Draft version October 22, 2018 Preprint typeset using LATEX style emulateapj ON THE MAXIMUM MASS OF STELLAR BLACK HOLES Krzysztof Belczynski1,2,3, Tomasz Bulik 3,4, Chris L. Fryer1,5, Ashley Ruiter6,7, Francesca Valsecchi8, Jorick S. Vink9, Jarrod R. Hurley10 1 Los Alamos National Lab, P.O. Box 1663, MS 466, Los Alamos, NM 87545 2 Oppenheimer Fellow 3 Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland 4 Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland 5 Physics Department, University of Arizona, Tucson, AZ 85721 6 New Mexico State University, Dept of Astronomy, 1320 Frenger Mall, Las Cruces, NM 88003 7 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (SAO Predoctoral Fellow) 8 Northwestern University, Dept of Physics & Astronomy, 2145 Sheridan Rd, Evanston, IL 60208 9 Armagh Observatory, College Hill, Armagh BT61, 9DG, Northern Ireland, United Kingdom 10 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
[email protected],
[email protected],
[email protected],
[email protected],
[email protected],
[email protected],
[email protected] Draft version October 22, 2018 ABSTRACT We present the spectrum of compact object masses: neutron stars and black holes that originate from single stars in different environments. In particular, we calculate the dependence of maximum black hole mass on metallicity and on some specific wind mass loss rates (e.g., Hurley et al. and Vink et al.). Our calculations show that the highest mass black holes observed in the Galaxy Mbh ∼ 15 M⊙ in the high metallicity environment (Z = Z⊙ = 0.02) can be explained with stellar models and the wind mass loss rates adopted here.