ON the BURNSIDE PROBLEM in Diff

Total Page:16

File Type:pdf, Size:1020Kb

ON the BURNSIDE PROBLEM in Diff DISCRETE AND CONTINUOUS Website: http://aimSciences.org DYNAMICAL SYSTEMS Volume 17, Number 2, February 2007 pp. 423–439 ON THE BURNSIDE PROBLEM IN Diff (M) Julio C. Rebelo Dept. de Matematica, PUC-Rio R. Marques de S. Vicente 225 Rio de Janeiro RJ CEP 22453-900 Brazil Ana L. Silva Dept. de Matematica, CCE UEL Campus Universitario, Caixa Postal 6001 Londrina PR CEP 86051-990 Brazil Dedicated to C. Gutierrez and to M. A. Teixeira on the occasion of their 60th birthday. Abstract. In this paper we obtain some non-linear analogues of Schur’s the- orem asserting that a finitely generated subgroup of a linear group all of whose elements have finite order is, in fact, finite. The main result concerns groups of symplectomorphisms of certain manifolds of dimension 4 including the torus T4. 1. Introduction. The main result of this paper reads as follows: Theorem A: Let M be a compact 4-dimensional symplectic manifold and denote by Symp (M) the group of symplectomorphisms of M (say of class C2). Suppose that the fundamental class in H4(M, Z) is a product of classes in H1(M, Z). Then any finitely generated subgroup G ⊂ Symp (M) having only elements of finite order is, in fact, finite. In the proof of Theorem A, an important role is played by Theorem B below. Consider now a compact (oriented) manifold M and let Diff2(M) be the group of orientation-preserving C2-diffeomorphisms of M. If µ is a probability measure on 2 2 M, denote by Diffµ the subgroup of Diff (M) consisting of those diffeomorphisms preserving µ, then one has: 2 Theorem B: Let M, µ and Diff µ(M) be as above. Suppose that the fundamental class in Hn(M, Z) is a product of elements in H1(M, Z). Suppose in addition that the mapping class group of M is finite. Then any finitely generated subgroup G of 2 Diffµ(M) all of whose elements have finite order is, in fact, finite. Remark: Naturally we can dispense with the condition regarding the mapping class group of M if we assume directly that G consists of diffeomorphisms isotopic to the identity. Some comments on the above statements are necessary. First the assumption concerning the finiteness of the mapping class group of M made in Theorem B is definitely strong, especially because mapping class groups are notoriously hard to 2000 Mathematics Subject Classification. 53D25, 37C50 . Key words and phrases. Burnside problem . 423 424 JULIO C. REBELO AND ANA L. SILVA be computed. The reader who feels uncomfortable with this condition may sim- ply regard Theorem B as a technical statement used in the proof of Theorem A (further motivation for Theorem A will be discussed in the sequel). Still we would like to point out that in dimension 3 there is a good number of examples of man- ifolds having finite mapping class group. These include Haken manifolds or, more generally, manifolds carrying genuine laminations, hyperbolic manifolds and some Seifert manifolds (for terminology and proofs the reader may check [7] and references therein). It should also be emphasized that our statements aim at manifolds whose Euler characteristic e(M) vanishes. Indeed, when e(M) 6= 0, these statements can easily be greatly generalized as explained in Theorem (3.1). The corresponding argument is similar in “spirit” to those employed in [8] and [6]. On the other hand little seems to be known about manifolds verifying e(M) = 0 except for dimensions 1 and 2. Let us also point out that throughout this paper we work with C2 diffeomor- phisms. This is naturally required by the Hodge theoretic arguments (cf. Section 2) and we have not searched for the best condition in terms of regularity. Let us now situate the above theorems with respect to other works. In the present days, linear representation theory of groups is a classical and well-developed sub- ject that appears in different aspects of mathematics. However, there are also many relevant cases where a group acts through automorphisms on some manifold and this action is not “linear” i.e. it does not embed in a finite dimensional Lie group acting on M. This suggests us to consider a “non-linear” theory of representations where the target group is no longer a matrix group (or a finite dimensional Lie group) but the whole group of diffeomorphisms of some compact manifold M. Here the amount of regularity of the diffeomorphisms in question is not specified so that we may consider real analytic ones if necessary. This problem is equally interesting if restricted to the groups of diffeomorphisms of M that preserve a volume form or a symplectic structure. Indeed our attention is focused on groups of symplecto- morphisms due to two main reasons. The first one is that these groups are really huge and “essentially” non-linear which is necessary to be coherent with the above proposal. On the other hand, there is evidence that they share deep properties with linear groups, at least on the connected component of the identity. This is particu- larly clear from the work of Polterovich (cf. [18]) who has intensively investigated their structure. The point of view of (cf. [18]), however, is rather different from ours. The possibility of studying homomorphisms from abstract groups to a group of the form Diff (M) was discussed for example in [2]. This paper seems to have led E. Ghys to suggest to the first author that it would be interesting to consider actions of “torsion groups”. More precisely, a finitely generated, infinite, group all of whose elements have finite order is going to be called a Burnside group. The idea of E. Ghys was to discuss possible Burnside group actions on compact manifolds. As mentioned, his motivation apparently stemmed from [2] where the authors have suggested that a “generic” group may not act on a compact manifold. According to the works of Champetier and Ol’shanskii, Burnside groups are “generic” in the topological sense, i.e. they form a Gδ-dense set for a suitable topology on the space of finitely generated groups (cf. [10]). Nonetheless they are not “generic” in the probabilistic sense (see [10] for different notions of genericity used in Group Theory). Yet one first answer to the question of [2] might be achieved by showing ON THE BURNSIDE PROBLEM 425 that a Burnside group does not act on any compact manifold. Our theorems then can be viewed as a contribution to this problem in higher dimensions. Remark: After a classical result of H¨older stating that any non-Abelian group acting on the circle has points with non-trivial stabilizers, it immediately follows that a Burnside group cannot act faithfully on the circle. In fact, a diffeomorphism of finite order of the circle possessing fixed points must coincide with the identity. On the other hand, our main motivation to approach the question concerning the existence of an effective Burnside group action on a compact manifold comes, in an indirect way, from the Zimmer program as explained below. Note that years before [2], Zimmer had already proposed the program of studying homomorphisms from lattices of semi-simple Lie groups to Diff (M) with a view to obtaining “non-linear” versions of Margulis’s superrigidity theorems. Due to the difficulties involved and, to some extent, to the lack of suitable techniques to deal with them, definite progress in this program has been accomplished only in dimension 1 (cf. [9], [16], [25]). In view of the difficulties in carrying out the programs mentioned above, in this paper we turn to a question that, at least in principle, should be much simpler. Besides restricting attention to the symplectic category, we also propose to study infinite groups having “many” torsion elements. Of course, the prototype of the groups we have in mind are Burnside groups again. As a matter of fact, the quest for the properties of Burnside groups, in particular their very existence, is closely related to the development of Combinatorial Group Theory. Historically they have preceded the deep results on the structure of arithmetic subgroups and more general lattices in semi-simple Lie groups. Hence, it seemed to us that might be more reasonable to begin the study of “non-linear” representations of groups by considering possible embeddings of Burnside groups in the group of symplectomorphisms of a compact manifold. In this way, we are trying to obtain the non-linear analogue of a classical result due to Schur, cf. [23], rather than searching for the non-linear analogues of the very hard theorems of Margulis (the Zimmer program). This added to the independent interest of this study raised by Ghys observation quoted above. A consequence of our point of view is that, in some sense, this paper lies in the borderline between Dynamics and Topology. In fact, actions of infinite groups are associated to Dynamics since their orbits are not compact. On the other hand, actions of finite groups is a classical subject of Topology. Since our infinite groups have elements of finite order their possible actions have a significative topological component. To close this Introduction let us present a short description of the contents of the paper. The first ingredient needed is a criterion to guarantee that a given diffeomorphism coincides with the identity. We choose here one due to S. Weinberger ([20] and [24]) which is described in Section 2 along with examples of Burnside group actions on open manifolds. The second ingredient is the Flux homomorphism which is defined on the con- nected component of the identity of Diffµ(M) (for a given probability µ).
Recommended publications
  • Discussion on Some Properties of an Infinite Non-Abelian Group
    International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 2 August 2017 Discussion on Some Then A.B = Properties of an Infinite Non-abelian = Group Where = Ankur Bala#1, Madhuri Kohli#2 #1 M.Sc. , Department of Mathematics, University of Delhi, Delhi #2 M.Sc., Department of Mathematics, University of Delhi, Delhi ( 1 ) India Abstract: In this Article, we have discussed some of the properties of the infinite non-abelian group of matrices whose entries from integers with non-zero determinant. Such as the number of elements of order 2, number of subgroups of order 2 in this group. Moreover for every finite group , there exists such that has a subgroup isomorphic to the group . ( 2 ) Keywords: Infinite non-abelian group, Now from (1) and (2) one can easily say that is Notations: GL(,) n Z []aij n n : aij Z. & homomorphism. det( ) = 1 Now consider , Theorem 1: can be embedded in Clearly Proof: If we prove this theorem for , Hence is injective homomorphism. then we are done. So, by fundamental theorem of isomorphism one can Let us define a mapping easily conclude that can be embedded in for all m . Such that Theorem 2: is non-abelian infinite group Proof: Consider Consider Let A = and And let H= Clearly H is subset of . And H has infinite elements. B= Hence is infinite group. Now consider two matrices Such that determinant of A and B is , where . And ISSN: 2231-5373 http://www.ijmttjournal.org Page 108 International Journal of Mathematics Trends and Technology (IJMTT) – Volume 48 Number 2 August 2017 Proof: Let G be any group and A(G) be the group of all permutations of set G.
    [Show full text]
  • Classification of Finite Abelian Groups
    Math 317 C1 John Sullivan Spring 2003 Classification of Finite Abelian Groups (Notes based on an article by Navarro in the Amer. Math. Monthly, February 2003.) The fundamental theorem of finite abelian groups expresses any such group as a product of cyclic groups: Theorem. Suppose G is a finite abelian group. Then G is (in a unique way) a direct product of cyclic groups of order pk with p prime. Our first step will be a special case of Cauchy’s Theorem, which we will prove later for arbitrary groups: whenever p |G| then G has an element of order p. Theorem (Cauchy). If G is a finite group, and p |G| is a prime, then G has an element of order p (or, equivalently, a subgroup of order p). ∼ Proof when G is abelian. First note that if |G| is prime, then G = Zp and we are done. In general, we work by induction. If G has no nontrivial proper subgroups, it must be a prime cyclic group, the case we’ve already handled. So we can suppose there is a nontrivial subgroup H smaller than G. Either p |H| or p |G/H|. In the first case, by induction, H has an element of order p which is also order p in G so we’re done. In the second case, if ∼ g + H has order p in G/H then |g + H| |g|, so hgi = Zkp for some k, and then kg ∈ G has order p. Note that we write our abelian groups additively. Definition. Given a prime p, a p-group is a group in which every element has order pk for some k.
    [Show full text]
  • Mathematics 310 Examination 1 Answers 1. (10 Points) Let G Be A
    Mathematics 310 Examination 1 Answers 1. (10 points) Let G be a group, and let x be an element of G. Finish the following definition: The order of x is ... Answer: . the smallest positive integer n so that xn = e. 2. (10 points) State Lagrange’s Theorem. Answer: If G is a finite group, and H is a subgroup of G, then o(H)|o(G). 3. (10 points) Let ( a 0! ) H = : a, b ∈ Z, ab 6= 0 . 0 b Is H a group with the binary operation of matrix multiplication? Be sure to explain your answer fully. 2 0! 1/2 0 ! Answer: This is not a group. The inverse of the matrix is , which is not 0 2 0 1/2 in H. 4. (20 points) Suppose that G1 and G2 are groups, and φ : G1 → G2 is a homomorphism. (a) Recall that we defined φ(G1) = {φ(g1): g1 ∈ G1}. Show that φ(G1) is a subgroup of G2. −1 (b) Suppose that H2 is a subgroup of G2. Recall that we defined φ (H2) = {g1 ∈ G1 : −1 φ(g1) ∈ H2}. Prove that φ (H2) is a subgroup of G1. Answer:(a) Pick x, y ∈ φ(G1). Then we can write x = φ(a) and y = φ(b), with a, b ∈ G1. Because G1 is closed under the group operation, we know that ab ∈ G1. Because φ is a homomorphism, we know that xy = φ(a)φ(b) = φ(ab), and therefore xy ∈ φ(G1). That shows that φ(G1) is closed under the group operation.
    [Show full text]
  • Group Theory in Particle Physics
    Group Theory in Particle Physics Joshua Albert Phy 205 http://en.wikipedia.org/wiki/Image:E8_graph.svg Where Did it Come From? Group Theory has it©s origins in: ● Algebraic Equations ● Number Theory ● Geometry Some major early contributers were Euler, Gauss, Lagrange, Abel, and Galois. What is a group? ● A group is a collection of objects with an associated operation. ● The group can be finite or infinite (based on the number of elements in the group. ● The following four conditions must be satisfied for the set of objects to be a group... 1: Closure ● The group operation must associate any pair of elements T and T© in group G with another element T©© in G. This operation is the group multiplication operation, and so we write: – T T© = T©© – T, T©, T©© all in G. ● Essentially, the product of any two group elements is another group element. 2: Associativity ● For any T, T©, T©© all in G, we must have: – (T T©) T©© = T (T© T©©) ● Note that this does not imply: – T T© = T© T – That is commutativity, which is not a fundamental group property 3: Existence of Identity ● There must exist an identity element I in a group G such that: – T I = I T = T ● For every T in G. 4: Existence of Inverse ● For every element T in G there must exist an inverse element T -1 such that: – T T -1 = T -1 T = I ● These four properties can be satisfied by many types of objects, so let©s go through some examples... Some Finite Group Examples: ● Parity – Representable by {1, -1}, {+,-}, {even, odd} – Clearly an important group in particle physics ● Rotations of an Equilateral Triangle – Representable as ordering of vertices: {ABC, ACB, BAC, BCA, CAB, CBA} – Can also be broken down into subgroups: proper rotations and improper rotations ● The Identity alone (smallest possible group).
    [Show full text]
  • Group Theory
    Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk.
    [Show full text]
  • Discrete and Profinite Groups Acting on Regular Rooted Trees
    Discrete and Profinite Groups Acting on Regular Rooted Trees Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universit¨at G¨ottingen vorgelegt von Olivier Siegenthaler aus Lausanne G¨ottingen, den 31. August 2009 Referent: Prof. Dr. Laurent Bartholdi Korreferent: Prof. Dr. Thomas Schick Tag der m¨undlichen Pr¨ufung: den 28. September 2009 Contents Introduction 1 1 Foundations 5 1.1 Definition of Aut X∗ and ...................... 5 A∗ 1.2 ZariskiTopology ............................ 7 1.3 Actions of X∗ .............................. 8 1.4 Self-SimilarityandBranching . 9 1.5 Decompositions and Generators of Aut X∗ and ......... 11 A∗ 1.6 The Permutation Modules k X and k X ............ 13 { } {{ }} 1.7 Subgroups of Aut X∗ .......................... 14 1.8 RegularBranchGroups . 16 1.9 Self-Similarity and Branching Simultaneously . 18 1.10Questions ................................ 19 ∗ 2 The Special Case Autp X 23 2.1 Definition ................................ 23 ∗ 2.2 Subgroups of Autp X ......................... 24 2.3 NiceGeneratingSets. 26 2.4 Uniseriality ............................... 28 2.5 Signature and Maximal Subgroups . 30 2.6 Torsion-FreeGroups . 31 2.7 Some Specific Classes of Automorphisms . 32 2.8 TorsionGroups ............................. 34 3 Wreath Product of Affine Group Schemes 37 3.1 AffineSchemes ............................. 38 3.2 ExponentialObjects . 40 3.3 Some Hopf Algebra Constructions . 43 3.4 Group Schemes Corresponding to Aut X∗ .............. 45 3.5 Iterated Wreath Product of the Frobenius Kernel . 46 i Contents 4 Central Series and Automorphism Towers 49 4.1 Notation................................. 49 4.2 CentralSeries.............................. 51 4.3 Automorphism and Normalizer Towers . 54 5 Hausdorff Dimension 57 5.1 Definition ................................ 57 5.2 Layers .................................. 58 5.3 ComputingDimensions .
    [Show full text]
  • Abstract Quotients of Profinite Groups, After Nikolov and Segal
    ABSTRACT QUOTIENTS OF PROFINITE GROUPS, AFTER NIKOLOV AND SEGAL BENJAMIN KLOPSCH Abstract. In this expanded account of a talk given at the Oberwolfach Ar- beitsgemeinschaft “Totally Disconnected Groups”, October 2014, we discuss results of Nikolay Nikolov and Dan Segal on abstract quotients of compact Hausdorff topological groups, paying special attention to the class of finitely generated profinite groups. Our primary source is [17]. Sidestepping all difficult and technical proofs, we present a selection of accessible arguments to illuminate key ideas in the subject. 1. Introduction §1.1. Many concepts and techniques in the theory of finite groups depend in- trinsically on the assumption that the groups considered are a priori finite. The theoretical framework based on such methods has led to marvellous achievements, including – as a particular highlight – the classification of all finite simple groups. Notwithstanding, the same methods are only of limited use in the study of infinite groups: it remains mysterious how one could possibly pin down the structure of a general infinite group in a systematic way. Significantly more can be said if such a group comes equipped with additional information, such as a structure-preserving action on a notable geometric object. A coherent approach to studying restricted classes of infinite groups is found by imposing suitable ‘finiteness conditions’, i.e., conditions that generalise the notion of being finite but are significantly more flexible, such as the group being finitely generated or compact with respect to a natural topology. One rather fruitful theme, fusing methods from finite and infinite group theory, consists in studying the interplay between an infinite group Γ and the collection of all its finite quotients.
    [Show full text]
  • Infinite Groups with Large Balls of Torsion Elements and Small Entropy
    INFINITE GROUPS WITH LARGE BALLS OF TORSION ELEMENTS AND SMALL ENTROPY LAURENT BARTHOLDI, YVES DE CORNULIER Abstract. We exhibit infinite, solvable, abelian-by-finite groups, with a fixed number of generators, with arbitrarily large balls consisting of torsion elements. We also provide a sequence of 3-generator non-nilpotent-by-finite polycyclic groups of algebraic entropy tending to zero. All these examples are obtained by taking ap- propriate quotients of finitely presented groups mapping onto the first Grigorchuk group. The Burnside Problem asks whether a finitely generated group all of whose ele- ments have finite order must be finite. We are interested in the following related question: fix n sufficiently large; given a group Γ, with a finite symmetric generating subset S such that every element in the n-ball is torsion, is Γ finite? Since the Burn- side problem has a negative answer, a fortiori the answer to our question is negative in general. However, it is natural to ask for it in some classes of finitely generated groups for which the Burnside Problem has a positive answer, such as linear groups or solvable groups. This motivates the following proposition, which in particularly answers a question of Breuillard to the authors. Proposition 1. For every n, there exists a group G, generated by a 3-element subset S consisting of elements of order 2, in which the n-ball consists of torsion elements, and satisfying one of the additional assumptions: (1) G is solvable, virtually abelian, and infinite (more precisely, it has a free abelian normal subgroup of finite 2-power index); in particular it is linear.
    [Show full text]
  • Chapter 25 Finite Simple Groups
    Chapter 25 Finite Simple Groups Chapter 25 Finite Simple Groups Historical Background Definition A group is simple if it has no nontrivial proper normal subgroup. The definition was proposed by Galois; he showed that An is simple for n ≥ 5 in 1831. It is an important step in showing that one cannot express the solutions of a quintic equation in radicals. If possible, one would factor a group G as G0 = G, find a normal subgroup G1 of maximum order to form G0/G1. Then find a maximal normal subgroup G2 of G1 and get G1/G2, and so on until we get the composition factors: G0/G1,G1/G2,...,Gn−1/Gn, with Gn = {e}. Jordan and Hölder proved that these factors are independent of the choices of the normal subgroups in the process. Jordan in 1870 found four infinite series including: Zp for a prime p, SL(n, Zp)/Z(SL(n, Zp)) except when (n, p) = (2, 2) or (2, 3). Between 1982-1905, Dickson found more infinite series; Miller and Cole showed that 5 (sporadic) groups constructed by Mathieu in 1861 are simple. Chapter 25 Finite Simple Groups In 1950s, more infinite families were found, and the classification project began. Brauer observed that the centralizer has an order 2 element is important; Feit-Thompson in 1960 confirmed the 1900 conjecture that non-Abelian simple group must have even order. From 1966-75, 19 new sporadic groups were found. Thompson developed many techniques in the N-group paper. Gorenstein presented an outline for the classification project in a lecture series at University of Chicago in 1972.
    [Show full text]
  • Burnside, March 2016
    A Straightforward Solution to Burnside’s Problem S. Bachmuth 1. Introduction The Burnside Problem for groups asks whether a finitely generated group, all of whose elements have bounded order, is finite. We present a straightforward proof showing that the 2-generator Burnside groups of prime power exponent are solvable and therefore finite. This proof is straightforward in that it does not rely on induced maps as in [2], but it is strongly dependent on Theorem B in the joint paper with H. A. Heilbronn and H. Y. Mochizuki [9]. Theorem B is reformulated here as Lemma 3(i) in Section 2. Our use of Lemma 3(i) is indispensable. Throughout this paper we fix a prime power q = pe and unless specifically mentioned otherwise, all groups are 2-generator. At appropriate places, we may require e = 1 so that q = p is prime; otherwise q may be any fixed prime power. The only (published) positive results of finiteness of Burnside groups of prime power exponents are for exponents q = 2, 3 and 4 ([10],[12]). Some authors, beginning with P. S. Novikoff and S. I. Adian {15], (see also [1}), have claimed that groups of exponent k are infinite for k sufficiently large. Our result here, as in [2], is at odds with this claim. Since this proof avoids the use of induced maps, Section 4 of [2] has been rewritten. Sections 2, 3 and 6 have been left unaltered apart from minor, mostly expository, changes and renumbering of items. The introduction and Section 5 have been rewritten. Sections 5 & 6 are not involved in the proof although Section 5 is strongly recommended.
    [Show full text]
  • The Theory of Finite Groups: an Introduction (Universitext)
    Universitext Editorial Board (North America): S. Axler F.W. Gehring K.A. Ribet Springer New York Berlin Heidelberg Hong Kong London Milan Paris Tokyo This page intentionally left blank Hans Kurzweil Bernd Stellmacher The Theory of Finite Groups An Introduction Hans Kurzweil Bernd Stellmacher Institute of Mathematics Mathematiches Seminar Kiel University of Erlangen-Nuremburg Christian-Albrechts-Universität 1 Bismarckstrasse 1 /2 Ludewig-Meyn Strasse 4 Erlangen 91054 Kiel D-24098 Germany Germany [email protected] [email protected] Editorial Board (North America): S. Axler F.W. Gehring Mathematics Department Mathematics Department San Francisco State University East Hall San Francisco, CA 94132 University of Michigan USA Ann Arbor, MI 48109-1109 [email protected] USA [email protected] K.A. Ribet Mathematics Department University of California, Berkeley Berkeley, CA 94720-3840 USA [email protected] Mathematics Subject Classification (2000): 20-01, 20DXX Library of Congress Cataloging-in-Publication Data Kurzweil, Hans, 1942– The theory of finite groups: an introduction / Hans Kurzweil, Bernd Stellmacher. p. cm. — (Universitext) Includes bibliographical references and index. ISBN 0-387-40510-0 (alk. paper) 1. Finite groups. I. Stellmacher, B. (Bernd) II. Title. QA177.K87 2004 512´.2—dc21 2003054313 ISBN 0-387-40510-0 Printed on acid-free paper. © 2004 Springer-Verlag New York, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis.
    [Show full text]
  • Kernels of Linear Representations of Lie Groups, Locally Compact
    Kernels of Linear Representations of Lie Groups, Locally Compact Groups, and Pro-Lie Groups Markus Stroppel Abstract For a topological group G the intersection KOR(G) of all kernels of ordinary rep- resentations is studied. We show that KOR(G) is contained in the center of G if G is a connected pro-Lie group. The class KOR(C) is determined explicitly if C is the class CONNLIE of connected Lie groups or the class ALMCONNLIE of almost con- nected Lie groups: in both cases, it consists of all compactly generated abelian Lie groups. Every compact abelian group and every connected abelian pro-Lie group occurs as KOR(G) for some connected pro-Lie group G. However, the dimension of KOR(G) is bounded by the cardinality of the continuum if G is locally compact and connected. Examples are given to show that KOR(C) becomes complicated if C contains groups with infinitely many connected components. 1 The questions we consider and the answers that we have found In the present paper we study (Hausdorff) topological groups. Ifall else fails, we endow a group with the discrete topology. For any group G one tries, traditionally, to understand the group by means of rep- resentations as groups of matrices. To this end, one studies the continuous homomor- phisms from G to GLnC for suitable positive integers n; so-called ordinary representa- tions. This approach works perfectly for finite groups because any such group has a faithful ordinary representation but we may face difficulties for infinite groups; there do exist groups admitting no ordinary representations apart from the trivial (constant) one.
    [Show full text]