Mitochondrial Genome? SAMUEL Karlint and ALLAN M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome Analysis of the Smallest Free-Living Eukaryote Ostreococcus
Genome analysis of the smallest free-living eukaryote SEE COMMENTARY Ostreococcus tauri unveils many unique features Evelyne Derellea,b, Conchita Ferrazb,c, Stephane Rombautsb,d, Pierre Rouze´ b,e, Alexandra Z. Wordenf, Steven Robbensd, Fre´ de´ ric Partenskyg, Sven Degroeved,h, Sophie Echeynie´ c, Richard Cookei, Yvan Saeysd, Jan Wuytsd, Kamel Jabbarij, Chris Bowlerk, Olivier Panaudi, BenoıˆtPie´ gui, Steven G. Ballk, Jean-Philippe Ralk, Franc¸ois-Yves Bougeta, Gwenael Piganeaua, Bernard De Baetsh, Andre´ Picarda,l, Michel Delsenyi, Jacques Demaillec, Yves Van de Peerd,m, and Herve´ Moreaua,m aObservatoire Oce´anologique, Laboratoire Arago, Unite´Mixte de Recherche 7628, Centre National de la Recherche Scientifique–Universite´Pierre et Marie Curie-Paris 6, BP44, 66651 Banyuls sur Mer Cedex, France; cInstitut de Ge´ne´ tique Humaine, Unite´Propre de Recherche 1142, Centre National de la Recherche Scientifique, 141 Rue de Cardonille, 34396 Montpellier Cedex 5, France; dDepartment of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology and eLaboratoire Associe´de l’Institut National de la Recherche Agronomique (France), Ghent University, Technologiepark 927, 9052 Ghent, Belgium; fRosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149; gStation Biologique, Unite´Mixte de Recherche 7144, Centre National de la Recherche Scientifique–Universite´Pierre et Marie Curie-Paris 6, BP74, 29682 Roscoff Cedex, France; hDepartment of Applied Mathematics, Biometrics and -
Bacterial Communities of the Upper Respiratory Tract of Turkeys
www.nature.com/scientificreports OPEN Bacterial communities of the upper respiratory tract of turkeys Olimpia Kursa1*, Grzegorz Tomczyk1, Anna Sawicka‑Durkalec1, Aleksandra Giza2 & Magdalena Słomiany‑Szwarc2 The respiratory tracts of turkeys play important roles in the overall health and performance of the birds. Understanding the bacterial communities present in the respiratory tracts of turkeys can be helpful to better understand the interactions between commensal or symbiotic microorganisms and other pathogenic bacteria or viral infections. The aim of this study was the characterization of the bacterial communities of upper respiratory tracks in commercial turkeys using NGS sequencing by the amplifcation of 16S rRNA gene with primers designed for hypervariable regions V3 and V4 (MiSeq, Illumina). From 10 phyla identifed in upper respiratory tract in turkeys, the most dominated phyla were Firmicutes and Proteobacteria. Diferences in composition of bacterial diversity were found at the family and genus level. At the genus level, the turkey sequences present in respiratory tract represent 144 established bacteria. Several respiratory pathogens that contribute to the development of infections in the respiratory system of birds were identifed, including the presence of Ornithobacterium and Mycoplasma OTUs. These results obtained in this study supply information about bacterial composition and diversity of the turkey upper respiratory tract. Knowledge about bacteria present in the respiratory tract and the roles they can play in infections can be useful in controlling, diagnosing and treating commercial turkey focks. Next-generation sequencing has resulted in a marked increase in culture-independent studies characterizing the microbiome of humans and animals1–6. Much of these works have been focused on the gut microbiome of humans and other production animals 7–11. -
Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes Gabriel A.B
Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes Gabriel A.B. Marais, Bérénice Batut, Vincent Daubin To cite this version: Gabriel A.B. Marais, Bérénice Batut, Vincent Daubin. Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes. Current Biology - CB, Elsevier, 2020, 30 (19), pp.R1083- R1085. 10.1016/j.cub.2020.07.093. hal-03066151 HAL Id: hal-03066151 https://hal.archives-ouvertes.fr/hal-03066151 Submitted on 15 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DISPATCH Genome Evolution: Mutation is the Main Driver of Genome Size in Prokaryotes Gabriel A.B. Marais1, Bérénice Batut2, and Vincent Daubin1 1Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F- 69622 Villeurbanne, France 2Albert-Ludwigs-University Freiburg, Department of Computer Science, 79110 Freiburg, Germany Summary Despite intense research on genome architecture since the 2000’s, genome-size evolution in prokaryotes has remained puzzling. Using a phylogenetic approach, a new study found that increased mutation rate is associated with gene loss and reduced genome size in prokaryotes. In 2003 [1] and later in 2007 in his book “The Origins of Genome Architecture” [2], Lynch developed his influential theory that a genome’s complexity, represented by its size, is primarily the result of genetic drift. -
Ehrlichiosis in Brazil
Review Article Rev. Bras. Parasitol. Vet., Jaboticabal, v. 20, n. 1, p. 1-12, jan.-mar. 2011 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Ehrlichiosis in Brazil Erliquiose no Brasil Rafael Felipe da Costa Vieira1; Alexander Welker Biondo2,3; Ana Marcia Sá Guimarães4; Andrea Pires dos Santos4; Rodrigo Pires dos Santos5; Leonardo Hermes Dutra1; Pedro Paulo Vissotto de Paiva Diniz6; Helio Autran de Morais7; Joanne Belle Messick4; Marcelo Bahia Labruna8; Odilon Vidotto1* 1Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina – UEL 2Departamento de Medicina Veterinária, Universidade Federal do Paraná – UFPR 3Department of Veterinary Pathobiology, University of Illinois 4Department of Veterinary Comparative Pathobiology, Purdue University, Lafayette 5Seção de Doenças Infecciosas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul – UFRGS 6College of Veterinary Medicine, Western University of Health Sciences 7Department of Clinical Sciences, Oregon State University 8Departamento de Medicina Veterinária Preventiva e Saúde Animal, Universidade de São Paulo – USP Received June 21, 2010 Accepted November 3, 2010 Abstract Ehrlichiosis is a disease caused by rickettsial organisms belonging to the genus Ehrlichia. In Brazil, molecular and serological studies have evaluated the occurrence of Ehrlichia species in dogs, cats, wild animals and humans. Ehrlichia canis is the main species found in dogs in Brazil, although E. ewingii infection has been recently suspected in five dogs. Ehrlichia chaffeensis DNA has been detected and characterized in mash deer, whereas E. muris and E. ruminantium have not yet been identified in Brazil. Canine monocytic ehrlichiosis caused by E. canis appears to be highly endemic in several regions of Brazil, however prevalence data are not available for several regions. -
Evolution of Genome Size
Evolution of Genome Advanced article Article Contents Size • Introduction • How Much Variation Is There? Stephen I Wright, Department of Ecology and Evolutionary Biology, University • What Types of DNA Drive Genome Size of Toronto, Toronto, Ontario, Canada Variation? • Neutral Model • Nearly Neutral Model • Adaptive Hypotheses • Transposable Element Evolution • Conclusion • Acknowledgements Online posting date: 16th January 2017 The size of the genome represents one of the most in the last century. While considerable progress has been made strikingly variable yet poorly understood traits in the characterisation of the extent of genome size variation, in eukaryotic organisms. Genomic comparisons the dominant evolutionary processes driving genome size evolu- suggest that most properties of genomes tend tion remain subject to considerable debate. Large-scale genome sequencing is enabling new insights into both the proximate to increase with genome size, but the fraction causes and evolutionary forces governing genome size differ- of the genome that comprises transposable ele- ences. ments (TEs) and other repetitive elements tends to increase disproportionately. Neutral, nearly neutral and adaptive models for the evolution of How Much Variation Is There? genome size have been proposed, but strong evi- dence for the general importance of any of these Because determining the amount of DNA (deoxyribonucleic models remains lacking, and improved under- acid) in a cell has been much more straightforward and cheaper standing of factors driving the -
Sexually Transmitted Infections: Diagnosis and Management
SEXUALLY TRANSMITTED INFECTIONS: DIAGNOSIS AND MANAGEMENT STEPHANIE N. TAYLOR, MD LSUHSC SECTION OF INFECTIOUS DISEASES MEDICAL DIRECTOR, DELGADO CENTER PERSONAL HEALTH CENTER NEW ORLEANS, LA INTRODUCTION Ê Tremendous Public Health Problem Ê AtitdAn estimated 15 m illion AiAmericans acqu ire an STD each year Ê $10 billion dollars in healthcare costs per year Ê Substantial morbidity/mortality Ê Ulcerative and non-ulcerative STDs associated with increased HIV transmission STI PRINCIPLES Ê Counseling – HIV infection, abstinence, and “safer sex” practices Ê STD Screening of asymptomatic individuals and those with symptoms Ê Patients with one STD often have another Ê Partners should be evaluated and treated empirically at the time of presentation STI PRINCIPLES Ê Serologic testing for syphilis should be done in all patients Ê HIV t esti ng sh ould be s trong ly encouraged in all patients (New CDC Recommendation for “Opt-Out” testing) Ê STDs are associated with HIV transmission Major STI Pathogens Ê Bacteria Ê Viruses Ê HSV I & II, HPV, Ê Neisseria HBV, HIV , gonorrhoeae, molluscum Haemophilus ducreyi, Ê Protozoa GdGardnere lla vag inali s Ê Trichomonas Ê Spirochetes vaginalis Ê Fungi Ê Treponema pa llidum Ê Candida albicans Ê Chlamydia Ê Ectoparasites Ê Chlamy dia Ê Phthiris pubis, trachomatis Sarcoptes scabei MAJOR STI SYNDROMES Ê GENITAL ULCER DISEASE Ê URETHRITIS/CERVICITIS Ê PELVIC INFLAMMATORY DISEASE Ê VAGINITIS Ê OTHER VIRAL STDs Ê ECTOPARASITES GENITAL ULCER DISEASE Differential Diagnosis: Ê STIs Ê Syphilis, Herpes, Chancroid Ê LGV, -
Tick-Borne Disease Working Group 2020 Report to Congress
2nd Report Supported by the U.S. Department of Health and Human Services • Office of the Assistant Secretary for Health Tick-Borne Disease Working Group 2020 Report to Congress Information and opinions in this report do not necessarily reflect the opinions of each member of the Working Group, the U.S. Department of Health and Human Services, or any other component of the Federal government. Table of Contents Executive Summary . .1 Chapter 4: Clinical Manifestations, Appendices . 114 Diagnosis, and Diagnostics . 28 Chapter 1: Background . 4 Appendix A. Tick-Borne Disease Congressional Action ................. 8 Chapter 5: Causes, Pathogenesis, Working Group .....................114 and Pathophysiology . 44 The Tick-Borne Disease Working Group . 8 Appendix B. Tick-Borne Disease Working Chapter 6: Treatment . 51 Group Subcommittees ...............117 Second Report: Focus and Structure . 8 Chapter 7: Clinician and Public Appendix C. Acronyms and Abbreviations 126 Chapter 2: Methods of the Education, Patient Access Working Group . .10 to Care . 59 Appendix D. 21st Century Cures Act ...128 Topic Development Briefs ............ 10 Chapter 8: Epidemiology and Appendix E. Working Group Charter. .131 Surveillance . 84 Subcommittees ..................... 10 Chapter 9: Federal Inventory . 93 Appendix F. Federal Inventory Survey . 136 Federal Inventory ....................11 Chapter 10: Public Input . 98 Appendix G. References .............149 Minority Responses ................. 13 Chapter 11: Looking Forward . .103 Chapter 3: Tick Biology, Conclusion . 112 Ecology, and Control . .14 Contributions U.S. Department of Health and Human Services James J. Berger, MS, MT(ASCP), SBB B. Kaye Hayes, MPA Working Group Members David Hughes Walker, MD (Co-Chair) Adalbeto Pérez de León, DVM, MS, PhD Leigh Ann Soltysiak, MS (Co-Chair) Kevin R. -
Best Practices for Whole Genome Sequencing Using the Sequel System
Best Practices for Whole Genome Sequencing Using the Sequel System Justin Blethrow, Nick Sisneros, Shreyasee Chakraborty, Sarah Kingan, Richard Hall, Joan Wilson, Christine Lambert, Kevin Eng, Emily Hatas and Primo Baybayan PacBio, 1305 O’Brien Dr., Menlo Park, CA 94025 Library Construction Abstract Recommendations Data Analysis Plant and animal whole genome sequencing has proven to Recommended Shearing Devices for Large-insert Fragments Hierarchical Genome Assembly Process (HGAP) and Polishing be challenging, particularly due to genome size, high For shearing DNA, PacBio recommends either: 1) needle shearing with a 26 G needle, which density of repetitive elements and heterozygosity. The allows for flexibility in number of shearing pulses with the needle or 2) the Megaruptor, a simple, Sequel System delivers long reads, high consensus automated, and highly reproducible system to fragment DNA up to 75 kb. accuracy and uniform coverage, enabling more complete, accurate, and contiguous assemblies of these large complex genomes. The latest Sequel chemistry increases yield up to 8 Gb per SMRT Cell for long insert libraries >20 kb and up to 10 Gb per SMRT Cell for libraries >40 kb. In addition, the recently released SMRTbell Express Megaruptor® DNA Shearing System Template Prep Kit reduces the time (~3 hours) and DNA Demonstration of Needle Shearing input (~3 µg), making the workflow easy to use for multi- SMRT Cell projects. 1 2 3 4 5 Here, we recommend the best practices for whole genome HGAP1 utilizes all PacBio data using the longest reads for contiguity and all reads to sequencing and de novo assembly of complex plant and generate high-quality de novo assemblies with high consensus accuracy (>QV50). -
Sexually Transmitted Infections Treatment Guidelines, 2021
Morbidity and Mortality Weekly Report Recommendations and Reports / Vol. 70 / No. 4 July 23, 2021 Sexually Transmitted Infections Treatment Guidelines, 2021 U.S. Department of Health and Human Services Centers for Disease Control and Prevention Recommendations and Reports CONTENTS Introduction ............................................................................................................1 Methods ....................................................................................................................1 Clinical Prevention Guidance ............................................................................2 STI Detection Among Special Populations ............................................... 11 HIV Infection ......................................................................................................... 24 Diseases Characterized by Genital, Anal, or Perianal Ulcers ............... 27 Syphilis ................................................................................................................... 39 Management of Persons Who Have a History of Penicillin Allergy .. 56 Diseases Characterized by Urethritis and Cervicitis ............................... 60 Chlamydial Infections ....................................................................................... 65 Gonococcal Infections ...................................................................................... 71 Mycoplasma genitalium .................................................................................... 80 Diseases Characterized -
Human Anaplasmosis and Anaplasma Ovis Variant
LETTERS Human teria. A chest radiograph, computed ware (www.ebi.ac.uk/Tools/clustalw2/ tomography of the abdomen, and an index.html) and the GenBank/Europe- Anaplasmosis and echocardiograph of the heart showed an Molecular Biology database library Anaplasma ovis unremarkable results. Blood samples (http://blast.ncbi.nlm.nih.gov/Blast. Variant were negative for antibodies against cgi). Phylogenetic trees were con- cytomegalovirus, Epstein-Barr virus, structed by using MEGA 4 software To the Editor: Anaplasmosis is a hepatitis, HIV, mycoplasma, coxackie (www.megasoftware.net). disease caused by bacteria of the genus virus, adenovirus, parvovirus, Cox- The fi rst blood sample was posi- Anaplasma. A. marginale, A. centrale, iella burnetii, R. conorii, and R. typhi, tive for A. ovis by PCR; the other 2 A. phagocytophilum, A. ovis, A. bovis, and for rheumatoid factors. A lymph were negative. A 16S rRNA gene se- and A. platys are obligate intracellular node biopsy specimen was negative quence (EU448141) from the posi- bacteria that infect vertebrate and in- for infi ltration and malignancy. After tive sample showed 100% similarity vertebrate host cells. A. ovis, which is treatment with doxycycline (200 mg/ with other Anaplasma spp. sequences transmitted primarily by Rhipicepha- day for 11 days), ceftriaxone (2 g/day (A. marginale, A. centrale, A. ovis) lus bursa ticks, is an intraerythrocytic for 5 days), and imipenem/cilastatin in GenBank. Anaplasma sp. groEL rickettsial pathogen of sheep, goats, (1,500 mg/day for 1 day), the patient and msp4 genes showed a 1,650-bp and wild ruminants (1). recovered and was discharged 17 days sequence (FJ477840, corresponding Anaplasma spp. -
Sexually Transmitted Diseases Treatment Guidelines, 2015
Morbidity and Mortality Weekly Report Recommendations and Reports / Vol. 64 / No. 3 June 5, 2015 Sexually Transmitted Diseases Treatment Guidelines, 2015 U.S. Department of Health and Human Services Centers for Disease Control and Prevention Recommendations and Reports CONTENTS CONTENTS (Continued) Introduction ............................................................................................................1 Gonococcal Infections ...................................................................................... 60 Methods ....................................................................................................................1 Diseases Characterized by Vaginal Discharge .......................................... 69 Clinical Prevention Guidance ............................................................................2 Bacterial Vaginosis .......................................................................................... 69 Special Populations ..............................................................................................9 Trichomoniasis ................................................................................................. 72 Emerging Issues .................................................................................................. 17 Vulvovaginal Candidiasis ............................................................................. 75 Hepatitis C ......................................................................................................... 17 Pelvic Inflammatory -
Decoding Non-Coding DNA: Trash Or Treasure?
GENERAL ARTICLE Decoding Non-Coding DNA: Trash or Treasure? Namrata Iyer Non-coding DNA, once thought of as ‘junk’, represents a very large portion of an organism’s genome. However, recent research has brought to light many functional elements present within non-coding DNA sequences and unravelled a fascinat- ing array of functions performed by these elements. These findings have highlighted the nature of the evolutionary forces that led to the accumulation and retention of non-coding Namrata Iyer is a PhD DNA. In this article, the various elements present within non- student in the Department of Microbiology and Cell coding DNA, their functional relevance to the cell and the Biology, Indian Institute of changing perspective of the scientific community towards this Science, Bangalore. Her so-called ‘junk’ DNA have been described. research interest is the molecular basis of host– Since the dawn of time, man has always been plagued by the pathogen interactions in question of the origin of life. What are the forces that govern the human diseases. course of evolution? What are the elements that separate man from other forms of life? The discovery of DNA (deoxyribo- nucleic acid) as the genetic material in 1944 opened up new avenues to answer these questions. Surprisingly, the language of DNA comprises of only 4 letters, i.e., A,T,G,C which when read in groups of three (triplets) encode the information for the synthe- sis of proteins (by a process known as translation) which are the work-horses of a cell. Before translation can begin, the informa- tion on DNA is first copied into an intermediate known as mRNA (by a process known as transcription).