Five New Cases of Syndromic Intellectual Disability Due to KAT6A Mutations: Widening the Molecular and Clinical Spectrum

Total Page:16

File Type:pdf, Size:1020Kb

Five New Cases of Syndromic Intellectual Disability Due to KAT6A Mutations: Widening the Molecular and Clinical Spectrum Urreizti et al. Orphanet Journal of Rare Diseases (2020) 15:44 https://doi.org/10.1186/s13023-020-1317-9 RESEARCH Open Access Five new cases of syndromic intellectual disability due to KAT6A mutations: widening the molecular and clinical spectrum Roser Urreizti1,2,3*† , Estrella Lopez-Martin2,4†, Antonio Martinez-Monseny5, Montse Pujadas6, Laura Castilla-Vallmanya1,2, Luis Alberto Pérez-Jurado2,6,7, Mercedes Serrano2,8, Daniel Natera-de Benito8, Beatriz Martínez-Delgado2,4, Manuel Posada-de-la-Paz2,4, Javier Alonso2,4, Purificación Marin-Reina9, Mar O’Callaghan8, Daniel Grinberg1,2†, Eva Bermejo-Sánchez4† and Susanna Balcells1,2† Abstract Background: Pathogenic variants of the lysine acetyltransferase 6A or KAT6A gene are associated with a newly identified neurodevelopmental disorder characterized mainly by intellectual disability of variable severity and speech delay, hypotonia, and heart and eye malformations. Although loss of function (LoF) mutations were initially reported as causing this disorder, missense mutations, to date always involving serine residues, have recently been associated with a form of the disorder without cardiac involvement. Results: In this study we present five new patients, four with truncating mutations and one with a missense change and the only one not presenting with cardiac anomalies. The missense change [p.(Gly359Ser)], also predicted to affect splicing by in silico tools, was functionally tested in the patient’s lymphocyte RNA revealing a splicing effect for this allele that would lead to a frameshift and premature truncation. Conclusions: An extensive revision of the clinical features of these five patients revealed high concordance with the 80 cases previously reported, including developmental delay with speech delay, feeding difficulties, hypotonia, a high bulbous nose, and recurrent infections. Other features present in some of these five patients, such as cryptorchidism in males, syndactyly, and trigonocephaly, expand the clinical spectrum of this syndrome. Keywords: KAT6A, Neurodevelopmental disease, Clinical genetics, Whole exome sequencing, Clinical characterization Background myeloid leukaemia (AML) [1]. KAT6A acetylates lysine- The lysine acetyltransferase 6A or KAT6A gene (a.k.a. 9 residues in histone H3 (H3K9), playing an essential MYST3 and MOZ; MIM *601408) codes for a member role in the regulation of transcriptional activity and gene of the histone acetyltransferase (HAT) family MYST. expression. KAT6A is also involved in the acetylation This gene was identified at a recurrent break-point of and regulation of the tumor suppressor p53, a key factor chromosomal translocations associated with acute in essential cell processes such as cell arrest and apop- tosis [2]. Moreover, KAT6A is able to directly bind and * Correspondence: [email protected] regulate the transcription factors Runx1 and Runx2 †Roser Urreizti, Estrella Lopez-Martin, Daniel Grinberg, Eva Bermejo-Sánchez through its C-terminal SM (serine and methionine rich) and Susanna Balcells contributed equally to this work. domain [3]. 1Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRSJD, Barcelona, Spain De novo mutations in KAT6A have recently been asso- 2Centro de Investigaciones Biomédicas en Red de Enfermedades Raras ciated with a syndrome mainly characterized by intellec- (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain tual disability (autosomal dominant mental retardation Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Urreizti et al. Orphanet Journal of Rare Diseases (2020) 15:44 Page 2 of 14 32; MIM # 616268). To date, a total of 79 patients have fontanelle. At this follow-up visit developmental delay been reported [4–15]. All of them present with develop- and limb hypertonia were detected. The subject began to mental delay (DD) or intellectual disability (ID) with crawl at 4 years of age and made his first unassisted speech delay. Additionally, low muscle tone, problems steps at age 5. At 9 years of age absence seizures were with early feeding, and heart and eye defects are fre- clinically suspected and he was treated with valproate, quent [13]. Most of the reported mutations are loss of showing good response. At 11 years the treatment was function (LoF) variants including splicing mutations, discontinued as the patient did not present seizures any- stop gain, and frameshift changes. Recently, missense more and EEG was normal. Brain MRI (magnetic reson- mutations affecting highly conserved residues in relevant ance imaging) was always normal. He was also treated functional sites have also been described [12, 13]. with botulinum toxin because of hypersalivation due to The protein KAT6A is part of the MOZ/MORF com- dysphagia. The boy was also followed-up for severe my- plex together with ING5, KAT6B, MEAF6, and one of opia and constipation. He had a non-symptomatic large BRPF1–3. Neurodevelopmental syndromes have been as- atrial septal defect, ASD (ostium secundum type). sociated not only with KAT6A but also with KAT6B and At 10 years of age the dysmorphic traits continued, BRPF1. KAT6B mutations are associated with Say- suggestive of Opitz C syndrome. The patient presented Barber-Biesecker-Young-Simpson syndrome (SBBYSS, bulging eyes with true proptosis, mild epicanthus, hypo- MIM # 603736) and Genitopatellar syndrome (MIM # plastic nose, small mouth with normal philtrum and pal- 606170), while BRPF1 mutations associate with IDDDFP ate, and normal auricles (see detailed description in (Intellectual developmental disorder with dysmorphic fa- Table 1 and Fig. 1: a, g and l). From the neurological cies and ptosis, MIM # 617333). Like KAT6A syndrome, point of view he presented with spastic tetraparesis, with these two conditions present mainly with DD or ID and ulnar deviation of the hands, wide-base gait (increased speech delay, hypotonia, and midline facial dysmorphic distance between the tibial malleolus when walking) not features including a broad nose. in the range of a cerebellar ataxia but denoting clumsi- Here, we present five new unrelated cases bearing four ness and a subtle gait disturbance, and flexion of hips truncating mutations and one missense mutation in and knees. The patient lacks expressive language, but KAT6A, and we review the existing literature to expand has improved his ability to understand and to establish the clinical delineation of KAT6A syndrome. communication. He does not respond to simple com- mands and has poor attention span. He is unable to Results chew and is fed mashed food. He walks with increased Clinical description lift base and can take some steps alone. Usually, he The detailed phenotypic description of the patients is needs walker support to get around and has no sphincter summarized in Table 1. control. The patient is currently on physiotherapy and speech therapy, and pharmacological treatment with ris- Patient 1 (P1) peridone and methylphenidate due to behavioural dis- The patient is a 10-year-old boy from a non- turbances and ADHD (attention deficit-hyperactivity consanguineous and healthy couple. Two younger sib- disorder) traits, respectively. lings, a girl aged 5½ years and a boy aged 3, are healthy. During the pregnancy of the proband, intrauterine Patient 2 (P2) growth retardation was detected. He was born at 37 The patient is an 11-year-old boy, the first child of weeks by caesarean section with Apgar scores 9/10 at 1 healthy non-consanguineous parents. He was born at and 5 min, respectively. At birth, weight was 2.04 kg 38 + 5 weeks via caesarean section due to breech presen- (2nd percentile, − 2.04 SD), height 43 cm (<3rd percent- tation after an uneventful pregnancy. At birth, weight ile, − 2.91 SD), and cranial circumference 30 cm (<3rd was 2.97 kg (30th percentile, − 0.45 SD), length was 49 percentile, − 3.77 SD). The infant presented dysmorphic cm (25th percentile, − 0.28 SD), and cranial circumfer- features such a triangular facies, low-set ears, and short ence was 33 cm (10th percentile, − 0.61 SD). On neo- neck, in addition to cryptorchidism. Abdominal and cra- natal examination, sacral and suprasternal dimples were nial ultrasound studies were performed with no evidence observed on ultrasound with normal subjacent tissues of malformations. Serology for common neonatal infec- and reducible bilateral inguinal hernia. tions (toxoplasma, rubella, cytomegalovirus, and herpes The neonatal period was significant for poor feeding, simplex) as well as brain computerized tomography mild hypertonia of limbs, and delayed gross motor devel- (CT) and funduscopy were normal. opment. He achieved head control at 3 months, sitting at At the 5th month of life, a prominent metopic suture 15 months, and crawling and kneeling later than 24 was observed. The helical CT confirmed craniosynosto- months; currently he walks only with a walker. His sis of the metopic suture and ossification
Recommended publications
  • Functional Roles of Bromodomain Proteins in Cancer
    cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes.
    [Show full text]
  • KAT6A Syndrome: Genotype-Phenotype Correlation in 76 Patients with Pathogenic KAT6A Variants
    KAT6A Syndrome: genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants. Item Type Article Authors Kennedy, Joanna;Goudie, David;Blair, Edward;Chandler, Kate;Joss, Shelagh;McKay, Victoria;Green, Andrew;Armstrong, Ruth;Lees, Melissa;Kamien, Benjamin;Hopper, Bruce;Tan, Tiong Yang;Yap, Patrick;Stark, Zornitza;Okamoto, Nobuhiko;Miyake, Noriko;Matsumoto, Naomichi;Macnamara, Ellen;Murphy, Jennifer L;McCormick, Elizabeth;Hakonarson, Hakon;Falk, Marni J;Li, Dong;Blackburn, Patrick;Klee, Eric;Babovic- Vuksanovic, Dusica;Schelley, Susan;Hudgins, Louanne;Kant, Sarina;Isidor, Bertrand;Cogne, Benjamin;Bradbury, Kimberley;Williams, Mark;Patel, Chirag;Heussler, Helen;Duff- Farrier, Celia;Lakeman, Phillis;Scurr, Ingrid;Kini, Usha;Elting, Mariet;Reijnders, Margot;Schuurs-Hoeijmakers, Janneke;Wafik, Mohamed;Blomhoff, Anne;Ruivenkamp, Claudia A L;Nibbeling, Esther;Dingemans, Alexander J M;Douine, Emilie D;Nelson, Stanley F;Arboleda, Valerie A;Newbury-Ecob, Ruth DOI 10.1038/s41436-018-0259-2 Journal Genetics in medicine : official journal of the American College of Medical Genetics Download date 30/09/2021 21:53:13 Link to Item http://hdl.handle.net/10147/627191 Find this and similar works at - http://www.lenus.ie/hse HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Genet Med Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 October 01. Published in final edited form as: Genet Med. 2019 April ; 21(4): 850–860. doi:10.1038/s41436-018-0259-2. KAT6A Syndrome: Genotype-phenotype correlation in 76 patients with pathogenic KAT6A variants A full list of authors and affiliations appears at the end of the article. Abstract Purpose: Mutations in KAT6A have recently been identified as a cause of syndromic developmental delay.
    [Show full text]
  • KAT6A Amplifications Are Associated with Shorter Progression-Free Survival and Overall Survival in Patients with Endometrial Serous Carcinoma
    PLOS ONE RESEARCH ARTICLE KAT6A amplifications are associated with shorter progression-free survival and overall survival in patients with endometrial serous carcinoma 1 2 2 2 2 Ozlen Saglam , Zhenya Tang , Guilin Tang , L. Jeffrey Medeiros , Gokce A. TorunerID * 1 Department of Surgical Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America, 2 Department of Hematopathology, Section of Clinical Cytogenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 Somatic copy number alterations (CNA) are common in endometrial serous carcinoma a1111111111 (ESC). We used the Tumor Cancer Genome Atlas Pan Cancer dataset (TCGA Pan Can) to explore the impact of somatic CNA and gene expression levels (mRNA) of cancer-related genes in ESC. Results were correlated with clinico-pathologic parameters such as age of onset, disease stage, progression-free survival (PFS) and overall survival (OS) (n = 108). OPEN ACCESS 1,449 genes with recurrent somatic CNA were identified, observed in 10% or more tumor Citation: Saglam O, Tang Z, Tang G, Medeiros LJ, samples. Somatic CNA and mRNA expression levels were highly correlated (r> = 0.6) for Toruner GA (2020) KAT6A amplifications are 383 genes. Among these, 45 genes were classified in the Tier 1 category of Cancer associated with shorter progression-free survival and overall survival in patients with endometrial Genome Census-Catalogue of Somatic Mutations in Cancer. Eighteen of 45 Tier 1 genes serous carcinoma. PLoS ONE 15(9): e0238477. had highly correlated somatic CNA and mRNA expression levels including ARNT, PIK3CA, https://doi.org/10.1371/journal.pone.0238477 TBLXR1, ASXL1, EIF4A2, HOOK3, IKBKB, KAT6A, TCEA1, KAT6B, ERBB2, BRD4, Editor: JesuÂs Maria Paramio, CIEMAT, SPAIN KEAP1, PRKACA, DNM2, SMARCA4, AKT2, SS18L1.
    [Show full text]
  • Recognition of Cancer Mutations in Histone H3K36 by Epigenetic Writers and Readers Brianna J
    EPIGENETICS https://doi.org/10.1080/15592294.2018.1503491 REVIEW Recognition of cancer mutations in histone H3K36 by epigenetic writers and readers Brianna J. Kleina, Krzysztof Krajewski b, Susana Restrepoa, Peter W. Lewis c, Brian D. Strahlb, and Tatiana G. Kutateladzea aDepartment of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA; bDepartment of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, USA; cWisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA ABSTRACT ARTICLE HISTORY Histone posttranslational modifications control the organization and function of chromatin. In Received 30 May 2018 particular, methylation of lysine 36 in histone H3 (H3K36me) has been shown to mediate gene Revised 1 July 2018 transcription, DNA repair, cell cycle regulation, and pre-mRNA splicing. Notably, mutations at or Accepted 12 July 2018 near this residue have been causally linked to the development of several human cancers. These KEYWORDS observations have helped to illuminate the role of histones themselves in disease and to clarify Histone; H3K36M; cancer; the mechanisms by which they acquire oncogenic properties. This perspective focuses on recent PTM; methylation advances in discovery and characterization of histone H3 mutations that impact H3K36 methyla- tion. We also highlight findings that the common cancer-related substitution of H3K36 to methionine (H3K36M) disturbs functions of not only H3K36me-writing enzymes but also H3K36me-specific readers. The latter case suggests that the oncogenic effects could also be linked to the inability of readers to engage H3K36M. Introduction from yeast to humans and has been shown to have a variety of functions that range from the control Histone proteins are main components of the of gene transcription and DNA repair, to cell cycle nucleosome, the fundamental building block of regulation and nutrient stress response [8].
    [Show full text]
  • Further Delineation of the Clinical Spectrum of KAT6B Disorders and Allelic Series of Pathogenic Variants
    ARTICLE © American College of Medical Genetics and Genomics Further delineation of the clinical spectrum of KAT6B disorders and allelic series of pathogenic variants Li Xin Zhang1, Gabrielle Lemire, MD2, Claudia Gonzaga-Jauregui, PhD3, Sirinart Molidperee, Gr. Cert1, Carolina Galaz-Montoya, MD3, David S. Liu, MD3, Alain Verloes, MD PhD4, Amelle G. Shillington, DO5, Kosuke Izumi, MD PhD6, Alyssa L. Ritter, MS LCGC7, Beth Keena, MS LCGC6, Elaine Zackai, MD7,8, Dong Li, PhD9, Elizabeth Bhoj, MD PhD7, Jennifer M. Tarpinian, MS CGC10, Emma Bedoukian, MS LCGC10, Mary K. Kukolich, MD11, A. Micheil Innes, MD12, Grace U. Ediae, BSc13, Sarah L. Sawyer, MD PhD14, Karippoth Mohandas Nair, MD15, Para Chottil Soumya, MD15, Kinattinkara R. Subbaraman, MD15, Frank J. Probst, MD PhD3,16, Jennifer A. Bassetti, MD3,16, Reid V. Sutton, MD3,16, Richard A. Gibbs, PhD3, Chester Brown, MD PhD17, Philip M. Boone, MD PhD18, Ingrid A. Holm, MD MPH18, Marco Tartaglia, PhD19, Giovanni Battista Ferrero, MD PhD20, Marcello Niceta, MD PhD19, Maria Lisa Dentici, MD19, Francesca Clementina Radio, MD PhD19, Boris Keren, MD21, Constance F. Wells, MD22, Christine Coubes, MD22, Annie Laquerrière, MD PhD23, Jacqueline Aziza, MD24, Charlotte Dubucs, MD24, Sheela Nampoothiri, MD25, David Mowat, MD26, Millan S. Patel, MD27, Ana Bracho, MD28, Francisco Cammarata-Scalisi, MD29, Alper Gezdirici, MD30, Alberto Fernandez-Jaen, MD31, Natalie Hauser, MD32, Yuri A. Zarate, MD33, Katherine A. Bosanko, MS CGC33, Klaus Dieterich, MD PhD34, John C. Carey, MD MPH35, Jessica X. Chong, PhD36,37, Deborah A. Nickerson, PhD37,38, Michael J. Bamshad, MD36,37, Brendan H. Lee, MD PhD3, Xiang-Jiao Yang, PhD39, James R.
    [Show full text]
  • Abstracts Books 2014
    TWENTY-FIFTH EUROPEAN MEETING ON DYSMORPHOLOGY 10 – 12 SEPTEMBER 2014 25th EUROPEAN MEETING ON DYSMORPHOLOGY LE BISCHENBERG WEDNESDAY 10th SEPTEMBER 5 p.m. to 7.30 p.m. Registration 7.30 p.m. to 8.30 p.m. Welcome reception 8.30 p.m. Dinner 9.30 p.m. Unknown THURSDAY 11th SEPTEMBER 8.15 a.m. Opening address 8.30 a.m. to 1.00 p.m. First session 1.00 p.m. Lunch 2.30 p.m. to 7.00 p.m. Second and third sessions 8.00 p.m. Dinner 9.00 p.m. to 11.00 p.m. Unknown FRIDAY 12th SEPTEMBER 8.30 a.m. to 1.00 p.m. Fourth and fifth sessions 1.00 p.m. Lunch 2.30 p.m. to 6.00 p.m. Sixth and seventh sessions 7.30 p.m. Dinner SATURDAY 13th SEPTEMBER Breakfast – Departure Note: This program is tentative and may be modified. WEDNESDAY 10th SEPTEMBER 9.30 UNKNOWN SESSION Chair: FRYNS J.P. H. VAN ESCH Case 1 H. VAN ESCH Case 2 H. JILANI, S. HIZEM, I. REJEB, F. DZIRI AND L. BEN JEMAA Developmental delay, dysmorphic features and hirsutism in a Tunisian girl. Cornelia de Lange syndrome? L. VAN MALDERGEM, C. CABROL, B. LOEYS, M. SALEH, Y. BERNARD, L. CHAMARD AND J. PIARD Megalophthalmos and thoracic great vessels aneurisms E. SCHAEFER AND Y. HERENGER An unknown diagnosis associating facial dysmorphism, developmental delay, posterior urethral valves and severe constipation P. RUMP AND T. VAN ESSEN What’s in the name G. MUBUNGU, A. LUMAKA, K.
    [Show full text]
  • A Set of Regulatory Genes Co-Expressed in Embryonic Human Brain Is Implicated in Disrupted Speech Development
    Molecular Psychiatry https://doi.org/10.1038/s41380-018-0020-x ARTICLE A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development 1 1 1 2 3 Else Eising ● Amaia Carrion-Castillo ● Arianna Vino ● Edythe A. Strand ● Kathy J. Jakielski ● 4,5 6 7 8 9 Thomas S. Scerri ● Michael S. Hildebrand ● Richard Webster ● Alan Ma ● Bernard Mazoyer ● 1,10 4,5 6,11 6,12 13 Clyde Francks ● Melanie Bahlo ● Ingrid E. Scheffer ● Angela T. Morgan ● Lawrence D. Shriberg ● Simon E. Fisher 1,10 Received: 22 September 2017 / Revised: 3 December 2017 / Accepted: 2 January 2018 © The Author(s) 2018. This article is published with open access Abstract Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, CHD3 SETD1A WDR5 fi 1234567890();,: we discovered de novo mutations, implicating genes, including , and . In other probands, we identi ed novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.
    [Show full text]
  • Recombinant BRPF1 (627-746) Protein Catalog No: 31375, 31875 Quantity: 100, 1000 Μg Lot No: 32717002 Concentration: 1.3 Μg/Μl Expressed In: E
    Recombinant BRPF1 (627-746) protein Catalog No: 31375, 31875 Quantity: 100, 1000 µg Lot No: 32717002 Concentration: 1.3 µg/µl Expressed In: E. coli Source: Human Buffer Contents: Recombinant BRPF1 (627-746) protein expressed in E. coli and provided in 25 mM Tris pH 8, 300 mM NaCl and 10% glycerol. Background: Bromodomain and PHD finger containing (BRPF1) protein is a component of the MOZ/MORF complex which has histone H3 acetyltransferase activity. The bromodomain of BRPF1 recognizes acetylated histone lysine residues and function as a ‘reader’ of these epigenetic histone marks to regulate chromatin structure and gene expression by linking associated proteins to the recognized acetylated nucleosomal targets. BRPF1 is known to positively regulate the transcription of RUNX1 and RUNX2. Protein Details: The peptide corresponding to amino acids 627 - 746 that contains the bromodomain sequences of BRPF1 (accession number NM_001003694.1) was expressed in E. coli and contains an N-terminal His-Tag and C- terminal FLAG-Tag with an observed molecular weight of 20.3 kDa. The recombinant protein is >90% pure by SDS- PAGE. Application Notes: Recombinant BRPF1 (627-746) is suitable for use in binding assays, inhibitor screening, and selectivity profiling. Storage and Guarantee: Recombinant proteins in solution are temperature sensitive and must be stored at -80°C to prevent degradation. Avoid repeated freeze/thaw cycles and keep on ice when not in storage. This product is guaranteed for 6 months from date of receipt. This product is for research use only and is not for use in diagnostic procedures. North America 877 222 9543 • Europe +32 (0)2 653 0001 • Japan +81 (0)3 5225 3638 • www.activemotif.com Recombinant BRPF1 (627-746) protein gel.
    [Show full text]
  • De Novo Nonsense Mutations in KAT6A, a Lysine
    Please cite this article in press as: Arboleda et al., De Novo Nonsense Mutations in KAT6A, a Lysine Acetyl-Transferase Gene, Cause a Syn- drome Including Microcephal..., The American Journal of Human Genetics (2015), http://dx.doi.org/10.1016/j.ajhg.2015.01.017 REPORT De Novo Nonsense Mutations in KAT6A, a Lysine Acetyl-Transferase Gene, Cause a Syndrome Including Microcephaly and Global Developmental Delay Valerie A. Arboleda,1 Hane Lee,1 Naghmeh Dorrani,2 Neda Zadeh,3,4 Mary Willis,5 Colleen Forsyth Macmurdo,6 Melanie A. Manning,6,7 Andrea Kwan,6,8 Louanne Hudgins,6 Florian Barthelemy,9 M. Carrie Miceli,9 Fabiola Quintero-Rivera,1 Sibel Kantarci,1 Samuel P. Strom,1 Joshua L. Deignan,1 UCLA Clinical Genomics Center,1 Wayne W. Grody,1,2,10 Eric Vilain,2,10 and Stanley F. Nelson1,10,* Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in his- tone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129*]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024*]). Neither of these variants was present in 1,815 in-house exomes or in public databases.
    [Show full text]
  • Weighted Burden Analysis of Exome-Sequenced Case-Control Sample Implicates Synaptic Genes in Schizophrenia Aetiology
    Behavior Genetics (2018) 48:198–208 https://doi.org/10.1007/s10519-018-9893-3 ORIGINAL RESEARCH Weighted Burden Analysis of Exome-Sequenced Case-Control Sample Implicates Synaptic Genes in Schizophrenia Aetiology David Curtis1,2 · Leda Coelewij1 · Shou‑Hwa Liu1 · Jack Humphrey1,3 · Richard Mott1 Received: 22 November 2017 / Accepted: 13 March 2018 / Published online: 21 March 2018 © The Author(s) 2018 Abstract A previous study of exome-sequenced schizophrenia cases and controls reported an excess of singleton, gene-disruptive vari- ants among cases, concentrated in particular gene sets. The dataset included a number of subjects with a substantial Finnish contribution to ancestry. We have reanalysed the same dataset after removal of these subjects and we have also included non- singleton variants of all types using a weighted burden test which assigns higher weights to variants predicted to have a greater effect on protein function. We investigated the same 31 gene sets as previously and also 1454 GO gene sets. The reduced dataset consisted of 4225 cases and 5834 controls. No individual variants or genes were significantly enriched in cases but 13 out of the 31 gene sets were significant after Bonferroni correction and the “FMRP targets” set produced a signed log p value (SLP) of 7.1. The gene within this set with the highest SLP, equal to 3.4, was FYN, which codes for a tyrosine kinase which phosphorylates glutamate metabotropic receptors and ionotropic NMDA receptors, thus modulating their trafficking, subcellular distribution and function. In the most recent GWAS of schizophrenia it was identified as a “prioritized candidate gene”.
    [Show full text]
  • Mouse Kat6a Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Kat6a Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Kat6a conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Kat6a gene (NCBI Reference Sequence: NM_001081149 ; Ensembl: ENSMUSG00000031540 ) is located on Mouse chromosome 8. 18 exons are identified, with the ATG start codon in exon 3 and the TGA stop codon in exon 18 (Transcript: ENSMUST00000044331). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Kat6a gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-327N5 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous null mice display perinatal lethality, cyanosis, decreased hematopoietic progenitor cell numbers, and severely impaired spleen and thymus development, but are not anemic. Heterozygotes display strain background dependent reductions in fertility. Exon 4 starts from about 10.03% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 40306 bp, and the size of intron 4 for 3'-loxP site insertion: 4429 bp. The size of effective cKO region: ~873 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 18 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Kat6a Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Deficiency of Intellectual Disability-Related Gene Brpf1 Reduced Inhibitory
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.426233; this version posted January 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Deficiency of intellectual disability-related gene Brpf1 reduced inhibitory 2 neurotransmission and Map2k7 expression in GABAergic interneurons 3 Jingli Cao1, Weiwei Xian1, Maierdan Palihati1, Yu Zhu1, Guoxiang Wang2, Yunli Xie2, 4 Guomin Zhou1,3#, Linya You1# 5 6 1Department of Human Anatomy & Histoembryology, School of Basic Medical 7 Sciences, Fudan University, Shanghai 200032, China 8 2Institutes of Brain Sciences, Fudan University, Shanghai 200032, China 9 3Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention 10 of Shanghai, Shanghai 200032, China 11 12 #Correspondences to: [email protected]; [email protected]. 13 14 Conflict of interest: The authors declare no conflicts of interest. 15 16 Running Title: Brpf1 loss reduced neurotransmission 17 18 Keywords: intellectual disability; Brpf1; MGE-derived GABAergic interneurons; 19 differentiation; dendritic morphology, electrophysiology; in vivo migration; 20 mRNA-Seq 21 22 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.11.426233; this version posted January 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 Intellectual disability is closely related to impaired GABA neurotransmission.
    [Show full text]