View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarlyCommons@Penn University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 5-2010 Profiles of Large Combinatorial Structures Michael T. Lugo University of Pennsylvania,
[email protected] Follow this and additional works at: http://repository.upenn.edu/edissertations Part of the Discrete Mathematics and Combinatorics Commons, and the Probability Commons Recommended Citation Lugo, Michael T., "Profiles of Large Combinatorial Structures" (2010). Publicly Accessible Penn Dissertations. 127. http://repository.upenn.edu/edissertations/127 This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/127 For more information, please contact
[email protected]. Profiles of Large Combinatorial Structures Abstract We derive limit laws for random combinatorial structures using singularity analysis of generating functions. We begin with a study of the Boltzmann samplers of Flajolet and collaborators, a useful method for generating large discrete structures at random which is useful both for providing intuition and conjecture and as a possible proof technique. We then apply generating functions and Boltzmann samplers to three main classes of objects: permutations with weighted cycles, involutions, and integer partitions. Random permutations in which each cycle carries a multiplicative weight $\sigma$ have probability $(1-\gamma)^\sigma$ of having a random element be in a cycle of length longer than $\gamma n$; this limit law also holds for cycles carrying multiplicative weights depending on their length and averaging $\sigma$. Such permutations have number of cycles asymptotically normally distributed with mean and variance $\sim \sigma \log n$. For permutations with weights $\sigma_k = 1/k$ or $\sigma_k = k$, other limit laws are found; the prior have finitely many cycles in expectation, the latter around $\sqrt{n}$.