Cell Cycle Arrest and DNA Endoreduplication Following P21waf1/Cip1 Expression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plasticity in Ploidy: a Generalized Response to Stress
Review Plasticity in ploidy: a generalized response to stress Daniel R. Scholes and Ken N. Paige School of Integrative Biology, University of Illinois at Urbana-Champaign, 515 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA Endoreduplication, the replication of the genome with- or greater) are a general feature of endosperm and sus- out mitosis, leads to an increase in the cellular ploidy of pensor cells of seed across endopolyploid taxa [9]. Very low an organism over its lifetime, a condition termed ‘endo- (or the complete lack of) endopolyploidy across taxa is polyploidy’. Endopolyploidy is thought to play signifi- observed in a few cell types, including phloem companion cant roles in physiology and development through cells and stomatal guard cells, both of which serve highly cellular, metabolic, and genetic effects. While the occur- specialized functions that would possibly be disrupted by rence of endopolyploidy has been observed widely increased ploidy [7,9]. Because endoreduplication is a across taxa, studies have only recently begun to charac- somatic process, the embryo and meristematic cells terize and manipulate endopolyploidy with a focus on its (e.g., procambium, root and shoot apical meristems) also ecological and evolutionary importance. No compilation lack endopolyploidy [6,7,9]. Finally, mixed ploidy among of these examples implicating endoreduplication as a adjacent cells of the same type also occurs (e.g., leaf generalized response to stress has thus far been made, epidermal pavement cells range from 2C to 64C) [7,9]. despite the growing evidence supporting this notion. Although generalized patterns of endopolyploidy may We review here the recent literature of stress-induced be observed within and among plants, recent evidence endopolyploidy and suggest that plants employ endor- suggests that many plants that endoreduplicate can plas- eduplication as an adaptive, plastic response to mitigate tically increase their endopolyploidy beyond their ‘normal’ the effects of stress. -
DNA Damage Checkpoint Dynamics Drive Cell Cycle Phase Transitions
bioRxiv preprint doi: https://doi.org/10.1101/137307; this version posted August 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. DNA damage checkpoint dynamics drive cell cycle phase transitions Hui Xiao Chao1,2, Cere E. Poovey1, Ashley A. Privette1, Gavin D. Grant3,4, Hui Yan Chao1, Jeanette G. Cook3,4, and Jeremy E. Purvis1,2,4,† 1Department of Genetics 2Curriculum for Bioinformatics and Computational Biology 3Department of Biochemistry and Biophysics 4Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill 120 Mason Farm Road Chapel Hill, NC 27599-7264 †Corresponding Author: Jeremy Purvis Genetic Medicine Building 5061, CB#7264 120 Mason Farm Road Chapel Hill, NC 27599-7264 [email protected] ABSTRACT DNA damage checkpoints are cellular mechanisms that protect the integrity of the genome during cell cycle progression. In response to genotoxic stress, these checkpoints halt cell cycle progression until the damage is repaired, allowing cells enough time to recover from damage before resuming normal proliferation. Here, we investigate the temporal dynamics of DNA damage checkpoints in individual proliferating cells by observing cell cycle phase transitions following acute DNA damage. We find that in gap phases (G1 and G2), DNA damage triggers an abrupt halt to cell cycle progression in which the duration of arrest correlates with the severity of damage. However, cells that have already progressed beyond a proposed “commitment point” within a given cell cycle phase readily transition to the next phase, revealing a relaxation of checkpoint stringency during later stages of certain cell cycle phases. -
Cyclin-Dependent Kinase Inhibitors KRP1 and KRP2 Are Involved in Grain Filling and Seed Germination in Rice (Oryza Sativa L.)
International Journal of Molecular Sciences Article Cyclin-Dependent Kinase Inhibitors KRP1 and KRP2 Are Involved in Grain Filling and Seed Germination in Rice (Oryza sativa L.) Abolore Adijat Ajadi 1,2, Xiaohong Tong 1, Huimei Wang 1, Juan Zhao 1, Liqun Tang 1, Zhiyong Li 1, Xixi Liu 1, Yazhou Shu 1, Shufan Li 1, Shuang Wang 1,3, Wanning Liu 1, Sani Muhammad Tajo 1, Jian Zhang 1,* and Yifeng Wang 1,* 1 State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; [email protected] (A.A.A.); [email protected] (X.T.); [email protected] (H.W.); [email protected] (J.Z.); [email protected] (L.T.); [email protected] (Z.L.); [email protected] (X.L.); [email protected] (Y.S.); [email protected] (S.L.); [email protected] (S.W.); [email protected] (W.L.); [email protected] (S.M.T.) 2 Biotechnology Unit, National Cereals Research Institute, Badeggi, Bida 912101, Nigeria 3 College of Life Science, Yangtze University, Jingzhou 434025, China * Correspondence: [email protected] (J.Z.); [email protected] (Y.W.); Tel./Fax: +86-571-6337-0277 (J.Z.); +86-571-6337-0206 (Y.W.) Received: 21 November 2019; Accepted: 26 December 2019; Published: 30 December 2019 Abstract: Cyclin-dependent kinase inhibitors known as KRPs (kip-related proteins) control the progression of plant cell cycles and modulate various plant developmental processes. However, the function of KRPs in rice remains largely unknown. In this study, two rice KRPs members, KRP1 and KRP2, were found to be predominantly expressed in developing seeds and were significantly induced by exogenous abscisic acid (ABA) and Brassinosteroid (BR) applications. -
Involvement in Endoreduplication (Cell Cycle/Repa/Wheat Dwarf Virus) GIDEON GRAFI*T#, RONALD J
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 8962-8967, August 1996 Cell Biology A maize cDNA encoding a member of the retinoblastoma protein family: Involvement in endoreduplication (cell cycle/RepA/wheat dwarf virus) GIDEON GRAFI*t#, RONALD J. BURNETTr*, TIM HELENTJARIS*, BRIAN A. LARKINS*§, JAMES A. DECAPRIOt, WILLIAM R. SELLERSt, AND WILLIAM G. KAELIN, JR.t *Department of Plant Sciences, University of Arizona, Tucson AZ 85721; and tDana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115 Contributed by Brian A. Larkins, May 14, 1996 ABSTRACT Retinoblastoma (RB-1) is a tumor suppres- We identified a partial maize cDNA (ZmRB) that is pre- sor gene that encodes a 105-kDa nuclear phosphoprotein. To dicted to encode a protein with homology to members of the date, RB genes have been isolated only from metazoans. We pocket protein (Rb) family. Here we provide evidence that have isolated a cDNA from maize endosperm whose predicted ZmRb is a member of the retinoblastoma protein family and protein product (ZmRb) shows homology to the "pocket" A demonstrate its ability to bind the replication-associated pro- and B domains of the Rb protein family. We found ZmRb tein WDV RepA and its involvement in the process of DNA behaves as a pocket protein based on its ability to specifically endoreduplication during maize endosperm development. interact with oncoproteins encoded by DNA tumor viruses (E7, T-Ag, E1A). ZmRb can interact in vitro and in vivo with MATERIALS AND METHODS the replication-associated protein, RepA, encoded by the wheat dwarf virus. The maize Rb-related protein undergoes Plant Materials and Chemicals. -
The Expression of P21/WAF-1 and Cyclin B1 Mediate Mitotic Delay in X-Irradiated Fibroblasts
ANTICANCER RESEARCH 25: 1123-1130 (2005) The Expression of p21/WAF-1 and Cyclin B1 Mediate Mitotic Delay in x-Irradiated Fibroblasts MICKAEL J. CARIVEAU1,2, CHARLES J. KOVACS2, RON R. ALLISON2, ROBERTA M. JOHNKE2, GERHARD W. KALMUS3 and MARK EVANS2 1Department of Physics, East Carolina University, Greenville NC, 27858; 2Department of Radiation Oncology, The Brody School of Medicine, East Carolina University, Greenville NC, 27858; 3Department of Biology, East Carolina University, Greenville NC, 27858, U.S.A. Abstract. Background: To better understand the relationship Initiation and maintenance of cell cycle arrest is regulated between mitotic delay and the disruption of cyclin B1 and p21 in by a group of proteins known as the cyclins which function x-irradiated fibroblasts, studies were carried out to establish by coupling to their corresponding cyclin dependent kinases correlations between the downregulation of cyclin B1 by the cyclin (CDK) (6-9). Of particular interest to cell cycle arrest in kinase inhibitor (CKI) p21 and the induction of mitotic delay in response to DNA damage is the G2/M damage checkpoint the NIH3T3 fibroblast. Materials and Methods: Cell cycle kinetics which is regulated by cyclin B1/CDK1 and initiated by DNA were used to analyze mitotic delay in irradiated NIH3T3 cells and damage activation of the cyclin kinase inhibitor p21(10-14). immunocytochemistry incorporated to assess the expression of The inhibitory potential of p21 is well established; however, cyclin B1 and p21, following 2 or 4Gy x-irradiation. Results and there is still much confusion about the role of p21 in the Discussion: Results indicate a dose dependent increase in mitotic irradiated cell (15, 16). -
Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase
cells Review Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase Jaroslav Kalous *, Denisa Jansová and Andrej Šušor Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic; [email protected] (D.J.); [email protected] (A.Š.) * Correspondence: [email protected] Received: 28 April 2020; Accepted: 24 June 2020; Published: 27 June 2020 Abstract: Cyclin dependent kinase 1 (CDK1) has been primarily identified as a key cell cycle regulator in both mitosis and meiosis. Recently, an extramitotic function of CDK1 emerged when evidence was found that CDK1 is involved in many cellular events that are essential for cell proliferation and survival. In this review we summarize the involvement of CDK1 in the initiation and elongation steps of protein synthesis in the cell. During its activation, CDK1 influences the initiation of protein synthesis, promotes the activity of specific translational initiation factors and affects the functioning of a subset of elongation factors. Our review provides insights into gene expression regulation during the transcriptionally silent M-phase and describes quantitative and qualitative translational changes based on the extramitotic role of the cell cycle master regulator CDK1 to optimize temporal synthesis of proteins to sustain the division-related processes: mitosis and cytokinesis. Keywords: CDK1; 4E-BP1; mTOR; mRNA; translation; M-phase 1. Introduction 1.1. Cyclin Dependent Kinase 1 (CDK1) Is a Subunit of the M Phase-Promoting Factor (MPF) CDK1, a serine/threonine kinase, is a catalytic subunit of the M phase-promoting factor (MPF) complex which is essential for cell cycle control during the G1-S and G2-M phase transitions of eukaryotic cells. -
Perspectives
CopyTight 0 1997 by the Genetics Society of America Perspectives Anecdotal, Historical And Critical Commentaries on Genetics Edited by James F. Crow and William F. Dove Chromosome Changes in Cell Differentiation Orlando J. Miller Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201 N a recent “Perspectives” article, EEVA THEW the H19 gene. The maternal H19 allele is expressed, I (1995) called attention to a variety of alterations and its cis-acting, nontranslatable RNA product inhibits in chromosomes that occur regularly in differentiating the expression of the maternal alleles of the other three cells, have been known for many years, and are still genes, mash-2, Ins-2, and I@. The paternal H19 allele poorly understood. Theseincludedfacultatiue heterochro- is methylated and notexpressed, so the paternal alleles matinization, polyploidization by endoreduplication, under- of the other three genes are expressed. Imprinting of replication ofsome sequences inpolytene chromosomes, the Inns-2 and I@ genes is disrupted by maternal inheri- and gene amplijication. The related programmed DNA tance of a targeted deletion of the H19 gene and its loss phenomena called chromatin diminutionand chromo- flanking sequence, while paternal inheritance has no some eliminationalso belong tothis group of highly regu- effect, reflecting the normally silent state of the pater- lated developmental chromosomechanges. Here Ishall nal HI 9 allele (LEIGHTONet al. 1995). There is also a briefly review these changes, with particular emphasis cluster of several genes on human chromosome 15 that on thecell and molecular genetic approaches thathave are expressed exclusively on thepaternal chromosome; provided, or could provide, insights into the signaling these may play a role in thePrader-Willi syndrome. -
Endoreduplication in Drosophila Melanogaster Progeny After Exposure to Acute Γ-Irradiation
bioRxiv preprint doi: https://doi.org/10.1101/376145; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Endoreduplication in Drosophila melanogaster progeny after exposure to acute γ-irradiation Running head: Endoreduplication in Drosophila after γ- Keywords: giant chromosomes, polyteny degree, developmental rate, embryonic mortality, ionizing radiation. Daria A. Skorobagatko VN Karazin Kharkiv National University, Department of Genetics and Cytology, Svobody sq., 4, Kharkiv, 61022, Ukraine E-mail: [email protected] Phone: +380673007826 Alexey A. Mazilov Ph D NSC ‘Kharkiv Institute of Physics and Technology’, Department of Physics of Radiation and Multichannel Track Detectors, Academic str., 1, Kharkiv, 61108, Ukraine E-mail: [email protected] Phone: +380679950495 Volodymyr Yu. Strashnyuk Dr Sci (corresponding author) VN Karazin Kharkiv National University, Department of Genetics and Cytology, Svobody sq., 4, Kharkiv, 61022, Ukraine E-mail: [email protected] Phone: +380679478350 bioRxiv preprint doi: https://doi.org/10.1101/376145; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 Abstract The purpose of investigation was to study the effect of acute γ-irradiation of parent adults on the endoreduplication in Drosophila melanogaster progeny. As a material used Oregon-R strain. Virgin females and males of Drosophila adults at the age of 3 days were exposed at the doses of 8, 16 and 25 Gy. Giant chromosomes were studied at late 3rd instar larvae by cytomorphometric method. -
Regulation of P27kip1 and P57kip2 Functions by Natural Polyphenols
biomolecules Review Regulation of p27Kip1 and p57Kip2 Functions by Natural Polyphenols Gian Luigi Russo 1,* , Emanuela Stampone 2 , Carmen Cervellera 1 and Adriana Borriello 2,* 1 National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; [email protected] 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Napoli, Italy; [email protected] * Correspondence: [email protected] (G.L.R.); [email protected] (A.B.); Tel.: +39-0825-299-331 (G.L.R.) Received: 31 July 2020; Accepted: 9 September 2020; Published: 13 September 2020 Abstract: In numerous instances, the fate of a single cell not only represents its peculiar outcome but also contributes to the overall status of an organism. In turn, the cell division cycle and its control strongly influence cell destiny, playing a critical role in targeting it towards a specific phenotype. Several factors participate in the control of growth, and among them, p27Kip1 and p57Kip2, two proteins modulating various transitions of the cell cycle, appear to play key functions. In this review, the major features of p27 and p57 will be described, focusing, in particular, on their recently identified roles not directly correlated with cell cycle modulation. Then, their possible roles as molecular effectors of polyphenols’ activities will be discussed. Polyphenols represent a large family of natural bioactive molecules that have been demonstrated to exhibit promising protective activities against several human diseases. Their use has also been proposed in association with classical therapies for improving their clinical effects and for diminishing their negative side activities. The importance of p27Kip1 and p57Kip2 in polyphenols’ cellular effects will be discussed with the aim of identifying novel therapeutic strategies for the treatment of important human diseases, such as cancers, characterized by an altered control of growth. -
Endoreduplication in Floral Structure, Vegetative and Fruits of Red Pitaya with White Pulp
931 Original Article ENDOREDUPLICATION IN FLORAL STRUCTURE, VEGETATIVE AND FRUITS OF RED PITAYA WITH WHITE PULP ENDORREDUPLICAÇÃO EM ESTRUTURA FLORAL, VEGETATIVA E FRUTOS DE PITAYA VERMELHA DE POLPA BRANCA Thatiane Padilha de MENEZES 1; Leila Aparecida Salles PIO 2; José Darlan RAMOS 3; Moacir PASQUAL 4; Tesfahum Alemu SETOTAW5 1. Doutora em Agronomia, Universidade Federal de Lavras – UFLA, Lavras, MG, Brasil. [email protected]; 2. Professora, Doutora em Agronomia, Universidade Federal de Lavras – UFLA, Lavras, MG, Brasil; 3. Professor, Doutor em Agronomia, Universidade Federal de Lavras – UFLA, Lavras, MG, Brasil; 4. Professor, Doutor em Agronomia, Universidade Federal de Lavras – UFLA, Lavras, MG, Brasil. [email protected]; 5. Doutor em Agonomia, Universidade Federal de Lavras – UFLA, Lavras, MG, Brasil. ABSTRACT: Endoreduplication is the change of cellular cycle that result DNA duplication without cell division and could result endopolyploid cells. This phenomenon is common in plants and animals and considered as evaluative strategy. Although endoreduplication reported in various plant species, the information about these phenomena in red pitaya is rare. Therefore, this work was done with the objective of studying the endoreduplication in Hylocereus undatus Haw. using flow cytometry analysis. In this study were used the tissue from the flower structure, fruits, roots, cladode, and thorns of the pitaya plant.To determine the DNA content approximately 50 mg the sample of each treatment with Pisum sativum (the internal standard reference) were grind in plate of petri dishes contained 1 mL of cold Marie buffer to release the nucleus.The nuclear suspension was filtered through 50 µm mesh. The nucleuses were colored with 25 µL of 1 mg/L mL of propidium iodide. -
SAMBA, a Plant-Specific Anaphase-Promoting Complex/Cyclosome Regulator Is Involved in Early Development and A-Type Cyclin Stabilization Nubia B
SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization Nubia B. Eloy, Nathalie Gonzalez, Jelle van Leene, Katrien Maleux, Hannes Vanhaeren, Liesbeth de Milde, Stijn Dhondt, Leen Vercruysse, Erwin Witters, Raphaël Mercier, et al. To cite this version: Nubia B. Eloy, Nathalie Gonzalez, Jelle van Leene, Katrien Maleux, Hannes Vanhaeren, et al.. SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early de- velopment and A-type cyclin stabilization. Proceedings of the National Academy of Sciences of the United States of America , National Academy of Sciences, 2012, 109 (34), pp.13853 - 13858. 10.1073/pnas.1211418109. hal-01190736 HAL Id: hal-01190736 https://hal.archives-ouvertes.fr/hal-01190736 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SAMBA, a plant-specific anaphase-promoting complex/ cyclosome regulator is involved in early development and A-type cyclin stabilization Nubia B. Eloya,b, Nathalie Gonzaleza,b, Jelle Van Leenea,b, Katrien Maleuxa,b, Hannes Vanhaerena,b, Liesbeth De Mildea,b, Stijn Dhondta,b, Leen Vercruyssea,b, Erwin Wittersc,d,e, Raphaël Mercierf, Laurence Cromerf, Gerrit T. -
Cell Cycle Phase Influences Tumour Cell Sensitivity to Aminolaevulinic Acid-Induced Photodynamic Therapy in Vitro
Britsh Joumal of Cancer (1998) 78(1). 50-55 C 1998 Cancer Research Cafpaign Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro L WyIdl, 0 Smith2, J Lawry2, MWR Reed' and NJ Brown' IDepartment of Surgical and Anaesthetc Sciences. Sheffield University, Sheffield Sl0 2JF. UK. 2lnstitute for Cancer Studies, Sheffield University. Sheffield S10 2JF, UK Summary Photodynamic therapy (PDT) is a form of cancer treatment based on the destruction of cells by the interaction of light, oxygen and a photosensitizer. Aminolaevulinic acid (ALA) is the prodrug of the photosensitizer protoporphyrin IX (PpIX). ALA-induced PDT depends on the rate of cellular synthesis of PpIX, which may vary with cell cycle phase. This study has investigated the relationship between cell cycle phase, PpIX generation and phototoxicity in synchronized and unsynchronized bladder cancer cells (HT1197). In unsynchronized cells, relative PpIX fluorescence values (arbitrary units) were significantly different between cell cycle phases after a 1-h ALA incubation (G, 24.8 ± 0.7; S-phase, 32.7 ± 0.8, P < 0.05; G2 35.4 ± 0.8, P < 0.05). In synchronized cells after a 1 -h ALA incubation, cells in G, produced less PpIX than those in S-phase or G2 [6.65 ± 1.1 ng per 10 cells compared with 15.5 ± 2.1 (P < 0.05), and 8.1 ± 1.8 ng per 105 cells (not significant) respectively] and were significantty less sensitive to ALA-induced PDT (% survival, G, 76.2 ± 8.3; S-phase 49.7 ± 4.6, P < 0.05; G2 44.2 ± 2.4, P < 0.05).