Food Allergy in a Child with De Novo KAT6A Mutation Varpu Elenius1*, Tuire Lähdesmäki2, Marja Hietala3 and Tuomas Jartti1

Total Page:16

File Type:pdf, Size:1020Kb

Food Allergy in a Child with De Novo KAT6A Mutation Varpu Elenius1*, Tuire Lähdesmäki2, Marja Hietala3 and Tuomas Jartti1 Elenius et al. Clin Transl Allergy (2017) 7:19 DOI 10.1186/s13601-017-0155-x Clinical and Translational Allergy LETTER TO THE EDITOR Open Access Food allergy in a child with de novo KAT6A mutation Varpu Elenius1*, Tuire Lähdesmäki2, Marja Hietala3 and Tuomas Jartti1 Abstract Crying combined with miscellaneous gastrointestinal symptoms are typical symptoms of infant with food allergy, but are also common among children with abnormal neurological development. Mutations in KAT6A gene is known to cause a syndrome characterized by developmental delay, hypotonia, cardiac defects, microcephaly, specifc facial features and early feeding problems. However, these feeding problems have not earlier been specifed. We present the frst reported case of a DBPCFC confrmed food allergy in a child with KAT6A mutation whose feeding problems resolved with elimination diet. The present case does not establish proof of cause, but highlights the importance of careful clinical diagnostics despite other possible causes for feeding problems. Recognizing that early feeding prob‑ lems these patients regularly have might be caused by food allergy is important for outcome and quality of life for these patients. Keywords: Feeding problems, Food allergy, Histone acetylation, KAT6A mutation To the editor Case study Adverse reactions to food are a major clinical problem. Te patient was born at 39 weeks to non-consanquine- Te dermatologic and systemic reactions to food are well ous parents after uncomplicated pregnancy with normal recognized but reactions manifesting primarily in the maternal serum screening and ultrasounds. At birth, digestive tract can be difcult to recognize, diagnose and weight was 3.0 kg normal, length 46 cm (Z = −2.4) treat [1]. Most gastrointestinal symptoms are non-IgE and occipital-frontal circumference (OFC) 33.5 cm mediated [1]. Te skin prick test or specifc IgE alone are (Z = −1.0). At the age of 2 months, she was admitted not helpful. Double blind, placebo-controlled food chal- to pediatric hospital due to poor eye contact. Te oph- lenge (DBPCFC) is the gold standard for diagnosing food thalmologic examination showed only intermittent allergy in these patients. esothropia. Further clinical examination showed dysmor- Crying combined with miscellaneous gastrointesti- phic features (microcephaly, thin upper lip, broad nasal nal symptoms are typical symptoms of infant with food bridge, large forehead, low set ears, epicanthal folds) allergy. Crying, vomiting and stomach pain combined (Fig. 1), global developmental delay and asymptomatic by feeding problems are also common symptoms among atrial septal defect and patent ductus arteriosus. Chronic children with abnormal neurological development. Tese ear infections required tympanic tube placement at age symptoms may be due to child’s muscle hypotonia, oral of 20 months and atrial septal defect was repaired at age dyspraxia, aerophagia and obstipation. We present a case of 23 months. Te achievement of motor milestones was to outline the importance of careful clinical diagnostics markedly delayed; sitting without support was achieved in case of infant food allergy, despite of other possible at 16 months and supported standing at 2 years. No causes for feeding problems. verbal communication was achieved at 2 years. Reha- bilitation with physical and speech therapy was initiated during her frst year. Brain 3T-magnetic resonance imag- *Correspondence: [email protected] ing and metabolic screening were normal. 1 Department of Pediatrics, Turku University Hospital, Kiinamyllynkatu 4‑8, Te child was breast-fed until 12 months of age, but 20520 Turku, Finland Full list of author information is available at the end of the article additional standard formula was given from 4 months of © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Elenius et al. Clin Transl Allergy (2017) 7:19 Page 2 of 3 Fig. 1 Facial characteristics of the child with KAT6A mutation. Characteristic features of this syndrome, e.g. bitemoporal narrowing, broad nasal tip, low set ears, thin upper lip, micrognatia and smooth fltrum are seen age. Feeding problems originated at the age of 1 month Rostock, Germany, a commercial laboratory ofering while recieving only breast milk. Mother noticed that WES as a diagnostic service. First, exons were enriched child developed gastrointestinal symptoms (vomiting and from fragmented genomic DNA and then the sample was diarrhea) if mother had consumed milk or wheat. Symp- processed on the NextSeq Platform (Illumina, San Diego, toms got worse after solids were introduced to diet at California, USA). A previously unreported heterozy- age of 6 months. After milk ingestion child had vomiting gous variant was detected in exon 17 of the KAT6A gene, and diarrhea. Wheat ingestion caused vomiting, discom- c.3655del (p.Leu1219Tyrfs*). Te identifed variant was fort and obstipation. All symptoms resolved with elimi- confrmed by Sanger sequencing. Tis deletion creates nation diet. At age of 15 months specifc-IgE for milk, a frame shift and the new reading frame ends in a stop wheat, soy, peanut and cod were negative. Terefore, codon 74 positions downstream. Tis variant was absent DBPCFC with milk and wheat was performed. DBPCFC in the parents. test confrmed wheat and milk protein allergy. Te child had vomiting, discomfort and obstipation during double Discussion blind wheat challenge test, and vomiting and diarrhea KAT6A, also known as MOZ or MYST3, is a lysine (K) during double blind milk challenge test. With the elimi- acetyltransferase that is located on chromosome 8p11.2. nation of wheat and milk protein her feeding problems It was frst found as a fusion protein in patients with and gastrointestinal symptoms resolved. At 2 of years old, acute myelogenous leukemia [3]. In humans, KAT6A is her OFC was less than third percentile for age but weight expressed in 49 diferent tissues including brain, heart and length increased appropriately with elimination diet. and intestine. Te protein forms a part of a histone Te patient was referred to clinical geneticist. Many acetyltransferase complex that acetylates lysine-9 resi- of the features exhibited in this child exist in some well- dues in histone H3 (H3K9). Acetylated H3K9 is associ- characterized genetic syndromes like Down, Rett and ated with transcriptionally active genes, whereas histone genitopatellar syndromes, but genetic testing for these deacetylation is associated with gene silencing. Tus, syndromes were normal. In order to understand the KAT6A has important roles in gene-specifc histone 3 molecular mechanisms underlying the phenotype of this acetylation, regulating developmental gene expression child, DNA was isolated from peripheral blood by stand- and controlling a wide range of processes such as cell ard procedures and whole exome sequencing (WES) was mobility, metabolism, DNA replication and repair. performed [2]. Parents provided written informed con- A year ago, mutations in KAT6A was shown to cause sent for WES, and parents own DNA was isolated for a syndrome characterized by developmental delay, hypo- comparison. DNA samples from the family were sent tonia, early feeding problems, cardiac defects, micro- to whole exome sequencing at Centogene laboratory, cephaly and specifc facial features such as broad nasal Elenius et al. Clin Transl Allergy (2017) 7:19 Page 3 of 3 3 tip, bitemporal narrowing, thin upper lip, low set ears Hospital, Kiinamyllynkatu 4‑8, 20520 Turku, Finland. Department of Genetics, Turku University Hospital, Kiinamyllynkatu 4‑8, 20520 Turku, Finland. [4, 5]. All of these features were found in our patient (Fig. 1). Previous studies have also reported non-spe- Acknowledgements cifc feeding problems. Arbodel et al. [4] reported that We thank the family for participating in this case report. 3/4 patients had feeding problems and 2/4 had refux. Competing interests In the study of Tam et al. [5] 5/7 had feeding problems The authors declare that they have no competing interests. requiring nasogastric tube or gastrostomy. We contacted Availability of data and materials the authors of these reports, but in many cases these The data are in the patient fles. patients were never tested for food allergies. In Arbodel’s study group at least 2/4 patients had been later diag- Ethics approval and consent to participate and publication It is a case report therefore no Ethics approval was obtained. Written consent nosed with food allergy. Te existence of food allergy in was obtained from the caregivers of the patient to publish the case. these patients may be coincidental and further research is needed to confrm this possible link. Biased immune Publisher’s Note events can be expected since KAT6A has frequently been Springer Nature remains neutral with regard to jurisdictional claims in pub‑ associated with a failure to maintain a normal number of lished maps and institutional afliations. haematopoietic precursors suggesting a specifc role of Received: 11 January 2017 Accepted: 30 May 2017 KAT6A-driven
Recommended publications
  • KAT6A Amplifications Are Associated with Shorter Progression-Free Survival and Overall Survival in Patients with Endometrial Serous Carcinoma
    PLOS ONE RESEARCH ARTICLE KAT6A amplifications are associated with shorter progression-free survival and overall survival in patients with endometrial serous carcinoma 1 2 2 2 2 Ozlen Saglam , Zhenya Tang , Guilin Tang , L. Jeffrey Medeiros , Gokce A. TorunerID * 1 Department of Surgical Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America, 2 Department of Hematopathology, Section of Clinical Cytogenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 Somatic copy number alterations (CNA) are common in endometrial serous carcinoma a1111111111 (ESC). We used the Tumor Cancer Genome Atlas Pan Cancer dataset (TCGA Pan Can) to explore the impact of somatic CNA and gene expression levels (mRNA) of cancer-related genes in ESC. Results were correlated with clinico-pathologic parameters such as age of onset, disease stage, progression-free survival (PFS) and overall survival (OS) (n = 108). OPEN ACCESS 1,449 genes with recurrent somatic CNA were identified, observed in 10% or more tumor Citation: Saglam O, Tang Z, Tang G, Medeiros LJ, samples. Somatic CNA and mRNA expression levels were highly correlated (r> = 0.6) for Toruner GA (2020) KAT6A amplifications are 383 genes. Among these, 45 genes were classified in the Tier 1 category of Cancer associated with shorter progression-free survival and overall survival in patients with endometrial Genome Census-Catalogue of Somatic Mutations in Cancer. Eighteen of 45 Tier 1 genes serous carcinoma. PLoS ONE 15(9): e0238477. had highly correlated somatic CNA and mRNA expression levels including ARNT, PIK3CA, https://doi.org/10.1371/journal.pone.0238477 TBLXR1, ASXL1, EIF4A2, HOOK3, IKBKB, KAT6A, TCEA1, KAT6B, ERBB2, BRD4, Editor: JesuÂs Maria Paramio, CIEMAT, SPAIN KEAP1, PRKACA, DNM2, SMARCA4, AKT2, SS18L1.
    [Show full text]
  • A Set of Regulatory Genes Co-Expressed in Embryonic Human Brain Is Implicated in Disrupted Speech Development
    Molecular Psychiatry https://doi.org/10.1038/s41380-018-0020-x ARTICLE A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development 1 1 1 2 3 Else Eising ● Amaia Carrion-Castillo ● Arianna Vino ● Edythe A. Strand ● Kathy J. Jakielski ● 4,5 6 7 8 9 Thomas S. Scerri ● Michael S. Hildebrand ● Richard Webster ● Alan Ma ● Bernard Mazoyer ● 1,10 4,5 6,11 6,12 13 Clyde Francks ● Melanie Bahlo ● Ingrid E. Scheffer ● Angela T. Morgan ● Lawrence D. Shriberg ● Simon E. Fisher 1,10 Received: 22 September 2017 / Revised: 3 December 2017 / Accepted: 2 January 2018 © The Author(s) 2018. This article is published with open access Abstract Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, CHD3 SETD1A WDR5 fi 1234567890();,: we discovered de novo mutations, implicating genes, including , and . In other probands, we identi ed novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.
    [Show full text]
  • De Novo Nonsense Mutations in KAT6A, a Lysine
    Please cite this article in press as: Arboleda et al., De Novo Nonsense Mutations in KAT6A, a Lysine Acetyl-Transferase Gene, Cause a Syn- drome Including Microcephal..., The American Journal of Human Genetics (2015), http://dx.doi.org/10.1016/j.ajhg.2015.01.017 REPORT De Novo Nonsense Mutations in KAT6A, a Lysine Acetyl-Transferase Gene, Cause a Syndrome Including Microcephaly and Global Developmental Delay Valerie A. Arboleda,1 Hane Lee,1 Naghmeh Dorrani,2 Neda Zadeh,3,4 Mary Willis,5 Colleen Forsyth Macmurdo,6 Melanie A. Manning,6,7 Andrea Kwan,6,8 Louanne Hudgins,6 Florian Barthelemy,9 M. Carrie Miceli,9 Fabiola Quintero-Rivera,1 Sibel Kantarci,1 Samuel P. Strom,1 Joshua L. Deignan,1 UCLA Clinical Genomics Center,1 Wayne W. Grody,1,2,10 Eric Vilain,2,10 and Stanley F. Nelson1,10,* Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in his- tone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129*]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024*]). Neither of these variants was present in 1,815 in-house exomes or in public databases.
    [Show full text]
  • Weighted Burden Analysis of Exome-Sequenced Case-Control Sample Implicates Synaptic Genes in Schizophrenia Aetiology
    Behavior Genetics (2018) 48:198–208 https://doi.org/10.1007/s10519-018-9893-3 ORIGINAL RESEARCH Weighted Burden Analysis of Exome-Sequenced Case-Control Sample Implicates Synaptic Genes in Schizophrenia Aetiology David Curtis1,2 · Leda Coelewij1 · Shou‑Hwa Liu1 · Jack Humphrey1,3 · Richard Mott1 Received: 22 November 2017 / Accepted: 13 March 2018 / Published online: 21 March 2018 © The Author(s) 2018 Abstract A previous study of exome-sequenced schizophrenia cases and controls reported an excess of singleton, gene-disruptive vari- ants among cases, concentrated in particular gene sets. The dataset included a number of subjects with a substantial Finnish contribution to ancestry. We have reanalysed the same dataset after removal of these subjects and we have also included non- singleton variants of all types using a weighted burden test which assigns higher weights to variants predicted to have a greater effect on protein function. We investigated the same 31 gene sets as previously and also 1454 GO gene sets. The reduced dataset consisted of 4225 cases and 5834 controls. No individual variants or genes were significantly enriched in cases but 13 out of the 31 gene sets were significant after Bonferroni correction and the “FMRP targets” set produced a signed log p value (SLP) of 7.1. The gene within this set with the highest SLP, equal to 3.4, was FYN, which codes for a tyrosine kinase which phosphorylates glutamate metabotropic receptors and ionotropic NMDA receptors, thus modulating their trafficking, subcellular distribution and function. In the most recent GWAS of schizophrenia it was identified as a “prioritized candidate gene”.
    [Show full text]
  • Mouse Kat6a Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Kat6a Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Kat6a conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Kat6a gene (NCBI Reference Sequence: NM_001081149 ; Ensembl: ENSMUSG00000031540 ) is located on Mouse chromosome 8. 18 exons are identified, with the ATG start codon in exon 3 and the TGA stop codon in exon 18 (Transcript: ENSMUST00000044331). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Kat6a gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-327N5 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous null mice display perinatal lethality, cyanosis, decreased hematopoietic progenitor cell numbers, and severely impaired spleen and thymus development, but are not anemic. Heterozygotes display strain background dependent reductions in fertility. Exon 4 starts from about 10.03% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 40306 bp, and the size of intron 4 for 3'-loxP site insertion: 4429 bp. The size of effective cKO region: ~873 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 18 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Kat6a Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Histone Acetyltransferase KAT6A Upregulates PI3K/AKT Signaling Through TRIM24 Binding Deguan Lv1,2, Feng Jia3, Yanli Hou4, Youzhou Sang2, Angel A
    Published OnlineFirst October 11, 2017; DOI: 10.1158/0008-5472.CAN-17-1388 Cancer Tumor and Stem Cell Biology Research Histone Acetyltransferase KAT6A Upregulates PI3K/AKT Signaling through TRIM24 Binding Deguan Lv1,2, Feng Jia3, Yanli Hou4, Youzhou Sang2, Angel A. Alvarez5, Weiwei Zhang2, Wei-Qiang Gao2,BoHu5, Shi-Yuan Cheng2,5, Jianwei Ge3, Yanxin Li6, and Haizhong Feng2 Abstract Lysine acetyltransferase KAT6A is a chromatin regulator that PI3K/AKT signaling and tumorigenesis. Overexpressing activated contributes to histone modification and cancer, but the basis of its AKT or PIK3CA rescued the growth inhibition due to KAT6A actions are not well understood. Here, we identify a KAT6A silencing. Conversely, the pan-PI3K inhibitor LY294002 abrogat- signaling pathway that facilitates glioblastoma (GBM), where it ed the growth-promoting effect of KAT6A. Overexpression is upregulated. KAT6A expression was associated with GBM of KAT6A or TRIM24, but not KAT6A acetyltransferase activity– patient survival. KAT6A silencing suppressed cell proliferation, deficient mutants or TRIM24 mutants lacking H3K23ac-bind- cell migration, colony formation, and tumor development in an ing sites, promoted PIK3CA expression, AKT phosphorylation, orthotopic mouse xenograft model system. Mechanistic investi- and cell proliferation. Taken together, our results define gations demonstrated that KAT6A acetylates lysine 23 of histone an essential role of KAT6A in glioma formation, rationalizing H3 (H3K23), which recruits the nuclear receptor binding protein its candidacy as a therapeutic target for GBM treatment. TRIM24 to activate PIK3CA transcription, thereby enhancing Cancer Res; 77(22); 6190–201. Ó2017 AACR. Introduction deregulated in cancer, including glioma, partially due to aberrant histone modifications and mutations (2–4).
    [Show full text]
  • Transcriptional Regulators Are Upregulated in the Substantia Nigra
    Journal of Emerging Investigators Transcriptional Regulators are Upregulated in the Substantia Nigra of Parkinson’s Disease Patients Marianne Cowherd1 and Inhan Lee2 1Community High School, Ann Arbor, MI 2miRcore, Ann Arbor, MI Summary neurological conditions is an established practice (3). Parkinson’s disease (PD) affects approximately 10 Significant gene expression dysregulation in the SN and million people worldwide with tremors, bradykinesia, in the striatum has been described, particularly decreased apathy, memory loss, and language issues. Though such expression in PD synapses. Protein degradation has symptoms are due to the loss of the substantia nigra (SN) been found to be upregulated (4). Mutations in SNCA brain region, the ultimate causes and complete pathology are unknown. To understand the global gene expression (5), LRRK2 (6), and GBA (6) have also been identified changes in SN, microarray expression data from the SN as familial markers of PD. SNCA encodes alpha- tissue of 9 controls and 16 PD patients were compared, synuclein, a protein found in presynaptic terminals that and significantly upregulated and downregulated may regulate vesicle presence and dopamine release. genes were identified. Among the upregulated genes, Eighteen SNCA mutations have been associated with a network of 33 interacting genes centered around the PD and, although the exact pathogenic mechanism is cAMP-response element binding protein (CREBBP) was not confirmed, mutated alpha-synuclein is the major found. The downstream effects of increased CREBBP- component of protein aggregates, called Lewy bodies, related transcription and the resulting protein levels that are often found in PD brains and may contribute may result in PD symptoms, making CREBBP a potential therapeutic target due to its central role in the interactive to cell death.
    [Show full text]
  • FOXP2 and Language Alterations in Psychiatric Pathology Salud Mental, Vol
    Salud mental ISSN: 0185-3325 Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Castro Martínez, Xochitl Helga; Moltó Ruiz, María Dolores; Morales Marin, Mirna Edith; Flores Lázaro, Julio César; González Fernández, Javier; Gutiérrez Najera, Nora Andrea; Alvarez Amado, Daniel Eduardo; Nicolini Sánchez, José Humberto FOXP2 and language alterations in psychiatric pathology Salud mental, vol. 42, no. 6, 2019, pp. 297-308 Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz DOI: 10.17711/SM.0185-3325.2019.039 Available in: http://www.redalyc.org/articulo.oa?id=58262364007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative REVIEW ARTICLE Volume 42, Issue 6, November-December 2019 doi: 10.17711/SM.0185-3325.2019.039 FOXP2 and language alterations in psychiatric pathology Xochitl Helga Castro Martínez,1 María Dolores Moltó Ruiz,2,3 Mirna Edith Morales Marin,1 Julio César Flores Lázaro,4 Javier González Fernández,2 Nora Andrea Gutiérrez Najera,1 Daniel Eduardo Alvarez Amado,5 José Humberto Nicolini Sánchez1 1 Laboratorio de Genómica de Enfer- ABSTRACT medades Psiquiátricas y Neurode- generativas, Instituto Nacional de From the first reports of the linguist Noam Chomsky it has become clear that the development Medicina Genómica, Ciudad de Background. México, México. of language has an important genetic component. Several reports in families have shown the relationship 2 Departamento de Genética. Univer- between language disorders and genetic polymorphisms. The FOXP2 gene has been a fundamental piece sitat de València.
    [Show full text]
  • The Genetic Regulatory Signature of Type 2 Diabetes in Human Skeletal Muscle
    ARTICLE Received 17 Aug 2015 | Accepted 27 Apr 2016 | Published 29 Jun 2016 DOI: 10.1038/ncomms11764 OPEN The genetic regulatory signature of type 2 diabetes in human skeletal muscle Laura J. Scott1,*, Michael R. Erdos2,*, Jeroen R. Huyghe1,*, Ryan P. Welch1,*, Andrew T. Beck1, Brooke N. Wolford2, Peter S. Chines2, John P. Didion2, Narisu Narisu2, Heather M. Stringham1, D. Leland Taylor2,3, Anne U. Jackson1, Swarooparani Vadlamudi4, Lori L. Bonnycastle2, Leena Kinnunen5, Jouko Saramies6, Jouko Sundvall5, Ricardo D’Oliveira Albanus7, Anna Kiseleva7, John Hensley7, Gregory E. Crawford8,9, Hui Jiang1, Xiaoquan Wen1, Richard M. Watanabe10,11, Timo A. Lakka12,13,14, Karen L. Mohlke4, Markku Laakso15,16, Jaakko Tuomilehto17,18,19,20, Heikki A. Koistinen5,21,22, Michael Boehnke1,*, Francis S. Collins2,* & Stephen C.J. Parker7,23,* Type 2 diabetes (T2D) results from the combined effects of genetic and environmental factors on multiple tissues over time. Of the 4100 variants associated with T2D and related traits in genome-wide association studies (GWAS), 490% occur in non-coding regions, suggesting a strong regulatory component to T2D risk. Here to understand how T2D status, metabolic traits and genetic variation influence gene expression, we analyse skeletal muscle biopsies from 271 well-phenotyped Finnish participants with glucose tolerance ranging from normal to newly diagnosed T2D. We perform high-depth strand-specific mRNA-sequencing and dense genotyping. Computational integration of these data with epigenome data, including ATAC-seq on skeletal muscle, and transcriptome data across diverse tissues reveals that the tissue-specific genetic regulatory architecture of skeletal muscle is highly enriched in muscle stretch/super enhancers, including some that overlap T2D GWAS variants.
    [Show full text]
  • Five New Cases of Syndromic Intellectual Disability Due to KAT6A Mutations: Widening the Molecular and Clinical Spectrum
    Urreizti et al. Orphanet Journal of Rare Diseases (2020) 15:44 https://doi.org/10.1186/s13023-020-1317-9 RESEARCH Open Access Five new cases of syndromic intellectual disability due to KAT6A mutations: widening the molecular and clinical spectrum Roser Urreizti1,2,3*† , Estrella Lopez-Martin2,4†, Antonio Martinez-Monseny5, Montse Pujadas6, Laura Castilla-Vallmanya1,2, Luis Alberto Pérez-Jurado2,6,7, Mercedes Serrano2,8, Daniel Natera-de Benito8, Beatriz Martínez-Delgado2,4, Manuel Posada-de-la-Paz2,4, Javier Alonso2,4, Purificación Marin-Reina9, Mar O’Callaghan8, Daniel Grinberg1,2†, Eva Bermejo-Sánchez4† and Susanna Balcells1,2† Abstract Background: Pathogenic variants of the lysine acetyltransferase 6A or KAT6A gene are associated with a newly identified neurodevelopmental disorder characterized mainly by intellectual disability of variable severity and speech delay, hypotonia, and heart and eye malformations. Although loss of function (LoF) mutations were initially reported as causing this disorder, missense mutations, to date always involving serine residues, have recently been associated with a form of the disorder without cardiac involvement. Results: In this study we present five new patients, four with truncating mutations and one with a missense change and the only one not presenting with cardiac anomalies. The missense change [p.(Gly359Ser)], also predicted to affect splicing by in silico tools, was functionally tested in the patient’s lymphocyte RNA revealing a splicing effect for this allele that would lead to a frameshift and premature truncation. Conclusions: An extensive revision of the clinical features of these five patients revealed high concordance with the 80 cases previously reported, including developmental delay with speech delay, feeding difficulties, hypotonia, a high bulbous nose, and recurrent infections.
    [Show full text]
  • Identification and Functional Annotation of Genes
    animals Article Identification and Functional Annotation of Genes Related to Horses’ Performance: From GWAS to Post-GWAS Thayssa O. Littiere 1 , Gustavo H. F. Castro 1, Maria del Pilar R. Rodriguez 1 , Cristina M. Bonafé 1, Ana F. B. Magalhães 1, Rafael R. Faleiros 2, João I. G. Vieira 1, Cassiane G. Santos 1 and Lucas L. Verardo 1,* 1 Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, Brazil; [email protected] (T.O.L.); [email protected] (G.H.F.C.); [email protected] (M.d.P.R.R.); [email protected] (C.M.B.); [email protected] (A.F.B.M.); [email protected] (J.I.G.V.); [email protected] (C.G.S.) 2 EQUINOVA Research Group, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-38-3532-8514 Received: 15 May 2020; Accepted: 8 July 2020; Published: 10 July 2020 Simple Summary: It is assumed that The athletic performance of horses is influenced by a large number of genes; however, to date, not many genomic studies have been performed to identify candidate genes. In this study we performed a systematic review of genome-wide association studies followed by functional analyses aiming to identify The most candidate genes for horse performance. We were successful in identifying 669 candidate genes, from which we built biological process networks. Regulatory elements (transcription factors, TFs) of these genes were identified and used to build a gene–TF network.
    [Show full text]
  • Epigenome Alterations in Aortic Valve Stenosis and Its Related Left
    Gošev et al. Clinical Epigenetics (2017) 9:106 DOI 10.1186/s13148-017-0406-7 REVIEW Open Access Epigenome alterations in aortic valve stenosis and its related left ventricular hypertrophy Igor Gošev1, Martina Zeljko2, Željko Đurić3, Ivana Nikolić4, Milorad Gošev5, Sanja Ivčević6, Dino Bešić7, Zoran Legčević7 and Frane Paić7* Abstract Aortic valve stenosis is the most common cardiac valve disease, and with current trends in the population demographics, its prevalence is likely to rise, thus posing a major health and economic burden facing the worldwide societies. Over the past decade, it has become more than clear that our traditional genetic views do not sufficiently explain the well-known link between AS, proatherogenic risk factors, flow-induced mechanical forces, and disease-prone environmental influences. Recent breakthroughs in the field of epigenetics offer us a new perspective on gene regulation, which has broadened our perspective on etiology of aortic stenosis and other aortic valve diseases. Since all known epigenetic marks are potentially reversible this perspective is especially exciting given the potential for development of successful and non-invasive therapeutic intervention and reprogramming of cells at the epigenetic level even in the early stages of disease progression. This review will examine the known relationships between four major epigenetic mechanisms: DNA methylation, posttranslational histone modification, ATP-dependent chromatin remodeling, and non-coding regulatory RNAs, and initiation and progression of AS. Numerous profiling and functional studies indicate that they could contribute to endothelial dysfunctions, disease-prone activation of monocyte-macrophage and circulatory osteoprogenitor cells and activation and osteogenic transdifferentiation of aortic valve interstitial cells, thus leading to valvular inflammation, fibrosis, and calcification, and to pressure overload-induced maladaptive myocardial remodeling and left ventricular hypertrophy.
    [Show full text]