Consequences of Very Low Metallicity for Massive Stars and the Galaxies They Inhabit /C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Luminous Blue Variables
Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs. -
Hawking Radiation
a brief history of andreas müller student seminar theory group max camenzind lsw heidelberg mpia & lsw january 2004 http://www.lsw.uni-heidelberg.de/users/amueller talktalk organisationorganisation basics ☺ standard knowledge advanced knowledge edge of knowledge and verifiability mindmind mapmap whatwhat isis aa blackblack hole?hole? black escape velocity c hole singularity in space-time notion „black hole“ from relativist john archibald wheeler (1968), but first speculation from geologist and astronomer john michell (1783) ☺ blackblack holesholes inin relativityrelativity solutions of the vacuum field equations of einsteins general relativity (1915) Gµν = 0 some history: schwarzschild 1916 (static, neutral) reissner-nordstrøm 1918 (static, electrically charged) kerr 1963 (rotating, neutral) kerr-newman 1965 (rotating, charged) all are petrov type-d space-times plug-in metric gµν to verify solution ;-) ☺ black hole mass hidden in (point or ring) singularity blackblack holesholes havehave nono hairhair!! schwarzschild {M} reissner-nordstrom {M,Q} kerr {M,a} kerr-newman {M,a,Q} wheeler: no-hair theorem ☺ blackblack holesholes –– schwarzschildschwarzschild vs.vs. kerrkerr ☺ blackblack holesholes –– kerrkerr inin boyerboyer--lindquistlindquist black hole mass M spin parameter a lapse function delta potential generalized radius sigma potential frame-dragging frequency cylindrical radius blackblack holehole topologytopology blackblack holehole –– characteristiccharacteristic radiiradii G = M = c = 1 blackblack holehole -- -
Scattering on Compact Body Spacetimes
Scattering on compact body spacetimes Thomas Paul Stratton A thesis submitted for the degree of Doctor of Philosophy School of Mathematics and Statistics University of Sheffield March 2020 Summary In this thesis we study the propagation of scalar and gravitational waves on compact body spacetimes. In particular, we consider spacetimes that model neutron stars, black holes, and other speculative exotic compact objects such as black holes with near horizon modifications. We focus on the behaviour of time-independent perturbations, and the scattering of plane waves. First, we consider scattering by a generic compact body. We recap the scattering theory for scalar and gravitational waves, using a metric perturbation formalism for the latter. We derive the scattering and absorption cross sections using the partial-wave approach, and discuss some approximations. The theory of this chapter is applied to specific examples in the remainder of the thesis. The next chapter is an investigation of scalar plane wave scattering by a constant density star. We compute the scattering cross section numerically, and discuss a semiclassical, high-frequency analysis, as well as a geometric optics approach. The semiclassical results are compared to the numerics, and used to gain some physical insight into the scattering cross section interference pattern. We then generalise to stellar models with a polytropic equation of state, and gravitational plane wave scattering. This entails solving the metric per- turbation problem for the interior of a star, which we accomplish numerically. We also consider the near field scattering profile for a scalar wave, and the cor- respondence to ray scattering and the formation of a downstream cusp caustic. -
Redalyc. Mass Loss from Luminous Blue Variables and Quasi-Periodic
Revista Mexicana de Astronomía y Astrofísica ISSN: 0185-1101 [email protected] Instituto de Astronomía México Vink, Jorick S.; Kotak, Rubina Mass loss from Luminous Blue Variables and Quasi-periodic Modulations of Radio Supernovae Revista Mexicana de Astronomía y Astrofísica, vol. 30, agosto, 2007, pp. 17-22 Instituto de Astronomía Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57130005 Abstract Massive stars, supernovae (SNe), and long-duration gamma-ray bursts (GRBs) have a huge impact on their environment. Despite their importance, a comprehensive knowledge of which massive stars produce which SN/GRB is hitherto lacking. We present a brief overview about our knowledge of mass loss in the Hertzsprung- Russell Diagram (HRD) covering evolutionary phases of the OB main sequence, the unstable Luminous Blue Variable (LBV) stage, and the Wolf-Rayet (WR) phase. Despite the fact that metals produced by \selfenrichment" in WR atmospheres exceed the initial { host galaxy { metallicity, by orders of magnitude, a particularly strong dependence of the mass-loss rate on the initial metallicity is found for WR stars at subsolar metallicities (1/10 { 1/100 solar). This provides a signicant boost to the collapsar model for GRBs, as it may present a viable mechanism to prevent the loss of angular momentum by stellar winds at low metallicity, whilst strong Galactic WR winds may inhibit GRBs occurring at solar metallicities. Furthermore, we discuss recently reported quasi-sinusoidal modulations in the radio lightcurves -
The Impact of the Astro2010 Recommendations on Variable Star Science
The Impact of the Astro2010 Recommendations on Variable Star Science Corresponding Authors Lucianne M. Walkowicz Department of Astronomy, University of California Berkeley [email protected] phone: (510) 642–6931 Andrew C. Becker Department of Astronomy, University of Washington [email protected] phone: (206) 685–0542 Authors Scott F. Anderson, Department of Astronomy, University of Washington Joshua S. Bloom, Department of Astronomy, University of California Berkeley Leonid Georgiev, Universidad Autonoma de Mexico Josh Grindlay, Harvard–Smithsonian Center for Astrophysics Steve Howell, National Optical Astronomy Observatory Knox Long, Space Telescope Science Institute Anjum Mukadam, Department of Astronomy, University of Washington Andrej Prsa,ˇ Villanova University Joshua Pepper, Villanova University Arne Rau, California Institute of Technology Branimir Sesar, Department of Astronomy, University of Washington Nicole Silvestri, Department of Astronomy, University of Washington Nathan Smith, Department of Astronomy, University of California Berkeley Keivan Stassun, Vanderbilt University Paula Szkody, Department of Astronomy, University of Washington Science Frontier Panels: Stars and Stellar Evolution (SSE) February 16, 2009 Abstract The next decade of survey astronomy has the potential to transform our knowledge of variable stars. Stellar variability underpins our knowledge of the cosmological distance ladder, and provides direct tests of stellar formation and evolution theory. Variable stars can also be used to probe the fundamental physics of gravity and degenerate material in ways that are otherwise impossible in the laboratory. The computational and engineering advances of the past decade have made large–scale, time–domain surveys an immediate reality. Some surveys proposed for the next decade promise to gather more data than in the prior cumulative history of astronomy. -
Chapter 3 – Astrospheres, Stellar Winds, and the Interstellar Medium
3 Astrospheres, stellar winds, and the interstellar medium BRIAN E. WOOD AND JEFFREY L. LINSKY 3.1 The spatial extent of the solar wind While orbiting the Sun, the Earth and the other planers in our solar system are ex posed to an outflow of plasma from the Sun. This is the solar wi nd, which largely determines the particle environment of the planets, as well as their magnetospheric properties. Long-tenn exposure Lo the solar wind may have had signjficant cffectc; on planetary atmospheres in some cases. Mars is a particularly interesting example, as the Martian atmosphere was once much thicker than it is today, and the erosive effects of solar wind exposure are commonly believed to be responsible for itc; depletion (see Ch. 8; also Jakosky et al.. 1994; Atreya et al., 2013). The solar wind does not expand indefinitely. Eventually it runs into the inter stellar medium (ISM), the ex tre mely low-particle-density e nvironment that exists in between the stars. Our Sun is moving relative to the ISM that surrounds the planetary system, so we see a fl ow of interstellar matter in the heliocentric rest frame, coming from the direction of the constellation Ophiuchus. The interaction between the solar wind and the ISM flow determines the large-scale structure of our he liosphere. which basically defines the extent of the solar wind's reach into our Galactic environment. Other stars are naturally surrounded by their own "astro spheres" (allernatively "asterospheres"') defined by the strength of their own stellar winds, the nature of the ISM in their Galactic neighborhoods, and their rnlative motion. -
Jsolated Stars of Low Metallicity
galaxies Article Jsolated Stars of Low Metallicity Efrat Sabach Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel; [email protected] Received: 15 July 2018; Accepted: 9 August 2018; Published: 15 August 2018 Abstract: We study the effects of a reduced mass-loss rate on the evolution of low metallicity Jsolated stars, following our earlier classification for angular momentum (J) isolated stars. By using the stellar evolution code MESA we study the evolution with different mass-loss rate efficiencies for stars with low metallicities of Z = 0.001 and Z = 0.004, and compare with the evolution with solar metallicity, Z = 0.02. We further study the possibility for late asymptomatic giant branch (AGB)—planet interaction and its possible effects on the properties of the planetary nebula (PN). We find for all metallicities that only with a reduced mass-loss rate an interaction with a low mass companion might take place during the AGB phase of the star. The interaction will most likely shape an elliptical PN. The maximum post-AGB luminosities obtained, both for solar metallicity and low metallicities, reach high values corresponding to the enigmatic finding of the PN luminosity function. Keywords: late stage stellar evolution; planetary nebulae; binarity; stellar evolution 1. Introduction Jsolated stars are stars that do not gain much angular momentum along their post main sequence evolution from a companion, either stellar or substellar, thus resulting with a lower mass-loss rate compared to non-Jsolated stars [1]. As previously stated in Sabach and Soker [1,2], the fitting formulae of the mass-loss rates for red giant branch (RGB) and asymptotic giant branch (AGB) single stars are set empirically by contaminated samples of stars that are classified as “single stars” but underwent an interaction with a companion early on, increasing the mass-loss rate to the observed rates. -
Asymptotic-Giant-Branch Models at Very Low Metallicity
CSIRO PUBLISHING www.publish.csiro.au/journals/pasa Publications of the Astronomical Society of Australia, 2009, 26, 139–144 Asymptotic-Giant-Branch Models at Very Low Metallicity S. CristalloA,E, L. PiersantiA, O. StranieroA, R. GallinoB, I. DomínguezC, and F. KäppelerD A Osservatorio Astronomico di Teramo (INAF), via Maggini 64100 Teramo, Italy B Dipartimento di Fisica Generale, Universitá di Torino, via P. Giuria 1, 10125 Torino, Italy C Departamento de Física Teórica y del Cosmos, Universidad de Granada, 18071 Granada, Spain D Forschungszentrum Karlsruhe, Institut für Kernphysik Postfach 3460, D-76021 Karlsruhe, Germany E Corresponding author. Email: [email protected] Received 2009 January 9, accepted 2009 April 28 Abstract: In this paper we present the evolution of a low-mass model (initial mass M = 1.5 M) with a very low metal content (Z = 5 × 10−5, equivalent to [Fe/H] =−2.44). We find that, at the beginning of the Asymptotic Giant Branch (AGB) phase, protons are ingested from the envelope in the underlying convective shell generated by the first fully developed thermal pulse. This peculiar phase is followed by a deep third dredge-up episode, which carries to the surface the freshly synthesized 13C, 14N and 7Li. A standard thermally pulsingAGB (TP-AGB) evolution then follows. During the proton-ingestion phase, a very high neutron density is attained and the s process is efficiently activated. We therefore adopt a nuclear network of about 700 isotopes, linked by more than 1200 reactions, and we couple it with the physical evolution of the model. We discuss in detail the evolution of the surface chemical composition, starting from the proton ingestion up to the end of the TP-AGB phase. -
What Is a Black Hole?
National Aeronautics and Space Administration Can black holes be used to travel through spacetime? Where are black holes located? It’s a science fiction cliché to use black holes to travel through space. Dive into one, the story goes, Black holes are everywhere! As far as astronomers can tell, there are prob- and you can pop out somewhere else in the Universe, having traveled thousands of light years in the blink of an eye. ably millions of black holes in our Milky Way Galaxy alone. That may sound like a lot, but the nearest one discovered is still 1600 light years away — a But that’s fiction. In reality, this probably won’t work. Black holes twist space and time, in a sense punching a hole in the fabric of the pretty fair distance, about 16 quadrillion kilometers! That’s certainly too far Universe. There is a theory that if this happens, a black hole can form a tunnel in space called a wormhole (because it’s like a tunnel away to affect us. The giant black hole in the center of the Galaxy is even formed by a worm as it eats its way through an apple). If you enter a wormhole, you’ll pop out someplace else far away, not needing to farther away: at a distance of 26,000 light years, we’re in no danger of travel through the actual intervening distance. being sucked into the vortex. The neutron star companion While wormholes appear to be possible mathematically, they would be violently unstable, or need to be made of theoretical For a black hole to be dangerous, it would have to be very close, probably of a black hole spirals in and is destroyed as it merges with the forms of matter which may not occur in nature. -
Lecture 17: the Solar Wind O Topics to Be Covered
Lecture 17: The solar wind o Topics to be covered: o Solar wind o Inteplanetary magnetic field The solar wind o Biermann (1951) noticed that many comets showed excess ionization and abrupt changes in the outflow of material in their tails - is this due to a solar wind? o Assumed comet orbit perpendicular to line-of-sight (vperp) and tail at angle ! => tan! = vperp/vr o From observations, tan ! ~ 0.074 o But vperp is a projection of vorbit -1 => vperp = vorbit sin ! ~ 33 km s -1 o From 600 comets, vr ~ 450 km s . o See Uni. New Hampshire course (Physics 954) for further details: http://www-ssg.sr.unh.edu/Physics954/Syllabus.html The solar wind o STEREO satellite image sequences of comet tail buffeting and disconnection. Parker’s solar wind o Parker (1958) assumed that the outflow from the Sun is steady, spherically symmetric and isothermal. o As PSun>>PISM => must drive a flow. o Chapman (1957) considered corona to be in hydrostatic equibrium: dP = −ρg dr dP GMS ρ + 2 = 0 Eqn. 1 dr r o If first term >> than second €=> produces an outflow: € dP GM ρ dv + S + ρ = 0 Eqn. 2 dr r2 dt o This is the equation for a steadily expanding solar/stellar wind. € Parker’s solar wind (cont.) dv dv dr dv dP GM ρ dv o As, = = v => + S + ρv = 0 dt dr dt dr dr r2 dr dv 1 dP GM or v + + S = 0 Eqn. 3 dr ρ dr r2 € € o Called the momentum equation. € o Eqn. 3 describes acceleration (1st term) of the gas due to a pressure gradient (2nd term) and gravity (3rd term). -
1 Stellar Winds and Magnetic Fields
1 Stellar winds and magnetic fields by Viggo Hansteen The solar wind is responsible for maintaining the heliosphere, and for being the driving agent in the magnetospheres of the planets but also for being the agent by which the Sun has shed angular momentum during the eons since its formation. We can assume that other cool stars with active corona have similar winds that play the same roles for those stars (1). The decade since the launch of SOHO has seen a large change in our understanding of the themrally driven winds such as the solar wind, due to both theoretical, computational, and observational advances. Recent solar wind models are characterized by low coronal electron temperatures while proton, α-particle, and minor ion temperatures are expected to be quite high and perhaps anisotropic. This entails that the electric field is relatively unimportant and that one quite naturally is able to obtain solar wind outflow that has both a high asymptotic flow speed and maintaining a low mass flux. In this chapter we will explain why these changes have come about and outline the questions now facing thermal wind astrophysicists. The progress we have seen in the last decade is largely due observations made with instruments onboard Ulysses (2) and SOHO (3). These observations have spawned a new understanding of solar wind energetics, and the consideration of the chromosphere, corona, and solar wind as a unified system. We will begin by giving our own, highly biased, \pocket history" of solar wind theory highlighting the problems that had to be resolved in order to make the original Parker formulation of thermally driven winds conform with observational results. -
The Solar Neighbourhood Age-Metallicity Relation – Does It Exist??,?? S
A&A 377, 911–924 (2001) Astronomy DOI: 10.1051/0004-6361:20011119 & c ESO 2001 Astrophysics The solar neighbourhood age-metallicity relation – Does it exist??,?? S. Feltzing1,J.Holmberg1, and J. R. Hurley2 1 Lund Observatory, Box 43, 221 00 Lund, Sweden e-mail: sofia, [email protected] 2 AMNH Department of Astrophysics, 79th Street at Central Park West New York, NY, 10024-5192, USA e-mail: [email protected] Received 15 August 2000 / Accepted 6 August 2001 Abstract. We derive stellar ages, from evolutionary tracks, and metallicities, from Str¨omgren photometry, for a sample of 5828 dwarf and sub-dwarf stars from the Hipparcos Catalogue. This stellar disk sample is used to investigate the age-metallicity diagram in the solar neighbourhood. Such diagrams are often used to derive a so called age-metallicity relation. Because of the size of our sample, we are able to quantify the impact on such diagrams, and derived relations, due to different selection effects. Some of these effects are of a more subtle sort, giving rise to erroneous conclusions. In particular we show that [1] the age-metallicity diagram is well populated at all ages and especially that old, metal-rich stars do exist, [2] the scatter in metallicity at any given age is larger than the observational errors, [3] the exclusion of cooler dwarf stars from an age-metallicity sample preferentially excludes old, metal-rich stars, depleting the upper right-hand corner of the age-metallicity diagram, [4] the distance dependence found in the Edvardsson et al. sample by Garnett & Kobulnicky is an expected artifact due to the construction of the original sample.