CYCLIN-B1/2 and -D1 Act in Opposition to Coordinate Cortical Progenitor Self-Renewal and Lineage Commitment ✉ Daniel W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin a and Affects the Migration and Invasion Potential of Breast Cancer Cells
Published OnlineFirst February 28, 2010; DOI: 10.1158/0008-5472.CAN-08-1108 Tumor and Stem Cell Biology Cancer Research Cyclin D1/Cyclin-Dependent Kinase 4 Interacts with Filamin A and Affects the Migration and Invasion Potential of Breast Cancer Cells Zhijiu Zhong, Wen-Shuz Yeow, Chunhua Zou, Richard Wassell, Chenguang Wang, Richard G. Pestell, Judy N. Quong, and Andrew A. Quong Abstract Cyclin D1 belongs to a family of proteins that regulate progression through the G1-S phase of the cell cycle by binding to cyclin-dependent kinase (cdk)-4 to phosphorylate the retinoblastoma protein and release E2F transcription factors for progression through cell cycle. Several cancers, including breast, colon, and prostate, overexpress the cyclin D1 gene. However, the correlation of cyclin D1 overexpression with E2F target gene regulation or of cdk-dependent cyclin D1 activity with tumor development has not been identified. This suggests that the role of cyclin D1 in oncogenesis may be independent of its function as a cell cycle regulator. One such function is the role of cyclin D1 in cell adhesion and motility. Filamin A (FLNa), a member of the actin-binding filamin protein family, regulates signaling events involved in cell motility and invasion. FLNa has also been associated with a variety of cancers including lung cancer, prostate cancer, melanoma, human bladder cancer, and neuroblastoma. We hypothesized that elevated cyclin D1 facilitates motility in the invasive MDA-MB-231 breast cancer cell line. We show that MDA-MB-231 motility is affected by disturbing cyclin D1 levels or cyclin D1-cdk4/6 kinase activity. -
Cell Cycle Arrest and DNA Endoreduplication Following P21waf1/Cip1 Expression
Oncogene (1998) 17, 1691 ± 1703 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression Stewart Bates, Kevin M Ryan, Andrew C Phillips and Karen H Vousden ABL Basic Research Program, NCI-FCRDC, Building 560, Room 22-96, West 7th Street, Frederick, Maryland 21702-1201, USA p21Waf1/Cip1 is a major transcriptional target of p53 and there are an increasing number of regulatory mechan- has been shown to be one of the principal mediators of isms that serve to inhibit cdk activity. Primary amongst the p53 induced G1 cell cycle arrest. We show that in these is the expression of cdk inhibitors (CDKIs) that addition to the G1 block, p21Waf1/Cip1 can also contribute can bind to and inhibit cyclin/cdk complexes (Sherr to a delay in G2 and expression of p21Waf1/Cip1 gives rise and Roberts, 1996). These fall into two classes, the to cell cycle pro®les essentially indistinguishable from INK family which bind to cdk4 and cdk6 and inhibit those obtained following p53 expression. Arrest of cells complex formation with D-cyclins, and the p21Waf1/Cip1 in G2 likely re¯ects an inability to induce cyclin B1/cdc2 family that bind to cyclin/cdk complexes and inhibit kinase activity in the presence of p21Waf1/Cip1, although the kinase activity. inecient association of p21Waf1/Cip1 and cyclin B1 The p21Waf1/Cip1 family of CDKIs include p21Waf1/Cip1, suggests that the mechanism of inhibition is indirect. p27 and p57 and are broad range inhibitors of cyclin/ Cells released from an S-phase block were not retarded cdk complexes (Gu et al., 1993; Harper et al., 1993; in their ability to progress through S-phase by the Xiong et al., 1993; Firpo et al., 1994; Polyak et al., presence of p21Waf1/Cip1, despite ecient inhibition of 1994; Toyoshima and Hunter, 1994; Lee et al., 1995; cyclin E, A and B1 dependent kinase activity, suggesting Matsuoka et al., 1995). -
Role for Cyclin D1 in UVC-Induced and P53-Mediated Apoptosis
Cell Death and Differentiation (1999) 6, 565 ± 569 ã 1999 Stockton Press All rights reserved 13509047/99 $12.00 http://www.stockton-press.co.uk/cdd Role for cyclin D1 in UVC-induced and p53-mediated apoptosis Hirofumi Hiyama1 and Steven A. Reeves*,1 irradiation of human fibroblasts is mediated by the p53- induced cyclin/cdk inhibitor, p21.3 Cell cycle progression 1 Molecular Neuro-Oncology, Neuroscience Center, Neurosurgical Services, through the G1/S boundary is controlled by G1 cyclins, Massachusetts General Hospital and Harvard Medical School, Boston, including D and E type cyclins and their cyclin-dependent Massachusetts 02129, USA kinases (cdk), whose phosphorylation of the retinoblastoma * corresponding author: Steven A. Reeves, Molecular Neuro-Oncology, gene product (pRB) causes a dissociation of the pRB and Neuroscience Center, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA. tel.: (617) 726-5510; fax: (617) 726-5079; E2F-1 interaction, and subsequent activation of E2F- e-mail: [email protected] mediated transcription. As an universal inhibitor of cdks, p21 can inhibit phosphorylation of pRB and allow for G1 arrest.4 Recent studies have shown that overexpression of cyclin Received 13.10.98; revised 19.03.99; accepted 23.03.99 D1 in serum-starved cell types can induce apoptosis.5 Edited by T. Cotter Interestingly, the induction of the cell death program was found to be associated with an increase in cyclin D1- dependent kinase activity.6 Moreover, in cells that contain Abstract wild-type p53, the overexpression of E2F-1 leads to S- 7 DNA damaging agents such as ultraviolet (UV) induce cell phase entry and p53-dependent apoptosis. -
The Expression of P21/WAF-1 and Cyclin B1 Mediate Mitotic Delay in X-Irradiated Fibroblasts
ANTICANCER RESEARCH 25: 1123-1130 (2005) The Expression of p21/WAF-1 and Cyclin B1 Mediate Mitotic Delay in x-Irradiated Fibroblasts MICKAEL J. CARIVEAU1,2, CHARLES J. KOVACS2, RON R. ALLISON2, ROBERTA M. JOHNKE2, GERHARD W. KALMUS3 and MARK EVANS2 1Department of Physics, East Carolina University, Greenville NC, 27858; 2Department of Radiation Oncology, The Brody School of Medicine, East Carolina University, Greenville NC, 27858; 3Department of Biology, East Carolina University, Greenville NC, 27858, U.S.A. Abstract. Background: To better understand the relationship Initiation and maintenance of cell cycle arrest is regulated between mitotic delay and the disruption of cyclin B1 and p21 in by a group of proteins known as the cyclins which function x-irradiated fibroblasts, studies were carried out to establish by coupling to their corresponding cyclin dependent kinases correlations between the downregulation of cyclin B1 by the cyclin (CDK) (6-9). Of particular interest to cell cycle arrest in kinase inhibitor (CKI) p21 and the induction of mitotic delay in response to DNA damage is the G2/M damage checkpoint the NIH3T3 fibroblast. Materials and Methods: Cell cycle kinetics which is regulated by cyclin B1/CDK1 and initiated by DNA were used to analyze mitotic delay in irradiated NIH3T3 cells and damage activation of the cyclin kinase inhibitor p21(10-14). immunocytochemistry incorporated to assess the expression of The inhibitory potential of p21 is well established; however, cyclin B1 and p21, following 2 or 4Gy x-irradiation. Results and there is still much confusion about the role of p21 in the Discussion: Results indicate a dose dependent increase in mitotic irradiated cell (15, 16). -
Cyclin D1 Amplification Is Independent of P16 Inactivation in Head And
Oncogene (1999) 18, 3541 ± 3545 ã 1999 Stockton Press All rights reserved 0950 ± 9232/99 $12.00 http://www.stockton-press.co.uk/onc Cyclin D1 ampli®cation is independent of p16 inactivation in head and neck squamous cell carcinoma K Okami1,3, AL Reed1, P Cairns1, WM Koch1, WH Westra2, S Wehage1, J Jen1 and D Sidransky*,1 1Department of OtolaryngologyÐHead & Neck Surgery, Division of Head and Neck Cancer Research, Johns Hopkins University School of Medicine, 818 Ross Research Building, 720 Rutland Avenue, Baltimore, Maryland, MD 21205-2196, USA; 2Department of Pathology, 7181 Meyer Building, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, Maryland, MD 21287, USA; 3Department of Otolaryngology, Yamaguchi University, Ube 755, Japan Progression through the G1 phase of the cell cycle is kinase (cdk) 4 complexes. This cdk4 phosphorylation mediated by phosphorylation of the retinoblastoma activity is negatively regulated by the tumor suppressor protein (pRb) resulting in the release of essential gene p16 (a CDK inhibitor), and positively by cyclin transcription factors such as E2F-1. The phosphorylation D1. Each individual component of this p16-cyclin D1- of pRb is regulated positively by cyclin D1/CDK4 and Rb pathway is commonly targeted in various malig- negatively by CDK inhibitors, such as p16 (CDKN2/ nancies (Weinberg, 1995; Sherr, 1996). We previously MTS-1/INK4A). The p16 /cyclin D1/Rb pathway plays reported a high frequency (83%) of p16 inactivation in a critical role in tumorigenesis and many tumor types human HNSCC (Reed et al., 1996) and less frequent display a high frequency of inactivation of at least one inactivation (13%) of pRb (Yoo et al., 1994). -
Immunohistochemical Evaluation of P63 and Cyclin D1 in Oral Squamous Cell Carcinoma and Leukoplakia
https://doi.org/10.5125/jkaoms.2017.43.5.324 ORIGINAL ARTICLE pISSN 2234-7550·eISSN 2234-5930 Immunohistochemical evaluation of p63 and cyclin D1 in oral squamous cell carcinoma and leukoplakia Sunit B. Patel1, Bhari S. Manjunatha2, Vandana Shah3, Nishit Soni4, Rakesh Sutariya5 1Department of Oral Pathology, Ahmedabad Dental College, Ahmedabad, India, 2Department of Oral Biology, Basic Dental Sciences, Faculty of Dentistry, Al-Huwaiyah, Taif University, Taif, Kingdom of Saudi Arabia, 3Department of Oral Pathology, K.M.Shah Dental College, Vadodara, 4Department of Oral Pathology, Karnavati School of Dentistry, Gandhinagar, 5Department of Oral Pathology, Vaidik Dental College, Daman, India Abstract (J Korean Assoc Oral Maxillofac Surg 2017;43:324-330) Objectives: There are only a limited number of studies on cyclin D1 and p63 expression in oral squamous cell carcinoma (OSCC) and leukoplakia. This study compared cyclin D1 and p63 expression in leukoplakia and OSCC to investigate the possible correlation of both markers with grade of dys- plasia and histological grade of OSCC. Materials and Methods: The study included a total of 60 cases, of which 30 were diagnosed with OSCC and 30 with leukoplakia, that were evalu- ated immunohistochemically for p63 and cyclin D1 expression. Protein expression was correlated based on grades of dysplasia and OSCC. Results: Out of 30 cases of OSCC, 23 cases (76.7%) were cyclin D1 positive and 30 cases (100%) were p63 positive. Out of 30 cases of leukoplakia, 21 cases (70.0%) were cyclin D1 positive and 30 (100%) were p63 positive (P<0.05). Conclusion: The overall expression of cyclin D1 and p63 correlated with tumor differentiation, and increases were correlated with poor histological grades, from well-differentiated to poorly-differentiated SCC. -
Nerve Growth Factor Induces Transcription of the P21 WAF1/CIP1 and Cyclin D1 Genes in PC12 Cells by Activating the Sp1 Transcription Factor
The Journal of Neuroscience, August 15, 1997, 17(16):6122–6132 Nerve Growth Factor Induces Transcription of the p21 WAF1/CIP1 and Cyclin D1 Genes in PC12 Cells by Activating the Sp1 Transcription Factor Guo-Zai Yan and Edward B. Ziff Howard Hughes Medical Institute, Department of Biochemistry, Kaplan Cancer Center, New York University Medical Center, New York, New York 10016 The PC12 pheochromocytoma cell line responds to nerve in which the Gal4 DNA binding domain is fused to the Sp1 growth factor (NGF) by gradually exiting from the cell cycle and transactivation domain, indicating that this transactivation do- differentiating to a sympathetic neuronal phenotype. We have main is regulated by NGF. Epidermal growth factor, which is a shown previously (Yan and Ziff, 1995) that NGF induces the weak mitogen for PC12, failed to induce any of these promoter expression of the p21 WAF1/CIP1/Sdi1 (p21) cyclin-dependent constructs. We consider a model in which the PC12 cell cycle kinase (Cdk) inhibitor protein and the G1 phase cyclin, cyclin is arrested as p21 accumulates and attains inhibitory levels D1. In this report, we show that induction is at the level of relative to Cdk/cyclin complexes. Sustained activation of p21 transcription and that the DNA elements in both promoters that expression is proposed to be a distinguishing feature of the are required for NGF-specific induction are clusters of binding activity of NGF that contributes to PC12 growth arrest during sites for the Sp1 transcription factor. NGF also induced a differentiation synthetic -
Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase
cells Review Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase Jaroslav Kalous *, Denisa Jansová and Andrej Šušor Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic; [email protected] (D.J.); [email protected] (A.Š.) * Correspondence: [email protected] Received: 28 April 2020; Accepted: 24 June 2020; Published: 27 June 2020 Abstract: Cyclin dependent kinase 1 (CDK1) has been primarily identified as a key cell cycle regulator in both mitosis and meiosis. Recently, an extramitotic function of CDK1 emerged when evidence was found that CDK1 is involved in many cellular events that are essential for cell proliferation and survival. In this review we summarize the involvement of CDK1 in the initiation and elongation steps of protein synthesis in the cell. During its activation, CDK1 influences the initiation of protein synthesis, promotes the activity of specific translational initiation factors and affects the functioning of a subset of elongation factors. Our review provides insights into gene expression regulation during the transcriptionally silent M-phase and describes quantitative and qualitative translational changes based on the extramitotic role of the cell cycle master regulator CDK1 to optimize temporal synthesis of proteins to sustain the division-related processes: mitosis and cytokinesis. Keywords: CDK1; 4E-BP1; mTOR; mRNA; translation; M-phase 1. Introduction 1.1. Cyclin Dependent Kinase 1 (CDK1) Is a Subunit of the M Phase-Promoting Factor (MPF) CDK1, a serine/threonine kinase, is a catalytic subunit of the M phase-promoting factor (MPF) complex which is essential for cell cycle control during the G1-S and G2-M phase transitions of eukaryotic cells. -
Correction1 4784..4785
Correction Correction: PCI-24781 Induces Caspase and Reactive Oxygen Species-Dependent Apoptosis In the article on PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis published in the May 15, 2009 issue of Clinical Cancer Research, there was an error in Table 1. Down-regulated genes were incorrectly labeled as up-regulated genes. The correct table appears here. Bhalla S, Balasubramanian S, David K, et al. PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-nB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res 2009;15:3354–65. Table 1. Selected genes from expression analysis following 24-h treatment with PCI-24781, bortezomib, or the combination (in Ramos cells) Accn # Down-regulated genes 0.25 Mmol/L PCI/3 nmol/L Bor Name PCI-24781 Bortezomib Combination* Cell cycle-related NM_000075 Cyclin-dependent kinase 4 (CDK4) 0.49 0.83 0.37 NM_001237 Cyclin A2 (CCNA2) 0.43 0.87 0.37 NM_001950 E2F transcription factor 4, p107/p130-binding (E2F4) 0.48 0.79 0.40 NM_001951 E2F transcription factor 5, p130-binding (E2F5) 0.46 0.98 0.43 NM_003903 CDC16 cell division cycle 16 homolog (S cerevisiae) (CDC16) 0.61 0.78 0.43 NM_031966 Cyclin B1 (CCNB1) 0.55 0.90 0.43 NM_001760 Cyclin D3 (CCND3) 0.48 1.02 0.46 NM_001255 CDC20 cell division cycle 20 homolog (S cerevisiae; CDC20) 0.61 0.82 0.46 NM_001262 Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4; CDKN2C) 0.61 1.15 0.56 NM_001238 Cyclin E1 (CCNE1) 0.56 1.05 0.60 NM_001239 Cyclin H (CCNH) 0.74 0.90 0.64 NM_004701 -
The Localization of Human Cyclins B1 and B2 Determines CDK1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central The Localization of Human Cyclins B1 and B2 Determines CDK1 Substrate Specificity and Neither Enzyme Requires MEK to Disassemble the Golgi Apparatus Viji Mythily Draviam,* Simona Orrechia,‡ Martin Lowe,§ Ruggero Pardi,‡ and Jonathon Pines* *Wellcome/Cancer Research Campaign Institute and Department of Zoology, Cambridge CB2 1QR, United Kingdom; ‡Vita Salute University School of Medicine, Scientific Institute San Raffaele, Milan I-20132, Italy; and §Division of Biochemistry, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom Abstract. In this paper, we show that substrate specificity confer upon it the more limited properties of cyclin B2. is primarily conferred on human mitotic cyclin-dependent Equally, directing cyclin B2 to the cytoplasm with the kinases (CDKs) by their subcellular localization. The NH2 terminus of cyclin B1 confers the broader properties difference in localization of the B-type cyclin–CDKs of cyclin B1. Furthermore, we show that the disassembly underlies the ability of cyclin B1–CDK1 to cause chromo- of the Golgi apparatus initiated by either mitotic cyclin– some condensation, reorganization of the microtubules, CDK complex does not require mitogen-activated and disassembly of the nuclear lamina and of the Golgi protein kinase kinase (MEK) activity. apparatus, while it restricts cyclin B2–CDK1 to disassem- bly of the Golgi apparatus. We identify the region of Key words: cyclin • CDK • mitosis • protein kinase • cyclin B2 responsible for its localization and show that Golgi apparatus this will direct cyclin B1 to the Golgi apparatus and Introduction Cyclins play a vital role in controlling progress through the or mitosis (M phase) depending on the amount of kinase eukaryotic cell cycle. -
Regulation of P27kip1 and P57kip2 Functions by Natural Polyphenols
biomolecules Review Regulation of p27Kip1 and p57Kip2 Functions by Natural Polyphenols Gian Luigi Russo 1,* , Emanuela Stampone 2 , Carmen Cervellera 1 and Adriana Borriello 2,* 1 National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; [email protected] 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Napoli, Italy; [email protected] * Correspondence: [email protected] (G.L.R.); [email protected] (A.B.); Tel.: +39-0825-299-331 (G.L.R.) Received: 31 July 2020; Accepted: 9 September 2020; Published: 13 September 2020 Abstract: In numerous instances, the fate of a single cell not only represents its peculiar outcome but also contributes to the overall status of an organism. In turn, the cell division cycle and its control strongly influence cell destiny, playing a critical role in targeting it towards a specific phenotype. Several factors participate in the control of growth, and among them, p27Kip1 and p57Kip2, two proteins modulating various transitions of the cell cycle, appear to play key functions. In this review, the major features of p27 and p57 will be described, focusing, in particular, on their recently identified roles not directly correlated with cell cycle modulation. Then, their possible roles as molecular effectors of polyphenols’ activities will be discussed. Polyphenols represent a large family of natural bioactive molecules that have been demonstrated to exhibit promising protective activities against several human diseases. Their use has also been proposed in association with classical therapies for improving their clinical effects and for diminishing their negative side activities. The importance of p27Kip1 and p57Kip2 in polyphenols’ cellular effects will be discussed with the aim of identifying novel therapeutic strategies for the treatment of important human diseases, such as cancers, characterized by an altered control of growth. -
Cyclin a Triggers Mitosis Either Via Greatwall Or Cyclin B
bioRxiv preprint doi: https://doi.org/10.1101/501684; this version posted December 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cyclin A triggers Mitosis either via Greatwall or Cyclin B Nadia Hégarat(1)*, Adrijana Crncec(1)*, Maria F. Suarez Peredoa Rodri- guez(1), Fabio Echegaray Iturra(1), Yan Gu(1), Paul F. Lang(2), Alexis R. Barr(3), Chris Bakal(4), Masato T. Kanemaki(5), Angus I. Lamond(6), Bela Novak(2), Tony Ly(7)•• and Helfrid Hochegger(1)•• (1) Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN19RQ, UK (2) Department of Biochemistry, University of Oxford, South Park Road, Oxford OX13QU, UK (3) MRC London Institute of Medical Science, Imperial College, London W12 0NN, UK (4) The Institute of Cancer Research, London SW3 6JB, UK (5) National Institute of Genetics, Research Organization of Information and Sys- tems (ROIS), and Department of Genetics, SOKENDAI (The Graduate University of Advanced Studies), Yata 1111, Mishima, Shizuoka 411-8540, Japan. (6) Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK (7) Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK * Equal contribution ** Correspondence: Tony Ly: [email protected]; Helfrid Hochegger: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/501684; this version posted December 20, 2018.