KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD)

Total Page:16

File Type:pdf, Size:1020Kb

KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF NEPHROLOGY KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) VOLUME 7 | ISSUE 1 | JULY 2017 www.kisupplements.org KKISU_v7_i1_COVER.inddISU_v7_i1_COVER.indd 1 331-05-20171-05-2017 113:23:053:23:05 KDIGO 2017 CLINICAL PRACTICE GUIDELINE UPDATE FOR THE DIAGNOSIS, EVALUATION, PREVENTION, AND TREATMENT OF CHRONIC KIDNEY DISEASE–MINERAL AND BONE DISORDER (CKD-MBD) Kidney International Supplements (2017) 7, 1–59 1 www.kisupplements.org contents VOL 7 | ISSUE 1 | JULY 2017 KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) 3 Tables and supplementary material 6 KDIGO Executive Committee 7 Reference keys 8 CKD nomenclature 9 Conversion factors 10 Abbreviations and acronyms 11 Notice 12 Foreword 13 Work Group membership 14 Abstract 15 Summary of KDIGO CKD-MBD recommendations 19 Summary and comparison of 2017 updated and 2009 KDIGO CKD-MBD recommendations 22 Chapter 3.2: Diagnosis of CKD-MBD: bone 25 Chapter 4.1: Treatment of CKD-MBD targeted at lowering high serum phosphate and maintaining serum calcium 33 Chapter 4.2: Treatment of abnormal PTH levels in CKD-MBD 38 Chapter 4.3: Treatment of bone with bisphosphonates, other osteoporosis medications, and growth hormone 39 Chapter 5: Evaluation and treatment of kidney transplant bone disease 41 Methodological approach to the 2017 KDIGO CKD-MBD guideline update 49 Biographic and disclosure information 55 Acknowledgments 56 References 2 Kidney International Supplements (2017) 7, 1–59 www.kisupplements.org contents TABLES 24 Table 1. Utility of KDOQI and KDIGO PTH thresholds for diagnostic decision making 42 Table 2. Research questions 45 Table 3. Question-specific eligibility criteria 46 Table 4. GRADE system for grading quality of evidence for an outcome 47 Table 5. Final grade for overall quality of evidence 47 Table 6. Balance of benefits and harms 47 Table 7. Implications of the strength of a recommendation 47 Table 8. Determinants of strength of recommendation SUPPLEMENTARY MATERIAL Appendix A. PubMed search strategy Appendix B. Summary of search and review process Table S1. Summary table of randomized controlled trials examining the treatment of CKD-MBD with bisphosphonates in CKD G3a–G5: study characteristics Table S2. Summary table of randomized controlled trials examining the treatment of CKD-MBD with bisphosphonates in CKD G3a–G5: study population characteristics Table S3. Summary table of randomized controlled trials examining the treatment of CKD-MBD with bisphosphonates in CKD G3a–G5: results Table S4. Summary table of randomized controlled trials examining the treatment of CKD-MBD with bisphosphonates in CKD G3a–G5: quality Table S5. Evidence matrix of randomized controlled trials examining the treatment of CKD-MBD with bisphosphonates in CKD G3a–G5 Table S6. Evidence profile of randomized controlled trials examining the treatment of CKD-MBD with bisphosphonates in CKD G3a–G5 Table S7. Summary table of studies evaluating the ability of bone mineral density results to predict fracture or renal osteodystrophy among patients with CKD G3a–G5: study characteristics Table S8. Summary table of studies evaluating the ability of bone mineral density results to predict fracture or renal osteodystrophy among patients with CKD G3a–G5: study population characteristics Table S9. Summary table of studies evaluating the ability of bone mineral density results to predict fracture or renal osteodystrophy among patients with CKD G3a–G5: results Table S10. Summary table of studies evaluating the ability of bone mineral density results to predict fracture or renal osteodystrophy among patients with CKD G3a–G5: quality Table S11. Evidence matrix of studies evaluating the ability of bone mineral density results to predict fracture or renal osteodystrophy among patients with CKD G3a–G5 Table S12. Evidence profile of studies evaluating the ability of bone mineral density results to predict fracture or renal osteodystrophy among patients with CKD G3a–G5 Table S13. Summary table of randomized controlled trials examining the treatment of CKD-MBD with varying dialysate calcium concentration levels in CKD G5D: study characteristics Table S14. Summary table of randomized controlled trials examining the treatment of CKD-MBD with varying dialysate calcium concentration levels in CKD G5D: study population characteristics Table S15. Summary table of randomized controlled trials examining the treatment of CKD-MBD with varying dialysate calcium concentration levels in CKD G5D: results Table S16. Summary table of randomized controlled trials examining the treatment of CKD-MBD with varying dialysate calcium concentration levels in CKD G5D: quality Table S17. Evidence matrix of randomized controlled trials examining the treatment of CKD-MBD with varying dialysate calcium concentration levels in CKD G5D Kidney International Supplements (2017) 7, 1–59 3 contents www.kisupplements.org Table S18. Evidence profile of randomized controlled trials examining the treatment of CKD-MBD with varying dialysate calcium concentration levels in CKD G5D Table S19. Summary table of randomized controlled trials examining the treatment of CKD-MBD with calcium- containing phosphate binders versus calcium-free phosphate binders: study characteristics Table S20. Summary table of randomized controlled trials examining the treatment of CKD-MBD with calcium- containing phosphate binders versus calcium-free phosphate binders: study population characteristics Table S21. Summary table of randomized controlled trials examining the treatment of CKD-MBD with calcium- containing phosphate binders versus calcium-free phosphate binders: results Table S22. Summary table of randomized controlled trials examining the treatment of CKD-MBD with calcium- containing phosphate binders versus calcium-free phosphate binders: quality Table S23. Evidence matrix of randomized controlled trials examining the treatment of CKD-MBD with calcium- containing phosphate binders versus calcium-free phosphate binders Table S24. Evidence profile of randomized controlled trials examining the treatment of CKD-MBD with calcium- containing phosphate binders versus calcium-free phosphate binders Table S25. Summary table of randomized controlled trials examining the treatment of CKD-MBD with dietary phosphate: study characteristics Table S26. Summary table of randomized controlled trials examining the treatment of CKD-MBD with dietary phosphate: study population characteristics Table S27. Summary table of randomized controlled trials examining the treatment of CKD-MBD with dietary phosphate: results Table S28. Summary table of randomized controlled trials examining the treatment of CKD-MBD with dietary phosphate: quality Table S29. Evidence matrix of randomized controlled trials examining the treatment of CKD-MBD with dietary phosphate Table S30. Evidence profile of randomized controlled trials examining the treatment of CKD-MBD with dietary phosphate Table S31. Summary table of randomized controlled trials examining the treatment of PTH in CKD-MBD: study characteristics Table S32. Summary table of randomized controlled trials examining the treatment of PTH in CKD-MBD: study population characteristics Table S33. Summary table of randomized controlled trials examining the treatment of PTH in CKD-MBD: results Table S34. Summary table of randomized controlled trials examining the treatment of PTH in CKD-MBD: quality Table S35. Evidence matrix of randomized controlled trials examining the treatment of PTH in CKD-MBD Table S36. Evidence profile of randomized controlled trials examining the treatment of PTH in CKD-MBD Table S37. Summary table of randomized controlled trials examining the treatment of high levels of PTH with calcitriol or activated vitamin D analogs in CKD G3a–G5 not on dialysis: study characteristics Table S38. Summary table of randomized controlled trials examining the treatment of high levels of PTH with calcitriol or activated vitamin D analogs in CKD G3a–G5 not on dialysis: study population characteristics Table S39. Summary table of randomized controlled trials examining the treatment of high levels of PTH with calcitriol or activated vitamin D analogs in CKD G3a–G5 not on dialysis: results Table S40. Summary table of randomized controlled trials examining the treatment of high levels of PTH with calcitriol or activated vitamin D analogs in CKD G3a–G5 not on dialysis: quality Table S41. Evidence matrix of randomized controlled trials examining the treatment of high levels of PTH with calcitriol or activated vitamin D analogs in CKD G3a–G5 not on dialysis Table S42. Evidence profile of randomized controlled trials examining the treatment of high levels of PTH with calcitriol or activated vitamin D analogs in CKD G3a–G5 not on dialysis Table S43. Summary table of randomized controlled trials examining the treatment of high levels of PTH in CKD G5D: study characteristics Table S44. Summary table of randomized controlled trials examining the treatment of high levels of PTH in CKD G5D: study population characteristics 4 Kidney International Supplements (2017) 7, 1–59 www.kisupplements.org contents Table S45. Summary table of randomized controlled trials examining the treatment of high levels of PTH in CKD G5D: results Table S46. Summary table of randomized controlled trials examining the treatment
Recommended publications
  • How to Take Your Phosphate Binders
    How to take your phosphate binders Information for renal patients Oxford Kidney Unit Page 2 What are phosphate binders? To reduce the amount of phosphate you absorb from your food you may have been prescribed a medicine called a phosphate binder. Phosphate binders work by binding (attaching) to some of the phosphate in food. This will reduce the amount of phosphate being absorbed into your blood stream. A list of phosphate binders and how to take them is shown below. Phosphate binder How to take it Calcichew (calcium carbonate) Chew thoroughly 10-15 minutes before or immediately before food Renacet (calcium acetate) Phosex (calcium acetate) Osvaren (calcium acetate and magnesium carbonate) Swallow whole after the first Renagel 2-3 mouthfuls of food (sevelemer hydrochloride) Renvela tablets (sevelemer carbonate) Alucaps (aluminium hydroxide) Renvela powder Dissolve in 60ml of water and (sevelemer carbonate) take after the first 2-3 mouthfuls of food Fosrenol tablets Chew thoroughly towards the (lanthanum carbonate) end/immediately after each meal Fosrenol powder Mix with a small amount of (lanthanum carbonate) food and eat immediately Velphoro Chew thoroughly after the first (sucroferric oxyhydroxide) 2-3 mouthfuls The phosphate binder you have been prescribed is: ……………………………………………………………………………………………………………………………………………………….. Page 3 How many phosphate binders should I take? You should follow the dose that has been prescribed for you. Your renal dietitian can advise how best to match your phosphate binders to your meal pattern, as well as which snacks require a phosphate binder. What happens if I forget to take my phosphate binder? For best results, phosphate binders should be taken as instructed.
    [Show full text]
  • PARSABIV (Etelcalcetide) RATIONALE for INCLUSION IN
    PARSABIV (etelcalcetide) RATIONALE FOR INCLUSION IN PA PROGRAM Background Parsabiv (etelcalcetide) is a calcimimetic agent that increases the sensitivity of the calcium-sensing receptor to activation by extracellular calcium. These calcium-sensing receptors are on the parathyroid hormone gland and are the principal regulators of PTH (parathyroid hormone) synthesis and secretion. By increasing the sensitivity of the calcium sensing receptors, a reduction in PTH secretion is achieved. Reductions in PTH are associated with a decrease in bone turnover and bone fibrosis in patients with CKD (chronic kidney disease) on hemodialysis and uncontrolled secondary hyperparathyroidism (HPT) (1). Regulatory Status FDA approved indication: Parsabiv is a calcium-sensing receptor agonist indicated for treatment of secondary hyperparathyroidism (HPT) in adult patients with chronic kidney disease (CKD) on hemodialysis (1). Limitation of Use: Parsabiv has not been studied in adult patients with parathyroid carcinoma, primary hyperparathyroidism, or with CKD who are not on hemodialysis and is not recommended for use in these populations (1). Initial treatment with Parsabiv is contraindicated if serum calcium is less than the lower limit of the normal range. Life threatening events and fatal outcomes were reported due to hypocalcemia. Hypocalcemia can prolong QT interval, lower the threshold for seizures, and cause hypotension, worsening heart failure, and/or arrhythmia. Monitor serum calcium carefully for the occurrence of hypocalcemia during treatment. Once the maintenance dose has been established, serum calcium should be measured monthly for patients with secondary hyperparathyroidism with CKD on hemodialysis (1). In patients with secondary hyperparathyroidism with chronic kidney disease who are on hemodialysis, serum calcium should be measured within 1 week of starting Parsabiv, and intact parathyroid hormone (iPTH) should be measured 4 weeks after initiation or dose adjustment of Parsabiv (1).
    [Show full text]
  • Calcimimetic Use in Dialysis-Dependent
    Kidney360 Publish Ahead of Print, published on August 25, 2020 as doi:10.34067/KID.0003042020 Calcimimetic Use in Dialysis-Dependent Medicare Fee-for-Service Beneficiaries and Implications for Bundled Payment Mark Gooding1, Pooja Desai2, Holly Owens3, Allison A. Petrilla1, Mahesh Kambhampati1, Zach Levine1, Joanna Young1, Jack Fagan1, Robert Rubin4 1. Avalere Health, Washington, DC 2. Amgen, Inc., Global Health Economics, Thousand Oaks, CA 3. Amgen, Inc., US Government Affairs and Policy, Washington, DC 4. Georgetown University, Bethesda, MD Corresponding Author: Mark Gooding Avalere Health 1201 New York Avenue, NW Suite 1000 Washington, DC 2005 202-355-6096 [email protected] Copyright 2020 by American Society of Nephrology. Abstract: Background: Dialysis-dependent patients with secondary hyperparathyroidism (SHPT) may require calcimimetics to reduce parathyroid hormone levels to treatment goals. Medicare currently utilizes the Transitional Drug Add-on Payment Adjustment (TDAPA) designation under the ESRD Prospective Payment System (“bundled payment”) to pay for calcimimetics (the first products eligible for the adjustment); this payment designation for calcimimetics is expected to conclude after 2020. This study explores variability in calcimimetic use across key patient characteristics and its potential impact on policy options for incorporating calcimimetics permanently into the bundle. Methods: This descriptive analysis used the 100% sample of Medicare FFS Part B (outpatient) 2018 claims to describe national, regional, and patient-level variation (including race, dual eligibility, and dialysis vintage) in calcimimetic utilization among dialysis-dependent beneficiaries. Results: A total of 373,874 beneficiaries were analyzed, 28% had >90 days of calcimimetic use during 2018. At the national level, the proportion of dialysis patients utilizing calcimimetics was roughly 80% higher in African-American vs.
    [Show full text]
  • A Case of Calciphylaxis with an Unfavorable Outcome
    CASE LETTER 671 However, the present patient exhibited the peculiarity References of an intense inflammatory infiltrate in the dermis rarely seen previously. According to this case, an atypical intense 1. Sitaru C, Zillikens D. Mechanisms of blister induction by autoan- inflammation could be a distinct histopathological feature tibodies. Exp Dermatol. 2005;14:861---75. of trauma-induced pemphigus. Further research is neces- 2. Sagi L, Trau H. The Koebner phenomenon. Clin Dermatol. sary to ascertain if greater inflammation in dermis is more 2011;29:231---6. related to trauma-induced pemphigus as opposed to those 3. Jang HW, Chun SH, Lee JM, Jeon J, Hashimoto T, Kim IH. Radiotherapy-induced pemphigus vulgaris. J Dermatol. not related to trauma. 2014;41:851---2. In conclusion, this report describes a presumably new 4. Daneshpazhooh M, Fatehnejad M, Rahbar Z, Balighi K, case of trauma-induced pemphigus. To the author’s knowl- Ghandi N, Ghiasi M, et al. Trauma-induced pemphigus: a edge, there are no prior reports of pemphigus involving case series of 36 patients. J Dtsch Dermatol Ges. 2016;14: predominantly the breasts with such a peculiar dispo- 166---71. sition. It is proposed that a hypothetical continuous 5. Balighi K, Daneshpazhooh M, Azizpour A, Lajevardi V, trauma with the bra could explain this unique loca- Mohammadi F, Chams-Davatchi C. Koebner phenomenon tion. in pemphigus vulgaris patients. JAAD Case Rep. 2016;2: 419---21. Financial support Fernando Garcia-Souto None declared. Department of Dermatology, Valme University Hospital, Seville, Spain Author’s contributions E-mail: [email protected] Received 14 November 2019; accepted 5 March 2020 Fernando Garcia-Souto: Conception and planning of the manuscript; writing and critical revision of the manuscript; https://doi.org/10.1016/j.abd.2020.03.010 approval of the final version.
    [Show full text]
  • New Brunswick Drug Plans Formulary
    New Brunswick Drug Plans Formulary August 2019 Administered by Medavie Blue Cross on Behalf of the Government of New Brunswick TABLE OF CONTENTS Page Introduction.............................................................................................................................................I New Brunswick Drug Plans....................................................................................................................II Exclusions............................................................................................................................................IV Legend..................................................................................................................................................V Anatomical Therapeutic Chemical (ATC) Classification of Drugs A Alimentary Tract and Metabolism 1 B Blood and Blood Forming Organs 23 C Cardiovascular System 31 D Dermatologicals 81 G Genito Urinary System and Sex Hormones 89 H Systemic Hormonal Preparations excluding Sex Hormones 100 J Antiinfectives for Systemic Use 107 L Antineoplastic and Immunomodulating Agents 129 M Musculo-Skeletal System 147 N Nervous System 156 P Antiparasitic Products, Insecticides and Repellants 223 R Respiratory System 225 S Sensory Organs 234 V Various 240 Appendices I-A Abbreviations of Dosage forms.....................................................................A - 1 I-B Abbreviations of Routes................................................................................A - 4 I-C Abbreviations of Units...................................................................................A
    [Show full text]
  • Osteomalacia and Osteoporosis D
    Postgrad. med.J. (August 1968) 44, 621-625. Postgrad Med J: first published as 10.1136/pgmj.44.514.621 on 1 August 1968. Downloaded from Osteomalacia and osteoporosis D. B. MORGAN Department of Clinical Investigation, University ofLeeds OSTEOMALACIA and osteoporosis are still some- in osteomalacia is an increase in the alkaline times confused because both diseases lead to a phosphatase activity in the blood (SAP); there deficiency of calcium which can be detected on may also be a low serum phosphorus or a low radiographs of the skeleton. serum calcium. This lack of calcium is the only feature Our experience with the biopsy of bone is that common to the two diseases which are in all a large excess of uncalcified bone tissue (osteoid), other ways easily distinguishable. which is the classic histological feature of osteo- malacia, is only found in patients with the other Osteomalacia typical features of the disease, in particular the Osteomalacia will be discussed first, because it clinical ones (Morgan et al., 1967a). Whether or is a clearly defined disease which can be cured. not more subtle histological techniques will detect Osteomalacia is the result of an imbalance be- earlier stages of the disease remains to be seen. tween the supply of and the demand for vitamin Bone pains, muscle weakness, Looser's zones, D. The the following description of disease is raised SAP and low serum phosphate are the Protected by copyright. based on our experience of twenty-two patients most reliable aids to the diagnosis of osteomalacia, with osteomalacia after gastrectomy; there is no and approximately in that order.
    [Show full text]
  • Assessment Report
    17 September 2020 EMA/522604/2020 Corr.1 Committee for Medicinal Products for Human Use (CHMP) Assessment report Velphoro Common name: sucroferric oxyhydroxide Procedure No. EMEA/H/C/002705/X/0020/G Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us An agency of the European Union Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 © European Medicines Agency, 2021. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 6 1.1. Submission of the dossier ...................................................................................... 6 1.2. Steps taken for the assessment of the product ......................................................... 7 2. Scientific discussion ................................................................................ 8 2.1. Problem statement ............................................................................................... 8 2.1.1. Disease or condition ........................................................................................... 8 2.1.2. Epidemiology and risk factors, screening tools/prevention ...................................... 8 2.1.3. Biologic features ...............................................................................................
    [Show full text]
  • Extensive Skin Necrosis Ulcers and Systemic Vascular Insufficiency Syndrome with Calciphylaxis: a Case Report
    Urology & Nephrology Open Access Journal Case Report Open Access Extensive skin necrosis ulcers and systemic vascular insufficiency syndrome with calciphylaxis: a case report Abstract Volume 5 Issue 4 - 2017 Calciphylaxis is a part of systemic vascular calcification that is commonly seen in patients 1 2,3 with end stage renal disease. It presents as skin ischemia and necrosis due to calcification Alexander M Swan, Nancy J Fried, 2,3 2 of dermal arterioles. There is no consensus on optimal treatment and the condition is Charisma Lee, Thein Aung, Zaw Nyein associated with a high mortality rate. Here we report a patient on peritoneal dialysis with Aye,2 Deepthi Gunasekaran2 a high calcium-phosphorus product and extensive calciphylaxis involving the extremities, 1Wilkes University, USA back and scalp. We used a multi-interventional approach to treat this patient with a good 2Nephrology Hypertension Renal transplant and Renal Therapy, outcome. The underlying pathology of systemic vascular calcification and insufficiency USA 3 may involve other vascular beds such as the coronary and cerebral vasculature. Early Rutgers New Jersey Medical School, USA detection of these conditions may improve outcomes in these patents. Correspondence: Alexander M Swan, AA Prof of Medicine, Keywords: necrotic ulcer of skin, calciphylaxis, calcium-phosphorus product, vascular Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, calcification, systemic vascular insufficiency NJ 07103, President, Garden State Kidney Center, 345 Main Street, Woodbridge, NJ 07095, USA, Tel 732-750-5555, Fax 732- 750-5550, Email Received: November 10, 2017 | Published: October 26, 2017 Abbreviations: ESRD, end-stage renal disease; CUA, calcific secondary to hypertension and peritoneal dialys is was initiated 5years uremic arterilopathy; LMWH, low molecular weight heparin ago after multiple access problems with hemodialysis.
    [Show full text]
  • Parsabiv, INN-Etelcalcetide
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Parsabiv 2.5 mg solution for injection Parsabiv 5 mg solution for injection Parsabiv 10 mg solution for injection 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Parsabiv 2.5 mg solution for injection Each vial contains 2.5 mg of etelcalcetide (as hydrochloride) in 0.5 mL of solution. Each mL contains 5 mg etelcalcetide. Parsabiv 5 mg solution for injection Each vial contains 5 mg of etelcalcetide (as hydrochloride) in 1 mL of solution. Each mL contains 5 mg etelcalcetide. Parsabiv 10 mg solution for injection Each vial contains 10 mg of etelcalcetide (as hydrochloride) in 2 mL of solution. Each mL contains 5 mg etelcalcetide. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Solution for injection. Clear colourless solution. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Parsabiv is indicated for the treatment of secondary hyperparathyroidism (SHPT) in adult patients with chronic kidney disease (CKD) on haemodialysis therapy. 4.2 Posology and method of administration Posology The recommended initial dose of etelcalcetide is 5 mg administered by bolus injection 3 times per week. Corrected serum calcium should be at or above the lower limit of the normal range prior to administration of first dose of Parsabiv, a dose increase, or reinitiation after a dose stop (see also dose adjustments based on serum calcium levels). Parsabiv should not be administered more frequently than 3 times per week. Dose titration Parsabiv should be titrated so that doses are individualised between 2.5 mg and 15 mg.
    [Show full text]
  • Parsabiv® (Etelcalcetide) – Oxford Clinical Policy
    UnitedHealthcare® Oxford Clinical Policy Parsabiv® (Etelcalcetide) Policy Number: PHARMACY 313.7 T2 Effective Date: April 1, 2021 Instructions for Use Table of Contents Page Related Policies Coverage Rationale ....................................................................... 1 • Drug Coverage Guidelines Prior Authorization Requirements ................................................ 2 Applicable Codes .......................................................................... 2 Background.................................................................................... 2 Clinical Evidence ........................................................................... 2 U.S. Food and Drug Administration ............................................. 3 References ..................................................................................... 3 Policy History/Revision Information ............................................. 3 Instructions for Use ....................................................................... 4 Coverage Rationale Initial Therapy Parsabiv (etelcalcetide) is proven for the treatment of secondary hyperparathyroidism with chronic kidney disease when the following criteria are met: Diagnosis of secondary hyperparathyroidism with chronic kidney disease; and Patient is on dialysis; and Patient is not receiving Parsabiv (etelcalcetide) in combination with Sensipar (cinacalcet hydrochloride); and Prescribed by or in consultation with an endocrinologist or nephrologist; and Dosing is in accordance with the United
    [Show full text]
  • Metabolic Bone Disease 5
    g Metabolic Bone Disease 5 Introduction, 272 History and examination, 275 Osteoporosis, 283 STRUCTURE AND FUNCTION, 272 Investigation, 276 Paget’s disease of bone, 288 Structure of bone, 272 Management, 279 Hyperparathyroidism, 290 Function of bone, 272 DISEASES AND THEIR MANAGEMENT, 280 Hypercalcaemia of malignancy, 293 APPROACH TO THE PATIENT, 275 Rickets and osteomalacia, 280 Hypocalcaemia, 295 Introduction Calcium- and phosphate-containing crystals: set in a structure• similar to hydroxyapatite and deposited in holes Metabolic bone diseases are a heterogeneous group of between adjacent collagen fibrils, which provide rigidity. disorders characterized by abnormalities in calcium At least 11 non-collagenous matrix proteins (e.g. osteo- metabolism and/or bone cell physiology. They lead to an calcin,• osteonectin): these form the ground substance altered serum calcium concentration and/or skeletal fail- and include glycoproteins and proteoglycans. Their exact ure. The most common type of metabolic bone disease in function is not yet defined, but they are thought to be developed countries is osteoporosis. Because osteoporosis involved in calcification. is essentially a disease of the elderly, the prevalence of this condition is increasing as the average age of people Cellular constituents in developed countries rises. Osteoporotic fractures may lead to loss of independence in the elderly and is imposing Mesenchymal-derived osteoblast lineage: consist of an ever-increasing social and economic burden on society. osteoblasts,• osteocytes and bone-lining cells. Osteoblasts Other pathological processes that affect the skeleton, some synthesize organic matrix in the production of new bone. of which are also relatively common, are summarized in Osteoclasts: derived from haemopoietic precursors, Table 3.20 (see Chapter 4).
    [Show full text]
  • Clinical and Biochemical Outcomes of Cinacalcet Treatment of Familial
    Rasmussen et al. Journal of Medical Case Reports 2011, 5:564 JOURNAL OF MEDICAL http://www.jmedicalcasereports.com/content/5/1/564 CASE REPORTS CASEREPORT Open Access Clinical and biochemical outcomes of cinacalcet treatment of familial hypocalciuric hypercalcemia: a case series Anne Qvist Rasmussen1*, Niklas Rye Jørgensen1,2 and Peter Schwarz1,3 Abstract Introduction: Familial hypocalciuric hypercalcemia is a rare benign autosomal-dominant genetic disease with high penetrance. In most cases, patients with familial hypocalciuric hypercalcemia experience unspecific physical discomfort or asymptomatic disease. These patients are typically characterized by mild to moderately increased blood ionized calcium and a normal to slightly elevated serum parathyroid hormone. Case presentation: Four female patients with familial hypocalciuric hypercalcemia with inactivating mutations in the CaSR gene were included in the treatment study. Three patients were related: two were siblings and one was the daughter of one of these. The ages of the related patients were 51 years, 57 years and 35 years. All three patients were carriers of the same mutation. The fourth patient, unrelated to the others, was 53 years old, and a carrier of a novel and previously unknown mutation leading to familial hypocalciuric hypercalcemia. All four patients were Caucasians of Danish nationality. Biochemically, all patients had elevated blood ionized calcium, serum parathyroid hormone, serum magnesium and total serum calcium, except one, whose serum parathyroid hormone was within the normal range prior to treatment. All patients were treated with cinacalcet in a dosage of 30 mg to 60 mg per day. Conclusion: Three months after the initiation of cinacalcet treatment, all our patients experiencing clinical signs of hypercalcemia had improved in self -reported well-being and in biochemical parameters.
    [Show full text]