Qualitative And/Or Quantitative Teaching

Total Page:16

File Type:pdf, Size:1020Kb

Qualitative And/Or Quantitative Teaching Title Nile crocodile (Crocodylus niloticus) urine as sample for biochemical and hormonal analyses LASYA CHRISTINA BEKKER Thesis submitted to the Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, in fulfilment of the requirements for the degree Doctor of Philosophy (PhD) SUPERVISOR: PROF Jan G Myburgh (PhD) CO-SUPERVISOR: PROF A Duncan Cromarty (PhD) 2017 © University of Pretoria QUOTE God sleeps in the minerals, awakens in plants, walks in animals, and thinks in man. Arthur Young (1741-1820) i © University of Pretoria TABLE OF CONTENTS QUOTE ...............................................................................................................................i TABLE OF CONTENTS ..................................................................................................... ii ACKNOWLEDGEMENTS .................................................................................................. vi DEDICATION .................................................................................................................. viii DECLARATION ................................................................................................................. ix FORMAT OF THIS THESIS ...............................................................................................x LIST OF ABBREVIATIONS ............................................................................................... xi LIST OF FIGURES .......................................................................................................... xiii LIST OF TABLES ............................................................................................................ xvi LIST OF EQUATIONS ................................................................................................... xviii LIST OF APPENDICES ................................................................................................... xix ABSTRACT ...................................................................................................................... xx CHAPTER 1: INTRODUCTION ......................................................................................... 1 CHAPTER 2: AIM AND OBJECTIVES ............................................................................ 14 2.1. Aim ....................................................................................................................... 14 2.2. Objectives ............................................................................................................. 14 CHAPTER 3: LITERATURE REVIEW ............................................................................. 15 3.1. Urine sample analysis for diagnostic tools ................................................................ 15 3.1.1. Introduction .......................................................................................................... 15 3.1.2. Laboratory analysis of urine .................................................................................. 16 3.1.3. Specific laboratory analyses ................................................................................. 19 3.1.4. Routine testing of urine samples in veterinary medicine ....................................... 20 3.2. Urine from crocodilians ............................................................................................ 21 3.3. Crocodilian blood parameters ................................................................................... 24 CHAPTER 4: JUSTIFICATION ........................................................................................ 26 ii © University of Pretoria CHAPTER 5: Nile crocodile (Crocodylus niloticus) urine and plasma biochemistry investigation .................................................................................................................... 28 5.1. Introduction .............................................................................................................. 28 5.2. Materials and methods ............................................................................................. 33 5.2.1. Collection of samples ........................................................................................... 33 5.2.2. Laboratory examination of the urine samples ....................................................... 34 5.2.3. Laboratory examination of the plasma samples .................................................... 35 5.2.4. Statistical assessment .......................................................................................... 35 5.3. Results ..................................................................................................................... 37 5.3.1. Urine .................................................................................................................... 37 5.3.2. Plasma .................................................................................................................. 38 5.3.3. Relation of the urine- to the plasma biochemical parameters ................................ 38 5.4. Discussion ................................................................................................................ 41 5.5. Conclusion ............................................................................................................... 47 5.6. Acknowledgements .................................................................................................. 47 5.7. Proposed publication from this chapter ..................................................................... 47 CHAPTER 6: Clinical validation of the analysis of steroids and steroid metabolites in Nile crocodile urine .......................................................................................................... 48 6.1. Introduction .............................................................................................................. 48 6.2. Materials and methods ............................................................................................. 52 6.2.1. Subjects ............................................................................................................... 52 6.2.2. Materials ............................................................................................................... 52 6.2.3. Instrumentation ..................................................................................................... 54 6.2.4. Preparation procedures ........................................................................................ 54 6.2.5. Extraction Procedure ............................................................................................ 55 6.2.6. Chromatographic conditions ................................................................................. 57 6.2.7. Validation of method ............................................................................................. 57 6.2.8. Calibration of analytes .......................................................................................... 57 iii © University of Pretoria 6.2.9. Quality control ...................................................................................................... 58 6.2.10. Quantitation procedures ..................................................................................... 59 6.3. Results ..................................................................................................................... 60 6.3.1. Calibration results ................................................................................................. 64 6.3.2. Quality Control Results ......................................................................................... 65 6.4. Discussion ................................................................................................................ 65 6.5. Conclusion ............................................................................................................... 66 CHAPTER 7: Steroid profiling of crocodilian urine ........................................................... 68 7.1. Introduction ........................................................................................................... 68 7.2. Materials and methods ......................................................................................... 70 7.2.1. Sample collection and subjects ...................................................................... 70 7.2.2. Sample preparation ....................................................................................... 72 7.2.3. Instrumentation .............................................................................................. 74 7.3. Results ................................................................................................................. 75 7.3.1. Human control sample ................................................................................... 75 7.3.2. Subject 1: A reproductively active female Nile crocodile ................................ 76 7.3.3. Subject 2: Pooled sample of adult Nile crocodile urine ................................... 77 7.3.4. Subject 3: Female Nile crocodile; Izintaba Crocodile Farm ............................ 79 7.3.5. Subject 4: Juvenile male Nile crocodile; Kruger National Park ....................... 80 7.3.6. Subject 5: Sub-adult male Nile crocodile; Loskop Dam .................................. 81 7.3.7. Subject 6: Sub-adult male Nile crocodile; Flag Boshielo Dam ........................ 82 7.3.8. Subject 7: Female spectacled
Recommended publications
  • I What Is a Crocodilian?
    I WHAT IS A CROCODILIAN? Crocodilians are the only living representatives of the Archosauria group (dinosaurs, pterosaurs, and thecodontians), which first appeared in the Mesozoic era. At present, crocodiliams are the most advanced of all reptiles because they have a four-chambered heart, diaphragm, and cerebral cortex. The extent morphology reflects their aquatic habits. Crocodilians are elongated and armored with a muscular, laterally shaped tail used in swimming. The snout is elongated, with the nostrils set at the end to allow breathing while most of the body remains submerged. Crocodilians have two pairs of short legs with five toes on the front and four tows on the hind feet; the toes on all feet are partially webbed. The success of this body design is evidenced by the relatively few changes that have occurred since crocodilians first appeared in the late Triassic period, about 200 million years ago. Crocodilians are divided into three subfamilies. Alligatorinae includes two species of alligators and five caiman. Crocodylinae is divided into thirteen species of crocodiles and on species of false gharial. Gavialinae contains one species of gharial. Another way to tell the three groups of crocodilians apart is to look at their teeth. II PHYSICAL CHARACTERISTICS A Locomotion Crocodilians spend time on land primarily to bask in the sun, to move from one body of water to another, to escape from disturbances, or to reproduce. They use three distinct styles of movement on land. A stately high walk is used when moving unhurried on land. When frightened, crocodilians plunge down an embankment in an inelegant belly crawl.
    [Show full text]
  • Using Environmental DNA to Detect Estuarine Crocodiles, a Cryptic
    Human–Wildlife Interactions 14(1):64–72, Spring 2020 • digitalcommons.usu.edu/hwi Using environmental DNA to detect estuarine crocodiles, a cryptic-ambush predator of humans Alea Rose, Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory 0909, Australia Yusuke Fukuda, Department of Environment & Natural Resources, Northern Territory Govern- ment, P.O. Box 496, Palmerston, Northern Territory 0831, Australia Hamish A. Campbell, Research Institute of Livelihoods and the Environment, Charles Darwin University, Darwin, Northern Territory 0909, Australia [email protected] Abstract: Negative human–wildlife interactions can be better managed by early detection of the wildlife species involved. However, many animals that pose a threat to humans are highly cryptic, and detecting their presence before the interaction occurs can be challenging. We describe a method whereby the presence of the estuarine crocodile (Crocodylus porosus), a cryptic and potentially dangerous predator of humans, was detected using traces of DNA shed into the water, known as environmental DNA (eDNA). The estuarine crocodile is present in waterways throughout southeast Asia and Oceania and has been responsible for >1,000 attacks upon humans in the past decade. A critical factor in the crocodile’s capability to attack humans is their ability to remain hidden in turbid waters for extended periods, ambushing humans that enter the water or undertake activities around the waterline. In northern Australia, we sampled water from aquariums where crocodiles were present or absent, and we were able to discriminate the presence of estuarine crocodile from the freshwater crocodile (C. johnstoni), a closely related sympatric species that does not pose a threat to humans.
    [Show full text]
  • Cardiovascular Function in Ectotherm Sauropsids
    Cardiovascular Function in Ectotherm Sauropsids Dissertation der Fakultät für Biologie de Ludig‐Maiilias‐Uiesität Mühe Ulrike Campen München, September 2017 Cardiovascular Function in Ectotherm Sauropsids Diese Dissertation wurde angefertigt unter der Leitung von Prof. Dr. J. Matthias Starck/ Prof. Dr. Gerhard Haszprunar im Bereich von Biologie: Systematische Zoologie/ Zoologie a de Ludig‐Maiilias‐Uiesität Mühe Erstgutachter/in: Prof. Dr. Gerhard Haszprunar Zweitgutachter/in: Prof. Dr. Dirk Metzler Tag der Abgabe: 21. September 2017 Tag der mündlichen Prüfung: 28. Mai 2018 ERKLÄRUNG Ich versichere hiermit an Eides statt, dass meine Dissertation selbständig und ohne unerlaubte Hilfsmittel angefertigt worden ist. Die vorliegende Dissertation wurde weder ganz, noch teilweise bei einer anderen Prüfungskommission vorgelegt. Ich habe noch zu keinem früheren Zeitpunkt versucht, eine Dissertation einzureichen oder an einer Doktorprüfung teilzunehmen. München, den 09. Juni 2018 Ulrike Campen 2 Cardiovascular Function in Ectotherm Sauropsids Coduted ithi the faeok of the Gaduate Shool Life Siee Muih. Supported by a Graduiertenstipendium nach dem Bayerischen Eliteförderungsgesetz (BayEFG) des Bayerischen Staatsministeriums für Wissenschaft, Forschung und Kunst. 3 Cardiovascular Function in Ectotherm Sauropsids Previous publications of parts of this thesis Parts of this thesis have already been published in Campen R. and Starck J.M. 2012. Cardiovascular circuits and digestive function of intermittent-feeding sauropsids. Pp. 133-154. Chapter 09 in:
    [Show full text]
  • Crocodiles Alter Skin Color in Response to Environmental Color Conditions
    www.nature.com/scientificreports OPEN Crocodiles Alter Skin Color in Response to Environmental Color Conditions Received: 3 January 2018 Mark Merchant1, Amber Hale2, Jen Brueggen3, Curt Harbsmeier4 & Colette Adams5 Accepted: 6 April 2018 Many species alter skin color to varying degrees and by diferent mechanisms. Here, we show that Published: xx xx xxxx some crocodylians modify skin coloration in response to changing light and environmental conditions. Within the Family, Crocodylidae, all members of the genus Crocodylus lightened substantially when transitioned from dark enclosure to white enclosures, whereas Mecistops and Osteolaemus showed little/no change. The two members of the Family Gavialidae showed an opposite response, lightening under darker conditions, while all member of the Family Alligatoridae showed no changes. Observed color changes were rapid and reversible, occurring within 60–90 minutes. The response is visually- mediated and modulated by serum α-melanocyte-stimulating hormone (α-MSH), resulting in redistribution of melanosomes within melanophores. Injection of crocodiles with α-MSH caused the skin to lighten. These results represent a novel description of color change in crocodylians, and have important phylogenetic implications. The data support the inclusion of the Malayan gharial in the Family Gavialidae, and the shift of the African slender-snouted crocodile from the genus Crocodylus to the monophyletic genus Mecistops. Te rapid alteration of skin color is well known among a wide assortment of ectothermic vertebrates and inver- tebrates1. Adaptive skin color changes may occur for a variety of reasons, including communication, thermal regulation, and crypsis1. Te modifcation of skin pigmentation is achieved by either physiological or morpho- logical mechanisms1.
    [Show full text]
  • Philippine Crocodile Crocodylus Mindorensis Merlijn Van Weerd
    Philippine Crocodile Crocodylus mindorensis Merlijn van Weerd Centre of Environmental Science, Leiden University, Abel Tasmanstraat 5bis, Utrecht 3531 GR, Netherlands ([email protected]) Common Names: Philippine crocodile (English), buwaya 2009 IUCN Red List: CR (Critically Endangered. Criteria (general Philippines), bukarot (northern Luzon) A1c. Observed decline in extent of occurrence >80% in 3 generations. C2a. Less than 250 adults in the wild, populations highly fragmented and declining; IUCN 2009) (last assessed Range: Philippines in 1996). Taxonomic Status The Philippine crocodile was described in 1935 by Karl Schmidt on the basis of a type specimen and three paratypes from the island of Mindoro (Schmidt 1935, 1938). Schmidt also described the closely related New Guinea freshwater crocodile (Crocodylus novaeguineae) in 1928 and later made a comparison of morphological differences between C. mindorensis, C. novaeguineae and C. porosus, maintaining C. mindorensis as a separate species (1956). However the Philippine crocodile has long been treated as C. novaeguineae mindorensis, a sub-species of the New Guinea crocodile, by other authorities. Hall (1989) provided new evidence of the distinctness of the Philippine crocodile and nowadays C. mindorensis is generally treated as a full species endemic to the Philippines. Figure 1. Distribution of Crocodylus mindorensis. Figure 2. Juvenile C. mindorensis in Dunoy Lake, in Northern Sierra Madre National Park, northern Luzon. Photograph: Merlijn van Weerd. Conservation Overview CITES: Appendix I Ecology and Natural History CSG Action Plan: The Philippine crocodile is a relatively small freshwater Availability of recent survey data: Adequate crocodile. Although much is still unknown, studies at two Need for wild population recovery: Highest captive breeding facilities [Palawan Wildlife Rescue and Potential for sustainable management: Low Conservation Centre (PWRCC), Palawan Island (Ortega Van Weerd, M.
    [Show full text]
  • Fauna of Australia 2A
    FAUNA of AUSTRALIA 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Harold G. Cogger 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.1. Crocodylus porosus (Crocodylidae): the salt water crocodile shows pronounced sexual dimorphism, as seen in this male (left) and female resting on the shore; this species occurs from the Kimberleys to the central east coast of Australia; see also Pls 9.2 & 9.3. [G. Grigg] Pl. 9.2. Crocodylus porosus (Crocodylidae): when feeding in the water, this species lifts the tail to counter balance the head; see also Pls 9.1 & 9.3. [G. Grigg] 2 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.3. Crocodylus porosus (Crocodylidae): the snout is broad and rounded, the teeth (well-worn in this old animal) are set in an irregular row, and a palatal flap closes the entrance to the throat; see also Pls 9.1 & 9.2. [G. Grigg] 3 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.4. Crocodylus johnstoni (Crocodylidae): the freshwater crocodile is found in rivers and billabongs from the Kimberleys to eastern Cape York; see also Pls 9.5–9.7. [G.J.W. Webb] Pl. 9.5. Crocodylus johnstoni (Crocodylidae): the freshwater crocodile inceases its apparent size by inflating its body when in a threat display; see also Pls 9.4, 9.6 & 9.7. [G.J.W. Webb] 4 39. GENERAL DESCRIPTION AND DEFINITION OF THE ORDER CROCODYLIA Pl. 9.6. Crocodylus johnstoni (Crocodylidae): the freshwater crocodile has a long, slender snout, with a regular row of nearly equal sized teeth; the eyes and slit-like ears, set high on the head, can be closed during diving; see also Pls 9.4, 9.5 & 9.7.
    [Show full text]
  • Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus Intermedius) at the El Frío Biological Station, Venezuela
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Online Research @ Cardiff RESEARCH ARTICLE Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus intermedius) at the El Frío Biological Station, Venezuela Natalia A. Rossi Lafferriere1,2☯*, Rafael Antelo3,4,5☯, Fernando Alda4,6, Dick Mårtensson7, Frank Hailer8,9, Santiago Castroviejo-Fisher10, José Ayarzagüena5†, Joshua R. Ginsberg1,11, Javier Castroviejo5,12, Ignacio Doadrio4, Carles Vilá13, George Amato2 1 Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, United States of America, 2 Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, New York, United States of America, 3 Fundación Palmarito Casanare, Bogotá, Colombia, 4 Dpto. Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain, 5 Estación Biológica El Frío, Apure, Venezuela, 6 LSU Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America, 7 Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden, 8 School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, United Kingdom, 9 Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United OPEN ACCESS States of America, 10 Lab. de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande Citation: Rossi Lafferriere NA, Antelo R, Alda F, do Sul (PUCRS), Porto Alegre, Brasil, 11 Cary Institute of Ecosystem Studies, Millbrook, New York, United States of America, 12 Asociación Amigos de Doñana, Seville, Spain, 13 Conservation and Evolutionary Mårtensson D, Hailer F, Castroviejo-Fisher S, et al.
    [Show full text]
  • New Insights Into the Biology of Theropod Dinosaurs
    AN ABSTRACT OF THE DISSERTATION OF Devon E. Quick for the degree of Doctor of Philosophy in Zoology presented on December 1, 2008. Title: New Insights into the Biology of Theropod Dinosaurs. Abstract approved: __________________________________________________________ John A. Ruben There is little, if any, direct fossil evidence of the cardiovascular, respiratory, reproductive or digestive biology of dinosaurs. However, a variety of data can be used to draw reasonable inferences about the physiology of the carnivorous theropod dinosaurs (Archosauria: Theropoda). Extant archosaurs, birds and crocodilians, possess regionally differentiated, vascularized and avascular lungs, although the crocodilian lung is less specialized than the avian lung air-sac system. Essential components of avian lungs include the voluminous, thin-walled abdominal air-sacs which are ventilated by an expansive sternum and specialized ribs. Inhalatory, paradoxical collapse of these air-sacs in birds is prevented by the synsacrum, pubes and femoral-thigh complex. The present work examines the theropod abdomen and reveals that it lacked sufficient space to have housed similarly enlarged abdominal air-sacs as well as the skeleto-muscular modifications requisite to have ventilated them. There is little evidence to indicate that theropod dinosaurs possessed a specialized bird-like, air-sac lung and, by extension, that theropod cardiovascular function was any more sophisticated than that of crocodilians. Conventional wisdom holds that theropod visceral anatomy was similar to that in birds. However, exceptional soft tissue preservation in Scipionyx samnitcus (Theropoda) offers rare evidence of in situ theropod visceral anatomy. Using computed tomography, close comparison of Scipionyx with gastrointestinal morphology in crocodilians, birds and lizards indicates that theropod visceral structure and “geography” was strikingly similar only to that in Alligator.
    [Show full text]
  • Historical Biology Crocodilian Behaviour: a Window to Dinosaur
    This article was downloaded by: [Watanabe, Myrna E.] On: 11 March 2011 Access details: Access Details: [subscription number 934811404] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Historical Biology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713717695 Crocodilian behaviour: a window to dinosaur behaviour? Peter Brazaitisa; Myrna E. Watanabeb a Yale Peabody Museum of Natural History, New Haven, CT, USA b Naugatuck Valley Community College, Waterbury, CT, USA Online publication date: 11 March 2011 To cite this Article Brazaitis, Peter and Watanabe, Myrna E.(2011) 'Crocodilian behaviour: a window to dinosaur behaviour?', Historical Biology, 23: 1, 73 — 90 To link to this Article: DOI: 10.1080/08912963.2011.560723 URL: http://dx.doi.org/10.1080/08912963.2011.560723 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Cardiovascular Responses to Diving in the Turtle, Pseudemys Scripta Stuart Keith Ware Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1980 Cardiovascular responses to diving in the turtle, Pseudemys scripta Stuart Keith Ware Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Sciences Commons, Physiology Commons, and the Veterinary Physiology Commons Recommended Citation Ware, Stuart Keith, "Cardiovascular responses to diving in the turtle, Pseudemys scripta " (1980). Retrospective Theses and Dissertations. 6813. https://lib.dr.iastate.edu/rtd/6813 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • News Letter Final
    Volume 12, No.4, 2006 Aquatic Faunal Diversity in Eastern Ghats 1. Crocodile the endangered Apex Predator of Aquatic Eco-System and its Rehabilitation in India ................. 2 2. Aquatic Faunal Diversity of Nagarjuna Sagar Srisailam Tiger Reserve ............................................................. 5 3. A Rare Dolphin Population in Eastern Ghats: A Short Note ............................................................. 9 4. Aquatic Faunal Resources of Eastern Ghats Region an Overview………………………………..…..… ... 10 Gavialis gangeticus astern Ghats region, is a habitat for a variety of rare Especies. However, most of the aquatic habitats are in threat due to anthropogenic impacts and therefore there is a need for immediate attention towards their conservation. The main emphasis of both the issues pertinent to conservation of Aquatic Faunal Diversity of ecologically sensitive Eastern Ghats region. Crocodylus palustris In this context, the present issue covers articles on the Rehabilitation of Crocodiles from Scientists of A.P Forest Department; the aquatic faunal diversity of Nagarjunasagar Srisailam Tiger Reserve, the largest tiger reserve in India by Scientists of Department of Zoology, Osmania University; a short notes on Dolphin Population in Eastern Ghats by a researcher from EPTRI and Aquatic Faunal resources of Eastern Ghats Region by Scientists from Andhra University. Crocodylus porosus The forthcoming issue would be on Biodiversity of the Eastern Ghats. Articles, write-ups and news items on the theme are invited from our readers. Happy New Year & The readers are requested to kindly intimate by e-mail any change of Seasons Greetings postal (or e-mail) address. The names and contact details of others who may be interested in receiving a copy of the Newsletter may please be furnished to ENVIS, EPTRI.
    [Show full text]
  • Federal Register/Vol. 65, No. 87/Thursday, May 4, 2000/Rules
    Federal Register / Vol. 65, No. 87 / Thursday, May 4, 2000 / Rules and Regulations 25867 List of Subjects in 47 CFR Part 73 CITES Universal Tagging System on June 2, 1970 (35 FR 8495). (At the Television broadcasting, Digital Resolution for crocodilian skins time of the original listing, Peru was television broadcasting. (adopted at the ninth meeting of the incorrectly listed as one of the range Conference of the Parties) as well as countries, whereas Paraguay was Federal Communications Commission. provisions intended to support excluded. In this final rule, we correct Magalie Roman Salas, sustainable management of wild that situation.) On July 1, 1975, it was Secretary. populations of the above three caiman also placed in Appendix II of the [FR Doc. 00±11099 Filed 5±3±00; 8:45 am] species/subspecies. In the case where Convention on International Trade in BILLING CODE 6712±01±P tagged caiman skins and other parts are Endangered Species of Wild Fauna and exported to another country, usually for FloraÐCITES (42 FR 10465). (The tanning and manufacturing purposes, species has never been listed in CITES DEPARTMENT OF THE INTERIOR and the processed skins and finished Appendix I, which prohibits products are exported to the United international trade in the species if such Fish and Wildlife Service States, the rule prohibits importation or activity is conducted for primarily re-exportation of such skins, parts, and commercial purposes and/or 50 CFR Part 17 products if we determine that either the determined to be detrimental to the RIN 1018±AD67 country of origin or re-export is survival of the species.) The endangered engaging in practices that are listing under the Act prohibited imports Endangered and Threatened Wildlife detrimental to the conservation of and re-exports of the species into/from and Plants; Reclassification of Yacare caiman populations.
    [Show full text]