museum in when it is placed inside a new for Discovery to be displayed Udvar-Hazy Center to the Washington, and Evergreen as if sitting on the runway just 65,000-square-foot facility Intrepid Sea, Air and Space Aviation and Space Museum. after landing allowing visitors that’s being designed in the Museum in New York. At the to walk around the perimeter heart of the complex’s Space Intrepid museum, plans call Artifacts available Shuttle Plaza. of the spacecraft. for visitors to be able to see NASA is offering space Anchored at an angle, Discovery is targeted to be Enterprise as if it were about shuttle-related hardware guests will get an up-close flown to Virginia in April 2012. to touch down on the runway and equipment artifacts view of Atlantis’ belly and the For more on the center’s for eligible education thousands of black heat shield display plans, go to www. during the landing tests that institutions, museums and tiles that allowed the shuttle nasm.si.edu/udvarhazy. paved the way for future other organizations. For space shuttle flights. It also is more information, visit: to safely re-enter Earth’s Endeavour http://artifacts.nasa.gov/. atmosphere. expected to have a tailcone For more information The display also is set Shuttle Endeavour, which installed over the aft part of about how to request to reveal the way shuttle flew its final flight, STS-134, the shuttle, which was used other NASA space crews performed science in May/June 2011, will go to to protect the space shuttle artifacts, visit: https://gsaxcess.gov/ and research experiments in the California Science Center main engines and provide an NASAWel.htm. the weightlessness of space in Los Angeles. Plans call for aerodynamic shape when the Space Shuttle Components Space Shuttle Main Engines Orbital Maneuvering System (SSMEs) (OMS) Pods and Forward Reaction Control System Although the three space-flown shuttles will go to museums, they will not take their space shuttle main (FRCS) engines (SSMEs) with them. Instead, the shuttles The Orbital Maneuvering System (OMS) pods will have mock-up engine nozzles that will look and forward reaction control system (FRCS) will like the real thing. NASA is going to keep the real be removed from the shuttles at Kennedy and engines for use with the new Space Launch System shipped to White Sands Test Facility in Las Cruces, heavy-lift rocket. N.M., for cleaning and deservicing. The OMS pod and FRCS used hypergolic propellants, so any part or seal that could release harmful chemicals in the future will be cleaned or removed. The 6,000-pound thrust engines in the OMS pods will be removed and replaced with replica nozzles after the shuttles arrive at their display sites White Sands Test Facility before being returned to The FRCSs will spend about four months at Kennedy and being reinstalled into the shuttles. Space Shuttle Transportation Each space shuttle will weigh about 175,000 Discovery, Endeavour and Enterprise off of the SCA 200 holes in the off-load ramp to anchor the wind pounds -- more than 87 tons -- when they are at each display site, the function of the mate-demate restraint system elements firmly. With everything ready for public viewing. device is accomplished using mobile dual heavy-lift in place, they can perform the work in winds up to When the shuttles are ready to leave Kennedy, cranes, a sling, and a specially designed wind about 20 mph. they’ll be placed onto the Shuttle Carrier Aircraft restraint system. It will take about 45 workers to Since Atlantis is staying at Kennedy, it will be (SCA) using the mate-demate device at the Shuttle perform this delicate task. transported to the center’s visitor complex via the Landing Facility. The mate-demate device provides The sling is almost identical to the one used Orbiter Transport System, which is a type of flat-bed the lifting cabability via a sling that connects to the as part of the mate-demate device and connects truck. It was used to move the shuttles from their shuttle, as well as the stabilization required to ensure to the wind restraint system, which includes four hangars, the Orbiter Processing Facility, to the proper alignment with the SCA attach points. masts and taglines to stabilize the orbiter during Vehicle Assembly Building prior to being attached to To perform the complex maneuver of safely lifting lifting operations. Workers will have to drill about the external fuel tank during launch preparations. National Aeronautics and Space Administration John F. Kennedy Space Center Kennedy Space Center, FL 32899 www.nasa.gov NASA Facts FS-2011-8-174-KSC .
Recommended publications
  • The International Space Station and the Space Shuttle
    Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17.
    [Show full text]
  • Space Shuttle Discovery Launched on the First Post-Columbia Mission on July 26, 2005, 905 Days After the Accident
    AFTERWORD Space shuttle Discovery launched on the first post-Columbia mission on July 26, 2005, 905 days after the accident. Coincidentally, the launch took place at 10:39 A.M. EDT, the same time as Columbia’s launch on its final flight. STS-114 was the culmination of a $1.4 billion effort to improve the shuttle, most notably the External Tank. The bipod foam was replaced with an electrical heater to prevent ice from forming. Marshall Space- flight Center External Tank manager Sandy Coleman promised that no foam larger than a marshmallow would fall off of the improved tank. In the 147-page press kit’s description of all of the improvements to the shuttle, KSC’s acceptance of the industry standard definition for FOD (Foreign Object Debris) is presented as a positive. In a spin doctor- ing attempt it’s described how new FOD procedures improve safety, and ignores that FOD rules existed until two years before the Columbia acci- dent when the rules were reduced in a conscious move to make more bonus money for the contractor. Over 100 tracking cameras viewed Discovery’s launch. The E208 camera in Cocoa Beach, the one that had been “soft focused” on STS- 107, was replaced with a state-of-the-art setup. Cameras were also mounted on Discovery’s External Tank and Solid Rocket Boosters, and The bipod fitting on STS-114, on the right, shows the most significant external change— there is no longer any foam on the bipod fitting. 428 AFTERWORD 429 two aircraft with high-definition cameras offered the unique perspective of a shuttle flying toward the viewer.
    [Show full text]
  • Molds Aboard the International Space Station
    Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR Stephen J. Vesper a*, Wing Wongb C. Mike Kuoc, Duane L. Piersond a National Exposure Research Laboratory (NERL), United States (US) Environmental Protection Agency, Cincinnati, OH; b Enterprise Advisory Services Inc., Houston, TX c WYLE Laboratories Inc., Houston, TX d Johnson Space Center, National Aeronautics and Space Administration, Houston, TX *Corresponding Author: Stephen Vesper, US EPA, 26 West M.L. King Ave., M.L. 314, Cincinnati, Ohio 45268. Phone: 513-569-7367; email: [email protected] Abstract Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA- based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Potential opportunistic pathogens Aspergillus flavus and A. niger and potential moderate toxin producers Penicillium chrysogenum and P. brevicompactum were noteworthy. No cells of the potential opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected. Keywords: International Space Station, mold specific quantitative PCR, Aspergillus 1 1. Introduction Since human space exploration began, microbes have traveled with us and are ubiquitous throughout the spacecraft. Previous studies have demonstrated that bacteria, including potential pathogens, were commonly isolated in the air, water, and on surfaces aboard the Mir Space Station [12] and the International Space Station (ISS) [1,6]. Biofilms were found in the water distribution lines on the Space Shuttle Discovery [5].
    [Show full text]
  • Orbiter Processing Facility
    National Aeronautics and Space Administration Space Shuttle: Orbiter Processing From Landing To Launch he work of preparing a space shuttle for the same facilities. Inside is a description of an flight takes place primarily at the Launch orbiter processing flow; in this case, Discovery. Complex 39 Area. TThe process actually begins at the end of each acts Shuttle Landing Facility flight, with a landing at the center or, after landing At the end of its mission, the Space Shuttle f at an alternate site, the return of the orbiter atop a Discovery lands at the Shuttle Landing Facility on shuttle carrier aircraft. Kennedy’s Shuttle Landing one of two runway headings – Runway 15 extends Facility is the primary landing site. from the northwest to the southeast, and Runway There are now three orbiters in the shuttle 33 extends from the southeast to the northwest fleet: Discovery, Atlantis and Endeavour. Chal- – based on wind currents. lenger was destroyed in an accident in January After touchdown and wheelstop, the orbiter 1986. Columbia was lost during approach to land- convoy is deployed to the runway. The convoy ing in February 2003. consists of about 25 specially designed vehicles or Each orbiter is processed independently using units and a team of about 150 trained personnel, NASA some of whom assist the crew in disembarking from the orbiter. the orbiter and a “white room” is mated to the orbiter hatch. The The others quickly begin the processes necessary to “safe” the hatch is opened and a physician performs a brief preliminary orbiter and prepare it for towing to the Orbiter Processing Fa- medical examination of the crew members before they leave the cility.
    [Show full text]
  • STS-132 Mission Summary
    NASA Mission Summary National Aeronautics and Space Administration Washington, D.C. 20546 (202) 358-1100 STS-132 MISSION SUMMARY May 2010 SPACE SHUTTLE ATLANTIS Atlantis’ 12-day mission will deliver the Russian-built Mini Research Module-1 that will provide additional storage space and a new docking port for Russian Soyuz and Progress spacecraft. MRM-1, also known as Rassvet, which means dawn in Russian, will be permanently attached to the bottom port of the station’s Zarya module. MRM-1 will carry important hardware on its exterior including a radiator, airlock and a European robotic arm. Atlantis also will deliver addi- tional station hardware stored inside a cargo carrier. Three spacewalks are planned to stage spare components outside the station, including six spare batteries, a Ku-band antenna and spare parts for the Canadian Dextre robotic arm. Shuttle mission STS-132 is the final sched- uled flight for Atlantis . CREW Ken Ham Tony Antonelli (an-tuh-NEL-lee) Commander (Captain, U.S. Navy) Pilot (Commander, U.S. Navy) ● Veteran of one spaceflight, STS-124 pilot ● Veteran of one spaceflight, STS-119 pilot ● Age: 45, Born: Plainfield, N.J. ● Born: Detroit ● Married with two children ● Married with two children ● Logged 5,000+ hours in 40 different aircraft ● Logged 3,200+ hours in 41 different aircraft ● Call sign: Hock ● Interests include snow boarding and NASCAR Garrett Reisman (REESE-man) Michael Good Mission Specialist-1 Mission Specialist-2 (Col., U.S. Air Force, Ret.) ● Veteran flight engineer on Expedition 16 & 17 ● Veteran of one spaceflight, STS-125 ● Launched on STS-123; returned STS-124 ● Age: 47, Hometown: Broadview Heights, Ohio ● Age: 42, Hometown: Parsippany, N.J.
    [Show full text]
  • Aerospace Engineering Space Shuttle Discovery
    Virtual Learning Aerospace Engineering Space Shuttle Discovery April 14, 2020 Aerospace Engineering Lesson: April 14, 2020 Objective/Learning Target: Students will learn about the history of one of the more famous/important space shuttles in U.S. history. Bell Work: What do you think might have been one of the jobs of the space shuttle Discovery? 3 Space Shuttle Discovery Let’s Get Started: Watch Videos: ● Adam Savage Examines the Space Shuttle Discovery! ● Inside Space Shuttle Discovery 360 4 Before You Begin Behind the Space Shuttle Mission Numbering System Example Mission Number - STS-41B The “STS” stands for Space Transportation System. The first number,“4”, represents the fiscal year in which the Shuttle launched; in this case, 1984. The second number, “1,” designates from which location the Shuttle would launch. The number “1” stands for Kennedy Space Center. The letter represents the Shuttle’s launch sequence for that fiscal year – “B” denoting that it was the second planned launch for Fiscal Year 1984. (Note: the United States fiscal year runs from October 1 to September 30.) 5 Space Shuttle Discovery The name "Discovery" came from some historic, Earth exploring ships of the past. One of these was the ship used in the early 1600s by Henry Hudson to explore Hudson Bay and search for a northwest passage from the Atlantic to the Pacific. Another of these ships was used by explorer James Cook in the 1770s during his voyages in the South Pacific. This ship was used in the discovery of the Hawaiian Islands. Two British Royal Geographical Society ships have also carried the name "Discovery" as they sailed on expeditions to the North Pole 6 and the Antarctic.
    [Show full text]
  • See How the Flow
    Integrated Defense Systems BOEING FRONTIERS s ewith- o in that re- g gion are a man- ageable 2,000 to 3,000 owdegrees, while just a few inches fl away from the orbiter’s surface the full e signed a force of heating results in a total tempera- h ture of up to 10,000 degrees. t special 6-inch-by- w As long as the orbiter’s surface is ho 6-inch (15.2-centemeter-by-15.2- e smooth, the boundary layer keeps the tiles’ Se centimeter) test tile, to be installed on the lower side of the orbiter port-side wing temperature within the limits of their de- Test tile to measure near the main landing gear door. The tile sign. But any interruption in the air fl ow will test airfl ow on three upcoming shut- causes a boundary layer “trip,” where tur- shuttle’s re-entry airfl ow tle fl ights, beginning with the STS-119 bulence behind the trip point brings down Discovery fl ight this December. The goal to the surface of the shuttle the extreme BY ED MEMI is to understand boundary layer transi- heat that was outside the laminar boundary layer. This could cause the tiles to overheat hen the Space Shuttle re-enters tions, and the data from this experiment will help NASA in its efforts to develop and damage the underlying surface. Earth’s atmosphere at 25 times The phenomenon is similar to a smooth the speed of sound, its Thermal new spacecraft such as the Orion crew ex- W ploration vehicle.
    [Show full text]
  • Spaceport News John F
    June 10, 2011 Vol. 51, No. 11 Spaceport News John F. Kennedy Space Center - America’s gateway to the universe NASA/Sandra Joseph - Kevin O’Connell Endeavour ends STS-134, final mission Xenon lights help lead space shuttle Endeavour home on June 1. Endeavour landed for the final time on the Shuttle Landing Facility’s Runway 15, marking the 25th night landing of NASA’s Space Shuttle Pro- gram. Main gear touchdown was at 2:34:51 a.m. EDT, followed by nose gear touchdown at 2:35:04 a.m., and wheelstop at 2:35:36 a.m. STS-134 was the 25th and final flight for Endeavour, which has spent 299 days in space, orbited Earth 4,671 times and traveled 122,883,151 miles. Clickhere to take a look at Endeavour’s Click here to find out everything you Click here to get a complete Click here to view STS-134 images, Click here to watch the YouTube video Fact Sheet, including every mission’s need to know about the legacy of STS-134 mission overview and mission watch the mission’s video and listen to of Endeavour’s final landing with com- facts and figures. Endeavour. timeline. the mission’s audio. mentary. Optimus Prime award STS-135 Payload Final Shuttle Rollout Be prepared Inside this issue ... Page 2 Page 3 Page 6 Page 7 Page 2 SPACEPORT NEWS June 10, 2011 NASA transforms way students learn about technology By Rebecca Regan Spaceport News ptimus Prime once said, “There’s a thin line between Obeing a hero and being a memory.” Four fifth-graders from Union Park Elementary School in Orlando, Fla., recently became more than just a memory .
    [Show full text]
  • NASA Symbols and Flags in the US Manned Space Program
    SEPTEMBER-DECEMBER 2007 #230 THE FLAG BULLETIN THE INTERNATIONAL JOURNAL OF VEXILLOLOGY www.flagresearchcenter.com 225 [email protected] THE FLAG BULLETIN THE INTERNATIONAL JOURNAL OF VEXILLOLOGY September-December 2007 No. 230 Volume XLVI, Nos. 5-6 FLAGS IN SPACE: NASA SYMBOLS AND FLAGS IN THE U.S. MANNED SPACE PROGRAM Anne M. Platoff 143-221 COVER PICTURES 222 INDEX 223-224 The Flag Bulletin is officially recognized by the International Federation of Vexillological Associations for the publication of scholarly articles relating to vexillology Art layout for this issue by Terri Malgieri Funding for addition of color pages and binding of this combined issue was provided by the University of California, Santa Barbara Library and by the University of California Research Grants for Librarians Program. The Flag Bulletin at the time of publication was behind schedule and therefore the references in the article to dates after December 2007 reflect events that occurred after that date but before the publication of this issue in 2010. © Copyright 2007 by the Flag Research Center; all rights reserved. Postmaster: Send address changes to THE FLAG BULLETIN, 3 Edgehill Rd., Winchester, Mass. 01890 U.S.A. THE FLAG BULLETIN (ISSN 0015-3370) is published bimonthly; the annual subscription rate is $68.00. Periodicals postage paid at Winchester. www.flagresearchcenter.com www.flagresearchcenter.com 141 [email protected] ANNE M. PLATOFF (Annie) is a librarian at the University of Cali- fornia, Santa Barbara Library. From 1989-1996 she was a contrac- tor employee at NASA’s Johnson Space Center. During this time she worked as an Information Specialist for the New Initiatives Of- fice and the Exploration Programs Office, and later as a Policy Ana- lyst for the Public Affairs Office.
    [Show full text]
  • Astronaut Eric
    CAP’s astronaut pilots shuttle Discovery on its last Photos courtesy of NASA flight into space By Maj. Steven Solomon Civil Air Patrol member and U.S. Air C Force Col. Eric Boe took NASA’s Space Shuttle Discovery into history, piloting it on its 39th and final mission. After numerous delays attributable to technical problems and bad weather, Discovery was launched Feb. 24 to deliver the Eric Boe is strapped into his seat on Space Shuttle Permanent Multipurpose Module, Discovery to practice escaping the shuttle, in preparation packed with supplies and critical for an unlikely emergency at the pad on launch day. spare parts, and Robonaut 2, the dexterous humanoid astronaut helper, to the International Space Station. “I look at the space shuttle and there’s nothing as cool in science fiction. I really Space Shuttle appreciate that we can take something like this and put Discovery carried it in orbit,” Boe said. Robonaut 2 to the Another NASA space shuttle, the Endeavour, which International Space Boe piloted in 2008 on his first flight into space, is Station. It is the first scheduled to fly in April, and the Atlantis is scheduled humanoid robot in for late June. But, after that, NASA’s human space space. program is “up in the air.” The program escaped a death blow with a congressional compromise, but budget cuts may still derail it. “I’d love to fly in space again,” Boe said. “I’d love to get the opportunity to fly one of the new vehicles, but I consider myself very fortunate, especially now that this looks like Discovery’s last flight.” For the love of flight Boe has never met a flying machine he didn’t like.
    [Show full text]
  • The Columbia Tragedy, the Discovery Mission, and the Future of the Shuttle
    Order Code RS21408 Updated October 13, 2005 CRS Report for Congress Received through the CRS Web NASA’s Space Shuttle Program: The Columbia Tragedy, the Discovery Mission, and the Future of the Shuttle Marcia S. Smith Resources, Science, and Industry Division Summary On August 9, 2005, the space shuttle Discovery successfully completed the first of two “Return to Flight” (RTF) missions — STS-114. It was the first shuttle launch since the February 1, 2003, Columbia tragedy. NASA announced on July 27, 2005, the day after STS-114’s launch, that a second RTF mission has been indefinitely postponed because of a problem that occurred during Discovery’s launch that is similar to what led to the loss of Columbia. Two shuttle-related facilities in Mississippi and Louisiana were damaged by Hurricane Katrina, which may further delay the next shuttle launch. It currently is expected some time in 2006. This report discusses the Columbia tragedy, the Discovery mission, and issues for Congress regarding the future of the shuttle. For more information, see CRS Issue Brief IB93062, Space Launce Vehicles: Government Activities, Commercial Competition, and Satellite Exports, by Marcia Smith. This report is updated regularly. The Loss of the Space Shuttle Columbia The space shuttle Columbia was launched on its STS-107 mission on January 16, 2003. After completing a 16-day scientific research mission, Columbia started its descent to Earth on the morning of February 1, 2003. As it descended from orbit, approximately 16 minutes before its scheduled landing at Kennedy Space Center, FL, Columbia broke apart over northeastern Texas. All seven astronauts aboard were killed: Commander Rick Husband; Pilot William McCool; Mission Specialists Michael P.
    [Show full text]
  • Some of the Women of Goddard Involved in the Space Shuttle
    Space Shuttle Discovery, March 7, 2011, as photographed from the International Space Station. Space Shuttle: A Key to NASA’s Space Transportation System Following the spectacular successes of the Apollo program, NASA designed the Space Transportation System (STS), including the crew-tended Space Shuttle orbiter, to provide a reusable vehicle for launching heavy payloads, maintaining low Earth orbit, and returning to ground with a runway landing. The Shuttle made its first orbital flight in April 1981 and its last flight in July 2011. The manifests for Space Shuttle Endeavour, making its final landing at Kennedy Space Center, the 135 flights were very diverse, from deploying planetary spacecraft June 1, 2011. and servicing the Hubble Space Telescope to construction of the International Space Station in low Earth orbit. The Shuttle program is centered at NASA’s Johnson Space Center and Kennedy Space Center, but it has important NASA Goddard Space Flight Center contributions. Astronaut Mary Cleave conducting an experiment on Space Shuttle Atlantis in May 1989. A rare event with two Space Shuttle Orbiters (Atlantis and Endeavour) simultaneously being prepared for separate launches at Kennedy Space Center, September 20, 2008. Photo by Jack Pfaller Space Shuttle Atlantis, July 8, 2011, lifting off with its four-member crew on the Shuttle program’s final mission. International Space Station Freedom, a laboratory dedicated to humans living and working in Low Earth Orbit, March 7, 2011, as The edge of the Earth’s atmosphere on photographed from
    [Show full text]