Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE)

Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems

Sub Priority: III – Global Change and Ecosystems

Add on to Deliverable D12 Demonstration Mission Deliverables For the 01/03/08 to 28/02/09 Period

Due date of deliverable: August 2008 Actual submission date: April 2009

Start date of project: March 2007 Duration: 48 months

Work Package 4 Organisation name of lead contractor for this deliverable: INGV Lead authors for this deliverable: Laura Beranzoli

Revision [16 April 2009]

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

Add on to D12 2

2 Add on to D12 3

CONTENT

MOMAR-D ...... p.5 LOOME...... p.103 LIDO...... p.141

3 Add on to D12 4

4 Add on to D12 5

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE)

Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems

Sub Priority: III – Global Change and Ecosystems

MoMAR-D Demonstration Mission Deliverable D1

Due date of deliverable: February 2009 Actual submission date: April 2009

Start date of the Demonstration mission:Feb 2008 Duration: 36 months

Organisation name of lead contractor for this deliverable: IFREMER Lead authors for this deliverable: Mathilde Cannat (IPGP), Jérôme Blandin (Ifremer), Pierre-Marie Sarradin (Ifremer)

Revision [March 2009]

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services)

Add on to D12 6

Add on to D12 7

WP4- Demonstration Missions,

MoMAR-D

D1- MoMARSAT 2010-2011 cruise proposal

M.Cannat (IPGP), J. Blandin (Ifremer), P.M. Sarradin (Ifremer)

Submitted for evaluation in January 2009 to the French Fleet

March 2009 Access restricted to ESONET partners Add on to D12 8

Add on to D12 9 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

FLOTTE OCEANOGRAPHIQUE

APPEL D’OFFRES 2010 et 2011

Nom des campagnes : MoMARSAT 1 & 2

Nom du chef de mission principal : Mathilde Cannat

Fiche synthétique n°1 1 Fiche synthétique n°2 2 Abstract 6 Modifications du dossier, évaluation 2008 7 Document 1 9 Document 2 25 Document 3 33 Document 4 38 Document 5 41 Document 6 47 Document 7 48 Document 8 52 Fiches de valorisation ATOS 54 MoMARETO 60 SudAçores 70 SWIR 72 SISMOMAR 75 Graviluck 80 BBMoMAR 84 MoMAR08-leg1 88

Add on to D12 10

Add on to D12 11 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

FICHE SYNTHETIQUE N°1 MoMARSAT

Date de rédaction du dossier : JANVIER 2009

Années demandées : Chef de mission Chef de mission Chef de mission 2010 et 2011 Coordinateur N°2 N°3 Durée des travaux (hors transits Mathilde Cannat Jérôme Blandin Pierre-Marie Sarradin port-zone de travail) : 21 jours et 22 jours Période (si impératif) : CNRS Ifremer Ifremer Mai – Août Zone : IPG Paris TSI DEEP Ride médio Atlantique, 37°17N Pays dont les eaux territoriales Tour 14 5ème étage BP 70 BP 70 sont concernées : 4 pl. Jussieu 29280 Plouzané 29280 Plouzané Portugal 75252 Paris cedex O5 Pays dont la zone économique 01 44275192 02 98 22 46 88 02 98 22 46 72 est concernée : Portugal [email protected] [email protected] [email protected]

Travaux : Equipes scientifiques et techniques embarquées Démonstration de mise en place d’un observatoire fond de mer IPGP pluridisciplinaire sur le champ hydrothermal Lucky Strike Ifremer – TSI et DEEP Plongées Victor. LOCEAN – UPMC Acquisition de données associée à l’étude temporelle. OMP-LMGT Labo chimie marine (IUEM/UBO) Navire(s) souhaité(s) par ordre de préférence : UAç (Portugal) Pourquoi pas ? (Atalante) U. Lisbonne (Portugal) NOC (UK) Engin(s) sous-marin(s) : Univ. Bremen (Ge) Victor MARUM (Ge) Océanopolis (Fr) Gros équipements : 2 Nœuds Seamon et une bouée de transmission de données BOREL, OBSs Equipes scientifiques et techniques à terre Les mêmes + IUEM-UBO, Ifremer – GM, et les autres Nécessité d’une campagne pour récupération d’engins ? intervenants du NoE ESONET (European Seas Observatory Oui, Ce dossier présente la mise en place des équipements en 2010 et leur Network) pour intégration des résultats scientifiques et récupération en 2011. techniques à l’échelle du réseau.

Type de campagne : Recherche scientifique et technologique

Thème de la campagne : Démonstration de mise en place et fonctionnement durant 12 mois d’un observatoire fond de mer pluridisciplinaire non câblé sur le champ hydrothermal Lucky Strike

Cette proposition s’inscrit dans une série de campagnes : OUI Si oui nom du programme ou du chantier : MoMAR Année de démarrage : 2005 Année prévue de fin : > 2012

Cette proposition est rattachée à des programmes nationaux ou internationaux avec comité scientifique : OUI Si oui lesquels : ESONET NoE, ANR-DEEP OASES, chantier INSU-Ifremer MoMAR, GDR ECCHIS, SENSEnet MCRTN, HERMIONE Envoyer une copie de ce dossier de proposition de campagne aux responsables des programmes concernés

S’agit-il d’une première demande ? : NON, présentation en 2007 –Non Retenue / en 2008 –Priorité 2a Le rapport d’évaluation 2008 est inclus en annexe ainsi qu’une brève explication des modifications effectuées. Add on to D12 12 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

FICHE SYNTHETIQUE N°2 MoMARSAT

Estimation du coût du navire et des engins et de leur financement

Types de coûts Coûts en Euros Sources et niveaux des Sources et niveaux des financements assurés sur financements envisagés projet (ANR, EU …) sur projet (ANR, EU …) Coût de fonctionnement du 60KE * 51 jrs / 3 ME 0 temps navire Coût de la mise en œuvre 20KE * 51 jrs /1 ME 0 des engins sous-marins Coût de la mise en oeuvre - - des autres engins lourds Coût total 4 ME

Pour compléter ce tableau contacter selon le navire demandé : [email protected] ou [email protected] ou [email protected]

Evaluation des frais directement à la charge de l’équipe demandeuse et de leur financement

Types de coûts Coûts en Euros Sources de Financement Niveau de financement assurées et/ou envisagées Frais de préparation de la 400 KE ESONET, ANR- 100% campagne (missions MOHTESIEM, INSU- préparatoires, équipement à acquérir, développements, MoMAR, Ifremer et instituts consommables, ….) européens partenaires Frais de missions (voyages + 100 KE (66 participants hors ESONET, INSU-Soutien 100% séjour) des membres de PT x 1.5 KE) campagne, Ifremer et l’équipe embarquant instituts européens partenaires Frais d’acquisition de 250 KE ESONET, ANR- 100% nouveaux matériels, contrat, MOHTESIEM, INSU- sous-traitance MoMAR, Ifremer et instituts européens partenaires Frais de transport du matériel 45 KE ESONET, INSU-Soutien Demandes à soumettre propre à la campagne campagne, Ifremer et après programmation instituts européens partenaires Frais d’analyse et de 100 KE ESONET, ANR- 20% acquis et demandes à dépouillement à terre MOHTESIEM, INSU- soumettre après MoMAR, Ifremer et instituts programmation européens partenaires Autres frais (ex : chien de Navette RV Archipelago ESONET 100% garde pour sismique) 21 KE Coût total 916 KE Demandes en cours

Voir fiche détaillant les montants en Annexe

Les sources de financement envisagées. Cette demande de campagne se situe dans le cadre du projet MoMAR-Demo soumis à l’appel d’offre « demonstration missions » du NoE ESONET (A. Colaço et P.M. Sarradin). La plupart des équipes participantes sont membres d’instituts partenaires de ce NoE. La décision de financement nous attribue 500 K€. Cette somme permettra de couvrir la plus grande partie du développement technique nécessaire, ainsi que les coûts de fonctionnement des différents instruments et une partie des frais d’analyse des données.

Les laboratoires et instituts des équipes participantes (appartenant à 4 pays européens) assureront les salaires des personnels, le transport des équipes et du matériel, ainsi que les complément des frais de développement technique et d’analyse des données.

L’étude de la dynamique temporelle de Tour Eiffel pourra être financée pour partie par l’ANR DEEP OASES. Les aspects du projet qui concernent le développement de capteurs biogéochimiques adaptés aux environnements Add on to D12 13 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD hydrothermaux sous-marins seront soutenus par le futur réseau Marie Curie SENSEnet. Les aspects écologie du projet MoMARSAT recoupent certains objectifs du projet HERMIONE(suite au projet HERMES ; appel d’offre FP7 call ENV.2008.2.2.1.2. Deep-Sea ecosystems). Les participants impliqués viennent de Ifremer, IMAR et NOC. HERMIONE, coordonné par P. Weaver du NOCS, est en cours de signature.

Pour la , certains aspects du projet seront ou pourront en outre être soutenus par : • Le programme « GEODE » de l’Ifremer (Y. Fouquet), • Le soutien INSU au chantier MoMAR, • La ligne INSU-Soutien aux campagnes pour le transport de matériel et des personnels embarquants. • Le GDR ECCHIS.

Add on to D12 14 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

Financial information on the MoMAR-D proposal submitted to ESONET in September 07 The budget requested from ESONET was 600 k€, but ESONET reduced its funding to 500 k€.

Partner Personal Equipment K€ Consumables k€ Travel K€ Ship days*** K€ Total ESONET cost * contribution k€ UAc-DOP 15 Consumables 2.5 Meetings / cruises 8 Arquipelago 21 46.5 39 Univ. Lisb. 4 OBS 140 Energy 50 Meetings 6 196 37 IPGP 20 Hardware for SEAMON connexion 30 Software interface 6 13 2 autonomous pressure probes, 300 Mechanical interfaces 3 Freight 6 15 autonomous T°C probes, Spare sensors 10 1 OBS, 1 BBOBS, 1 GPS station Consumables 5 Energy 20 413 92 NOC 108 FBG system 26 Optical, electronic, and 25 Meetings, 7 fluidic elements integration Mn/Fe sensors 60 Reagents and standards 7 Cruises 4 Pressure housing and electronics 22 Spares 7 266 66 OMP-LMTG N/A Chemicals, analysis 18 3 meetings 6 24 13 Univ. Bremen 30 Sensors 15 Frame, buoyancy, .. 35 Meetings, 5 Energy 5 Cruises 5 102 50 MARUM 37 CTD/ADCP 40 Interfaces 7 Meetings, 3 Energy 3.5 Cruises 1.5 87 25 LOCEAN Consumables 2 Meetings 3 Cruises 3 8 7 Ifremer** 227 Spare sensors and parts 50 Software interface 48 Meetings, 30 Pourquoi pas? 860 Connectors, Adapters Wet mateable 14 Mechanical interfaces 37 Freight 32 Victor 440 Consumables 15 Cruise 28.5 TEMPO 100 Biofouling, optics 20 Borel Buoy 90 Data management 15 2 SEAMON nodes 100 Public outreach 13 Energy 14 Video interface 30 2164.5 151 Oceanopolis Consumables Outreach 6 Meeting + cruise 4 10 8 IUEM/UBO Consumables 12 Meeting + cruise 5 Archipelago 28 43.2 8 Centro Vulcal. Meetings 4 4 4 Total 3 364.2 500 Yellow cells indicate that the equipment is available and will be provided by the partners. * Only the technical personnel cost necessary for the project are required in the ESONET contribution ** The budget required by Ifremer takes into account the deployment of the infrastructure. *** Ship days : 3 shuttles with the Arquipelago, 2 cruises of 20 days with the Pourquoi pas and Victor 6000 and shiptime to moor the OBS array.

Add on to D12 15 Add on to D12 16 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

RESUME - ABSTRACT MoMARSAT

Abstract

The MoMAR (Monitoring the Mid Atlantic Ridge) initiative aims at providing multidisciplinary time-series data sets for hydrothermal systems in the Azores region of the Mid-Atlantic Ridge.

MoMAR is a component of the ESONET project (European Seafloor Observatory Network). The ESONET Network of Excellence (NoE, coordinated by R. Person, Ifremer) was launched by the EC in March 2007. The MoMAR- Demo project is partly funded by ESONET and concerns the 1 year deployment of an acoustically-linked multidisciplinary observing system at the Lucky Strike hydrothermal vent field, with satellite connection to shore. MoMARSAT 1 and 2 are the cruises planned to implement this MoMAR-Demo project. These ROV cruises, one in 2010 and one in 2011, will deploy, then recover, the acoustically-linked multidisciplinary observing system.

Lucky Strike is a large hydrothermal field in the center of one of the most volcanically active segments of the Mid- Atlantic Ridge. Monitoring therefore offers the best chance of capturing evidence for volcanic events, and for interactions between faulting, magmatism, hydrothermal circulations and their impact on the ecosystem at a slow- spreading mid-ocean ridge. Our project addresses five main themes and their links : seismicity and hydrothermal activity, vertical deformation of the seafloor, chemical fluxes at Lucky Strike vents, ecology at Lucky Strike vents, and physical oceanography.

We plan to use the SEAMON technology, with two nodes acoustically linked to a surface buoy that will ensure satellite communication to a land base station. This system has been developed during the ASSEM-EC project and successfully tested since. Specific solutions will be developped with our ESONET partners for sensor interoperability, shore-sensor interactive communication, and data management and dissemination.

This observatory infrastructure will acquire a synchronized multidisciplinary data set, a subset of which will be transmitted to shore in near real time (images of the seafloor, pressure and tilt at seafloor, a subset of fluid chemistry and seismicity data). The rest of the data (fluid chemistry, temperature, oceanographic data, OBS data, microbiological experiments) will be stored locally over the one year duration of the experiment. We will also acquire punctual measurements, and fluid and biological samples, during the 2010 and 2011 cruises.

The near real time data will allow us to detect seismic, volcanic or hydrothermal events. We will have the capability to respond to these events by changing sampling rates on some of our sensors, and, if needed, by mobilizing a ship of opportunity.

The study area belongs to the portuguese ZEE and is part of a planned OSPAR “Marine Protected Area”.

Add on to D12 17 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

Modifications du dossier par rapport à la version soumise en 2008.

La structure du projet reste la même. Il y a peu de changements dans les participants. La stratégie d’instrumentation est inchangée. La stratégie de la première campagne (MoMARSAT 2010) est cependant modifiée puisque nous ne sommes plus dans la position de devoir coordonner cette campagne avec Bathyluck. Toutes les composantes du projet se retrouvent donc dans la même campagne ce qui simplifie le plan de campagne et devrait répondre à la remarque #3 du rapport d’évaluation (reproduit en page suivante). Il en résulte un allongement de quelques jours de la durée sur zone demandée.

Remarquons à ce sujet que cette complexité dans notre dossier de 2008 résultait directement du retard d’un an du programme de Bathyluck du fait de l’annulation des campagnes de ROV-Nautile sur Lucky Strike en 2007. Cette annulation (due à divers problèmes techniques de Genavir) a également décalé d’un an la récupération des données des premiers capteurs installés sur Lucky Strike en 2006 pendant les campagnes MoMARETO et GRAVILUCK. Ceci explique, les données n’ayant été récupérées qu’en été 2008, que la valorisation de ces campagnes puisse être vue comme insuffisante (remarque #5)…. Encore que le nombre d’articles publiés récemment pour ces deux projets soit de notre point de vue loin d’être négligeable (cf Fiches de Valorisation en fin de dossier).

Il peut être utile de préciser ici que le suivi long terme de la sismicité mené par le projet BBMoMAR a débuté en 2007 et que les données ont également été récupérée en 2008 (cf Fiche de Valorisation BBMoMAR en fin de dossier). De ce fait aucun résultat n’est encore publiable.

Les modifications du dossier concernent donc essentiellement sa forme. Nous avons révisée le Document 1 pour mieux faire apparaître les hypothèses à tester et les paramètres à mesurer (remarque #1). Nous avons rajouté une figure et des explications illustrant l’importance de la contribution des données de sismique de SISMOMAR pour la relocalisation prévue de la sismicité et pour la compréhension générale du contexte des circulations hydrothermales de Lucky Strike (remarque #4). Remarquons que les 3 thèses soutenues dans les derniers 6 mois sur ces données sont actuellement en cours de publication (cf Fiche de Valorisation SISMOMAR en fin de dossier).

Nous avons également expliqué pourquoi l’activité magmatique actuelle de Lucky Strike, avérée par la découverte pendant SISMOMAR d’une probable lentille magmatique, en fait un site exceptionnel pour l’installation d’un observatoire, et clarifié la stratégie du projet MoMAR qui prévoit également l’instrumentation du site à substratum ultrabasique Rainbow (ceci pour répondre à une remarque d’un des reviewers).

Toujours dans le document 1, nous avons clarifié et étoffé la présentation du système SEAMON, des capteurs à connecter, et de l’état de préparation technique du projet (remarque #2). Nous avons rajouté deux tableaux des capteurs. L’un dans le Document 1 (§4) concerne tous les capteurs et permet d’apprécier les développements prévus, l’autre, dans le Document 2 (§5), donne les flux de données transmises et l’énergie requise pour cette transmission pour chacun des capteurs à connecter.

Enfin, dans le § 3-3 du Document 1, nous clarifions notre stratégie pour ce qui est des capteurs chimiques (remarque #2). Nous ne dissimulons pas le fait, reconnu dans tous les colloques de prospective sur les observatoires fond de mer, que peu de capteurs adaptés sont opérationnels pour le suivi long terme des fluides hydrothermaux profonds. Notre projet vise donc à combiner suivi long terme avec quelques instruments disponibles, mesures ponctuelles répétées, et développement de quelques prototypes prometteurs.

Add on to D12 18 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

Rapport d’évaluation de la campagne : MOMARSAT

Demandeur : Mathilde CANNAT – CNRS IPGP Navire : Pourquoi pas ? L’Atalante Engins : Victor Zone : Atlantique Nord (Azores) Thème : Démonstration de la viabilité d’un observatoire fond de mer pluridisciplinaire sur la dorsale Atlantique (Site Momar Sud Azore)

Classement : Prioritaire 2a

Avis de la commission:

Le projet MOMARSAT-D entend déployer un observatoire fond de mer pluridisciplinaire, non câblé (transmission acoustique puis par satellite) et interactif pour étudier pendant une durée minimum d’un an, un système volcanique actif à l’axe de la dorsale atlantique et son interaction avec l’environnement (zone Momar-Lucky strike). Ce projet, soutenu par ESONET (European Observatory Network), est ambitieux, pluridisciplinaire, et présente une forte composante

technologique. Il a valeur de test pour des observatoires fond de mer, non-câblés.

Comme indiqué par la précédente commission, la problématique scientifique est abordée en termes très généraux. Le dossier ne contient pas d’hypothèses précises à tester et les différents (1) prélèvements à effectuer ne sont pas toujours clairement justifiés. La commission considère néanmoins que l’analyse croisée de séries spatio-temporelles longues de nombreux paramètres (sismicité, déformation, température et composition chimique des fluides et la dynamique des écosystèmes hydrothermaux) est porteuse de découvertes qui devraient permettre de mieux comprendre le couplage entre la dynamique des écosystèmes, les processus tectoniques et volcaniques, les processus hydrothermaux et les flux thermiques.

La commission s’inquiète cependant des nombreux développements, tests et validations d’instruments et de connexions restant à effectuer avant la programmation éventuelle de cette (2) campagne en 2009. En particulier, la commission devra s’assurer que les capteurs géochimiques seront opérationnels à la date de la campagne. La commission souhaiterait d’autre part, être mieux informée sur le type et les flux de données à transmettre en temps réel. Pour cela, un tableau récapitulatif de tous les paramètres à acquérir indiquant leur fréquence d’acquisition, et le volume de données transmises en temps réel par mode acoustique permettrait de se faire une meilleure idée de l’ambition et des garanties qu’offre ce projet. La campagne 2009 présente un calendrier prévisionnel bien ajusté (14 plongées en 19j) pour mener à bien l’installation du dispositif et collecter les données nécessaires sur chaque site. A ce jour, aucun calendrier précis n’est prévu pour la campagne 2010 dont l’objet sera essentiellement de récupérer les instruments et d’acquérir des

données complémentaires. Le lien avec la campagne Bathyluck09 n’apparaît pas clairement dans le

dossier. Il est parfois difficile de savoir qui fait quoi et où? Des reconnaissances de sites à instrumenter ainsi que l’échantillonnage de fluides sur ces sites apparaissent dans les deux dossiers. Le courrier adressé à la commission par le comité de pilotage ne vient que partiellement (3) lever certaines ambiguïtés. Il est aussi regrettable que les données OBS de la campagne

SISMOMAR ne soient pas utilisées pour caractériser la structure de la zone d ‘étude.

La valorisation des campagnes précédentes sur le site MOMAR est considérée comme

très inégale, particulièrement en sciences de la terre et doit être une priorité du groupe MOMAR. (4)

Malgré les réserves mentionnées ci-dessus la commission, consciente des enjeux et du calendrier liés à ESONET, a classé MOMARSAT09 en priorité 2a. (5)

Add on to D12 19 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

DOCUMENT N° 1 MoMARSAT

PROJET SCIENTIFIQUE ET TECHNOLOGIQUE

Section 1 .Context of the proposal ESONET is an EC Network of Excellence coordinated by R. Person (Ifremer), for the construction of a network of deep seafloor and water column observatories around Europe. The Azores node of ESONET is dedicated to the long-term observation of deep sea ecosystems and of active processes related to seismicity, volcanism, and hydrothermal circulations in the Azores region. It is planned to extend the islands seismic and volcanic monitoring system offshore, and to provide holistic information concerning hydrothermal and seamount habitats, essential for the ecosystem-based management of the region. It will also monitor the movements of deep water masses and the consequences of thermohaline circulation changes in the North Atlantic on climate and on biodiversity.

MoMAR (“Monitoring the Mid-Atlantic Ridge”) is a component of the work planned at the Azores node of ESONET, which focuses on active processes at ridge hydrothermal systems. Seawater circulates through the permeable oceanic crust, exchanges chemicals with the surrounding rocks, and is heated to temperatures reaching 400°C. This hot fluid flows up and is expelled at hydrothermal vents, forming black smokers and diffuse vents. Hydrothermal circulation at mid-ocean ridges therefore impacts the transfer of energy and matter from the interior of the Earth to the crust, hydrosphere and biosphere. The unique faunal communities that develop near the vents are sustained by chemosynthetic micro organisms that use reduced chemicals presents in the hot fluids as energy sources. Small active chimney, Lucky Strike (MoMARETO 2006) Environmental instability resulting from active mid-ocean ridge processes (e.g. seismicity) can create changes in the flux, composition and temperature of emitted hydrothermal fluids and consequently can affect the associated faunal communities. Existing data lack of the temporal resolution necessary to understand the natural dynamics of this environment, and, therefore of the global consequences of these processes on the ecosystems and on the transfer of energy and mass from the Solid Earth to the Ocean.

MoMAR develops a multiscale and multidisciplinary approach whereby small-scale monitoring experiments, such as chemical and biological recording at individual vents, are nested into larger scale experiments (such as seismic and geodetic networks). Pilot experiments have been conducted over the past few years at the MoMAR vent sites, using autonomous instruments. Two large vent fields are of particular interest, Lucky Strike and Rainbow. The MoMAR-D demonstration mission (led by A. Colaço, University of the Azores, and P.M. Sarradin, Ifremer) is supported by the ESONET NoE and focuses on the Lucky Strike field. MoMARSAT 1 and 2 are the cruises planned to implement the MoMAR-D project.

Section 2: The MoMAR study area: setting and summary of previous work The Mid Atlantic Ridge (MAR) near the Azores comprises 4 known hydrothermal vent fields, each with its own specific geological, chemical, hydrothermal, volcanic and biological characteristics (Lucky Strike, Rainbow, Menez Gwen, and Saldanha; Figure 1). It has been the focus of a great number of cruises in the past few years, as part, successively, of the FARA program (French-American Ridge Atlantic), the MARFLUX (MAST II EC program), AMORES and ASIMOV (MAST III EC program) and VENTOX (Framework V), EXOCET/D (Sarradin et al, 2007) and MoMARNET (Framework VI; Cannat et al.) European projects. Most of these cruises have been primarily funded through the French system. The geological-geophysical background of the region is well constrained, as are the general characteristics of the known hydrothermal vents, and the broad diversity of the associated fauna (in terms of megafauna but not for microbial or meiofauna).

Add on to D12 20 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

Simplified bathymetric map of the MoMAR area on the Mid-Atlantic Ridge near the Azores, showing the locations of the principal hydrothermal vent sites that have been discovered so far in this region. BBOBS8 is location of off-axis NERIES broad band OBS (BBMoMAR, Crawford et al, 2007, another instrument is set on Lucky Strike volcano). AHA: Autonomous Hydrophone Array (MARCHE, Goslin et al., 2006).The inset focuses on the Lucky Strike volcano, with a 3D crustal section based on seismic results (SisMoMAR cruise, Singh et al., 2006). AMC =roof of inferred Axial Magma Chamber; grey star: hydrothermal vent field. W(E)BF: West (East) Boundary Fault of the axial valley. Lucky Strike is located at the summit of an axial volcano at 1700m depth. It is underlain by a recently- discovered mid-crustal magma chamber (Singh et al., 2006). The site shows sustained levels of micro- seismicity (Dusunur et al., 2008), and a possible magmatic diking event occurred in 2001 (Dziak et al., 2004). Recent vent fluid chemistry data (Pester et al., 2008) indicate high CO2 concentrations which could suggest degassing of a recently emplaced new batch of magma in the melt lens. Lucky Strike is one of the largest hydrothermal field found along the Mid-Atlantic Ridge. Over 100 hydrothermal vents surround a relatively flat lava lake formation (Fouquet et al., 1995; Ondréas et al., in press). Vent fluid temperatures range from 330ºC in black smokers, to 200-212ºC and even <20ºC in very diffuse emissions (Cooper et al., 2000; Von Damm et al., 1998). Fluid chemistry indicates two distinct sources for the vents in the area (Charlou et al., 2000), suggesting complex hydrothermal cell dynamics. While temperatures appear to be very stable over a time scale of a few years at some vents (i.e., Tour Eiffel, 324±1°C), others show variability of up to 40°C [Statue of Liberty, 202- 185°C; Sintra, 176-215°C; (Charlou et al., 2000) and personal communication]. Discovered in the nineties (Langmuir et al., 1997), the Lucky Strike vent field has since been the object of many cruises, addressing its geological and geophysical characteristics (Humphris et al., 2002 ; Miranda et al., 2005 ; Ondréas et al., 1997, in press; Escartin et al., 2008). The dynamics of water masses in the area has been extensively surveyed in the summer of 2006 (Graviluck cruise; Thurnherr et al., 2008), showing strong bottom currents and a clear link between high levels of diapycnal mixing in the abyss and the rough topography of the axial valley walls.

On most vents, faunal communities are visually dominated by mussel beds of Bathymodiolus azoricus partially covered by microbial mats. The vicinity of active high- temperature chimneys, flanges and cracks are colonized by Chorocaris chacei / M. fortunata shrimp assemblages (Desbruyères et al. 2001). B. azoricus live in symbiosis with microbial endosymbionts (sulphide oxidizing- and methanotrophic bacteria (Fiala Medioni et al., 2002) and are capable of migrating along sulphide gradients. B. azoricus seems to be able to use two of the energy sources present in the hydrothermal fluids (CH4 and H2S) as well as particulate organic matter through filter feeding. The faunal assemblages dominated by Bathymodiolus are present in the cold part of the mixing zone sustained by Recovery of an O2 optode associated with temperature limited hydrothermal input (Sarradin et al., 1999). probes after 12 month, MoMARETO 2006 The first two cruises officially sponsored by MoMAR carried out site survey work, acquiring heat flux measurements (Luckyflux 2003; Lucazeau et al., 2006), and seismic data (SisMoMAR 2005; Singh et al., 2006; Crawford et al., in press). Monitoring was initiated in 2005 with the deployment of an Array of Autonomous Hydrophones (AAH) for regional seismic monitoring (first MARCHE cruise). In 2006, this network was redesigned for a better coverage of the MoMAR area. It has been maintained twice now (2007, 2008), and 3 years of data have been collected. A thesis and 2 papers are in preparation on the first 2 years of data (Simao, Goslin et al.). The 3rd year is being processed now, jointly with the first year of recording of the Lucky Strike OBS network, which is currently operational (check location map in Document 2), and has been operated since 2007 (BBMoMAR).

Add on to D12 21 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD In 2006, the GRAVILUCK (Ballu et al.) and MoMARETO (Sarrazin et al. 2006) cruises deployed two pressure gauges, an oceanographic mooring, and the TEMPO module (video camera, chemical analyzer, temperature probes connected to a SEAMON node) on Lucky Strike. These autonomous instruments could unfortunately not be serviced in 2007, due to the cancellation of the MoMAR ROV cruises to Lucky Strike. The instruments were finally recovered last summer (MoMAR2008-Leg1 cruise) in variable states of corrosion (new pressure probes were then deployed for one more year of recording). Recovered data include one year of oceanographic data and of pressure probe recording, 45 days of video sequences, 18 months of fluid temperature, and 6 months of fluid chemistry (TdFe). We are now processing these data, and assessing the state of each instrument in view of their redeployment during MoMARSAT. Details on this may be found in Section 4. As we write these lines, long (> 1 month) time-series data collected at the MoMAR sites therefore include : the regional seismicity record (AHA array): 2005-2008, the OBS record at Lucky Strike: 2007-2008, and the pressure probe, oceanographic and ecology data listed above (recovered in 2008). All of these data, except the first 2 years of AHA recording, were collected less than 5 months ago and are being processed now. The Bathyluck09 cruise (PIs J. Escartin-A. Deschamp) scheduled in the summer of 2009 will carry out additional site survey, service the OBS array and the pressure probes, deploy temperature probes and perform fluid sampling in venting areas. Further information on the MoMAR cruises may be found on http://www.momarfr.org.

Section 3: Scientific objectives and experimental design of the MoMARSAT / MoMAR-D project Lucky Strike is at present one of the most magmatically active segments of the Mid-Atlantic Ridge (MAR). This is important because magmatic activity at slow-spreading ridges is known to be episodic, with short periods of eruptions, and longer periods of faulting of the newly emplaced lava. The duration of these periods is not well constrained, but crustal melt bodies which can produce eruptions have so far only been detected unambiguously in two segments of the MAR: Lucky Strike, and one segment South of Iceland (Sinha et al., 1997). This suggests that volcanic activity may last only a small fraction of the time (a few hundred thousand years) it takes to build the crust at the MAR axial valley. Capturing this short, but critical period is the principal asset of Lucky Strike as a monitoring site. The presence of magma in the crust, near seismically imaged normal faults (Figure below), and in association with high temperature hydrothermal discharge, offers a unique opportunity to study the feed-backs between volcanism, deformation, seismicity, and hydrothermalism, and to understand how the hydrothermal fauna (including microbes) couples dynamically with these sub-surface processes. Basalt-hosted hydrothermal systems such as Lucky Strike are powerful component of the heat exchange machine at slow-spreading ridges. The other component is ultramafic-hosted systems such as Rainbow, where detachment faults leading to mantle exhumation probably control hydrothermal circulation. The present proposal focuses on Lucky Strike as one element of this complex slow-spreading ridge system. The technological achievements of the MoMARsat experiment will be directly transferable to future monitoring of Rainbow-type vents, which is an integral part of the MoMAR plan. Experiments planned at Lucky Strike belong to 5 thematic packages exploring the dynamics of the geosphere, its impact on the characteristics of the hydrothermal fluid (temperature and composition), and on the associated fauna and finally the exchange with the ocean. Each of these have been addressed to some extent in previous cruises and funded projects of the MoMAR “chantier”, through the deployment of autonomous sensors or temporally limited site studies. The MoMARSAT-MoMAR-Demo pilot experiment will represent a significant step towards effective integration of these multidisciplinary experiments in a coordinated seafloor observatory design. The Hydro-MoMAR or MARCHE 3 cruise proposal submitted by J. Perrot and J. Goslin for maintenance of the regional hydrophone array in 2010-2011 has strong links with MoMAR-Demo because it will, if funded, allow us to reinforce our interpretation of local seismicity at Lucky Strike (see § 3.1).

3.1 Thematic Package 1: Seismicity and hydrothermal activity Hydrothermal circulations are primarily controlled by the permeability structure of the substratum, and by the distribution of heat sources. Mid ocean ridges, and particularly slow-spreading ones, are active extensional areas. A long-standing hypothesis (e.g. Wilcock and Delaney, 1996) is that cracks, fissures and faults play a major role to control the spatial and temporal evolution of permeabilities, while magma emplacement within the crust controls the distribution of heat sources. Based on seismic imaging (see Figure below with the eastern axial valley bounding fault imaged at depth very near the axial melt lense), Lucky Strike appears as an excellent place in which to test this hypothesis. Cracking and displacements along faults are expressed by seismicity. Magmatic events such as dyking, and other forms of magma displacement within the crust may also trigger seismicity. Tectonic and magmatic seismic events have specific characteristics, particularly in terms of the stochastic distribution of magnitudes.

Add on to D12 22 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Seismic monitoring of hydrothermal fields and their surroundings is therefore an efficient method to monitor the tectonic and magmatic events that likely control hydrothermal dynamics. Changes in the dynamics of hydrothermal circulation, on the other hand, are expected to result in variations in the temperature and chemistry of vent fluids. Statistical correlation between variations of the vent fluids, and seismic activity is expected if seismicity does play a role to maintain high permeabilities, allowing for hydrothermal circulation at and near the faults which connect to the crustal melt lens. Relocation of seismic events will also allow us to refine our understanding of the links between specific seismic sources (e.g. the eastern boundary fault in the figure below, or the inferred domain of high temperaure gradient surrounding the low velocity domain of Lucky Strike volcanoe), and the hydrothermal convective system. Evidently, we expect complexities in this signal, revealing the complexities of fluid upflow paths, and of processes in the hydrothermal reaction zone. The link between seismicity and vent fluid temperatures has been used before as a powerful constraint on numerical models of the permeability distribution at hydrothermal sites in the Pacific (Sohn et al., 1998; Wilcock, 2004). We plan to adopt a similar monitoring and modelling approach at Lucky Strike. A comparable combined temperature/seismicity experiment has been carried out over a one year deployment at the TAG hydrothermal field, a Mid-Atlantic Ridge vent field located above a detachment fault (Sohn, 2007a ; 2007b). The experimental design for this thematic package consists in arrays of OBSs (Ocean Bottom Seismometers), and of temperature (T) probes to monitor fluid temperature. Lucky Strike is a large vent field and it is important to be able to check whether the variations detected affect fluids throughout the area, or just locally. Off the shelf autonomous temperature probes are cheap and reliable. This, and the paucity of operational chemical sensors (see §3.3), justifies our choice of temperature as the parameter to monitor at this wider scale. We plan to examine the link between temperature time series and chemical signature of the fluids obtained locally using chemical sensors (see §3.3) and discrete fluid sampling. The local seismicity record will be processed to determine hypocenter locations and to model magnitude and focal mechanisms. Excellent characterization of near site seismic velocity structure is available for this purpose from the SisMOMAR cruise (Seher et al., in prep; Crawford et al., in press; Figure below). We have so far processed only 6 days of passive seismic data (in between shooting times of the SISMOMAR cruise). It suggests that strong temperature gradients, indicative of hydrothermal cooling, surround the axial melt body. The full year of data collected this past summer (BBMoMAR2 cruise) will help to refine this preliminary picture. Interpretation will be reinforced by integrating these local data with the regional hydrophone seismicity record (Hydro-MoMAR or MARCHE 3 cruise proposal submitted by J. Perrot and J. Goslin). The Lucky Strike OBS network does not have the coverage to locate events more than 10 km away from the volcano summit (see location map in Document 2). Event relocation with the AHA array has a low resolution and no depth constrain, but covers >300 km of ridge length north and south of Lucky Strike. It will therefore be used to understand the regional distribution of seismicity, and to determine whether or not a seismic event recorded at the Lucky Strike volcano belongs to a swarm of seismicity extending off the volcano, which typically would be the case for seismicity linked to dike injection events. Tidal forcing on fluid temperatures will also be analyzed, and modeled in terms of crustal permeability (Schultz and Elderfield, 1997).

Section across the Lucky Strike segment centre and volcanoe, showing SISMOMAR seismic velocity model, seismic reflectors, and the relocated earthquakes detected over a 6-day period (black are within plane of section, grey are to the north or south). No vertical exaggeration. Red line shows top of melt lense. The low velocity region underneath is inferred to contain a small fraction of melt (Seher et al., in prep.). One deep earthquake occurred within one km of this low velocity region indicating that lateral thermal gradients are high. Dashed red line shows inferred melt solidus (~1100°C isotherm). Blue arrows show inferred hydrothermal flow paths (from Dusunur et al.,2008).

Work on this thematic package is ongoing with the Lucky Strike OBS network (BBMoMAR cruises; PI W. Crawford; location in Document 2), and with the temperature sensors funded by the MoHTESIEM ANR (PI J. Escartin) which will be deployed during the BATHYLUCK cruise this summer (2009). MoMARSAT will maintain these networks of autonomous instruments for one more year (2010-2011). For MoMARSAT, the experimental design will include ~25 autonomous low (<100°C) and high T sensors (<400°C) deployed in vents throughout the study area. A small number of low T probes at diffuse venting areas will be connected to the SEAMON system and data sent to shore on a near-real time basis. The MoMARSAT experimental design also includes 4 autonomous short period OBSs from the University of Lisbon (with Guralp sensors and SEND stations), and 4 short period OBSs from the Parc National INSU. These autonomous OBSs

Add on to D12 23 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD will be deployed around the Lucky Strike volcano, complementing the autonomous Broad-band OBS station operated since 2007 (NERIES program; Pis Crawford and Singh; see location figure in Document 2). In addition, one modified OBS (IPGP) will be connected to the SEAMON system and will transmit a subset of the seismic data via satellite. In the ongoing MoMAR-D preparation phase, solutions for data sampling adapted to our event detection needs are investigated. These solutions involve counting events which have amplitudes above a set of fixed thresholds, which will be chosen using the local seismicity record acquired in 2007-2008. Our objective with this SEAMON-connected instrument is to obtain near-real time information on the level and intensity of seismic activity to serve as a guide for our strategy of shore-sensors interactions (ex: increase sampling rate of fluid chemical sensors or video camera in the event of a seismic crisis). This experiment will use off the shelf technology but requires some work to adapt the modified OBS for SEAMON connection and for deployment by ROV. We will use a standard 3-axis short period instrument, with one processor for data acquisition and storage into the hard drive. A Persistor micro processor is added to interface the SEAMON monitoring node. This interface has been used during the ASSEM EC experiment and is currently being adapted to the OBS specifications.

3.2 Thematic Package 2: Deformation of the seafloor at the Lucky Strike volcano Vertical deformation on active terrestrial volcanoes varies with the type of volcano and with its state in the eruptive cycle. Surface deformation and mass movements are used at terrestrial volcanoes as powerful constraints on models of magmatic and tectonic processes (e.g. Poland, 2006). In a seafloor spreading context, strong extensional tectonics are superimposed on these volcanic cycles. The deformation of active volcanoes in non-marine spreading rift contexts is often in the order of a few centimeters per year, as seen for instance in Iceland (Jouanne et al., 2006; Sturkell et al., 2006). It can, however, also be of the order of 1 meter or more, in dyke injection crisis such as the recent one in Ethiopia (Kendall et al., 2005), or the 1978 crisis in the Asal rift (Ruegg et al., 1979). The tectonic setting at Lucky Strike presents many similarities with that of the Ethiopian- Afar rift system. The primary hypothesis we wish to test is that vertical motions at a volcanically active mid-ocean ridge could have the same order of magnitude. We also plan to investigate the links between these vertical motions and tectonic and hydrothermal activity by integrating vertical ground motion information with seismic data, and with fluid temperature and chemical data (Thematic Packages 1 and 3). The MoMARSAT experimental design comprises 2 autonomous pressure sensors, which have been deployed at Lucky Strike in 2006 (GRAVILUCK; PI V. Ballu), then recovered and replaced in 2008 (MoMAR2008-Leg 1). These instruments are set at the base and summit of the Lucky Strike volcano (see location map in Document 2) to monitor its deformation by a differential analysis. In addition, we plan to perform a second measurement of the linear array of 10 geodetic benchmarks (also on location map in Document 2), which has been deployed and measured for the first time in 2006. Geodetic results on terrestrial volcanoes indicate that ground deformation tends to be non linear with time. Our permanent pressure gauges will allow us to assess this variability at two locations, while the geodetic network links the two pressure probes and should detect vertical displacements of the order of 1 cm (Ballu et al., 2008). Pressure sensor deployed on the Lucky Strike lava lake (Graviluck 2006) The volcano summit pressure gauge will be connected to the SEAMON system for near real time data transmission. This will require only minor work, because the gauge has been designed initially for connection to this node during the ASSEM EC project. We will also collect data from an autonomous GPS station installed on the BOREL buoy, in order to get the best continuous estimate of the sea surface height above the volcano. This will be obtained after kinematic processing of the data, using a land based GPS station in the Azores. A series of temperature sensors along the mooring line of the BOREL buoy (see § 3.5 Physical oceanography) will be used to convert the sea level variations (buoy vertical movements) into pressure changes and to discriminate in the pressure signal a vertical motion from a sea level change. Finally, pressure data will be complemented by seafloor tilt and vertical acceleration data acquired with the OBM (Ocean Bottom Motion meter) of the University of Bremen. This instrument is an integration of existing parts of the Bremen Ocean Bottom Tiltmeter and the Bremen Ocean Bottom Accelerometer (OBA), which have been deployed for a year at the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge (Fabian and Villinger, 2008). The OBM to be used in Lucky Strike also includes a high resolution absolute pressure-gauge and a temperature data logger. It will monitor long-term sea floor deformations caused by quasi-static processes like tectonics, magmatics, hydrothermal activity or slow mass movements nearby. The data will be

Add on to D12 24 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD collected by a low-power high-resolution data logger. Data will be stored locally. We will also investigate technical solutions to send a subset of these data through the SEAMON system.

3.3 Thematic Package 3: Chemical fluxes at Lucky Strike vents The behavior of chemical species in hot hydrothermal fluid end-members provides critical information on the conditions of fluid rock interactions in the hydrothermal cell (e.g. Charlou et al. 1991). These are susceptible to change with time, due to geological processes (volcanism, tectonics, thematic package 1), or to instabilities inherent to the hydrothermal convective system (Baker et al. 1995). Our planned experimental design aims at a good integration between fluid characteristics and their evolution through time at the scale of the vent field (~1 km2) on the one hand, and the ecological approach developed at the scale of a few meters at the Tour Eiffel vent site (in § 3.4) on the other hand. The difficulty in this thematic package resides in the current lack of reliable sensors for long-term recording of the most critical chemical parameters in deep sea hydrothermal fluids, such as chlorinity, H2S, silica, methane, CO2 or hydrogen content. This limits the potential of chemical time series data for testing hypothesis pertaining to both the small scale of vent habitats, and the larger scale dynamics of hydrothermal convection (e.g. is phase separation (brine and vapor) an active mechanism? can we trace the nature of the reacted rocks and how does it vary with time and from vent to vent?). This difficulty is clearly expressed in the most recent documents generated by the seafloor observatory research communities. It justifies the recent funding of the SENSEnet EC Marie Curie Network (PI D. Connelly) which will promote development and testing of new chemical and biochemical sensors adapted to the monitoring of fluid-controlled deep sea ecosystems. The experiment we plan will receive support from this newly funded network, and be carried out through a collaboration of 3 active European teams. Despite its limitations, this experiment should provide original documentation on the links which may exist between seismic activity and fluid chemistry (§3.1), and between fluid chemistry and faunal distribution at Lucky Strike. Our strategy will combine the use of the few available long term sensors, with fluid sampling and with discrete chemical measurements during the two MoMARSAT cruises (2010 and 2011), enriched by the data obtained during the Bathyluck-2009 cruise. We will also promote testing of new sensors. For the future, we believe that having access to an operational multidisciplinary deep seafloor observatory infrastructure such as the MoMARSAT SEAMON system will be a significant asset for developers of much needed new long-term chemical sensors. We will also deploy an in situ chemical analyser developed at NOC (Southampton) for the measurement of Fe and Mn species. This continuous flow analyser will complement data from the CHEMINI Fe, T and O2 sensors. CHEMINI is a component of the TEMPO module, which we plan to redeploy (it was deployed as an autonomous sensor package during the MoMARETO cruise in 2006, and recovered in 2008), and connect to the Tour Eifel SEAMON node. The NOC Fe/Mn analyser has been deployed in Scottish sea lochs (Statham et al. 2005) and in a hydrothermal setting aboard the WHOI AUV “Abe” where it was successfully used in plume tracking and vent location. Under the MoMAR-D project, two duplicate devices will be manufactured. New electronics will provide enhanced autonomous operation (e.g. data logging and self calibration), and will be interfaced directly with the SEAMON node. Methods for long term operation (e.g. reagent stability enhancement, improved in situ calibration and fouling reduction techniques) will be developed – previous deployments have all been of short duration. The long term deployment of these sensors is novel, and particularly so in a hydrothermal setting. In situ measurements in Eiffel Tower vent, Lucky Strike

Other biogeochemical sensors are under development at NOC and, if they pass further trials, will be deployed at Lucky Strike. Most promising is a dissolved Methane sensor (Boulart et al. 2008) developed as part of the MoMARnet project. The detection method is based on refractive index modulation of a modified polymer incorporating molecules of cryptophane-A, which have selective and reversible affinity for methane. The refractive index is determined by surface Plasmon resonance with a limit of detection of 0.2 nM and a range of 1-300 nM. The MoMAR-D work plan for 2009 will focus on the optimization of this sensor (response time, noise, and stability), the adaptation of the electronics, and the calibration under different ranges of pressure and temperature. For the first MoMARSAT cruise, we expect to have a prototype which may be deployed for the duration of the cruise, or used for mapping on the ROV. We will also perform repeated sampling of the hot vent and diffuse fluids and analyze their composition (traces and major elements, stable and radiogenic isotopic ratios, gases) on board the ship or back on shore

Add on to D12 25 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD depending on the elements. We will focus on 5 vent sites of the Lucky Strike field (Tour Eiffel, Nuno, Y3, Statue of Liberty and the vents near Pressure Gauge 1; see location map in Document 2) previously visited during the Bathyluck cruise in 2009. These sites will also be equiped with autonomous temperature probes (thematic package 1). Time-series data from the connected and autonomous sensors and geochemical data on discrete fluid samples will be analyzed jointly in order to link the variability in hydrothermal fluid composition with other parameters, and particularly fluid temperature, and seismicity . To improve the link between the vent site-scale approach described above, and the meter-scale approach of the ecology experiment (§3.4), we will deploy and test an innovative fibre optic temperature sensors array, based on Fibre Bragg Grating (FBG) sensing technology. This temperature sensor system will allow us to monitor fine scale variations in fluid temperatures, actual fluid chemistry being monitored at discrete locations within the array. This will allow us to address the important question of whether (or at which scale) temperature may be used as a proxy for fluid chemistry in fluid-controlled deep sea environments. Distributed oceanographic temperature sensing using FBGs has precedent (Campbell et al., 2000; Mowlem M, 2002) but use in hydrothermal applications is novel. For this pilot study, we will deploy a single, ~10 m-long, fiber optic cable including the temperature sensors based on FBGs. We will purchase an “off the shelf” interrogation unit from Smart Fibres Ltd. After laboratory based trials and calibration (including testing of sensors at pressure), the interrogation unit will be housed in a suitable pressure vessel, with electronics, energy supply and data logger.

3.4 Thematic Package 4: Ecology at Lucky Strike vents Deep-sea hydrothermal ecosystems are extreme habitats, driven by microbial chemosynthesis and characterized by strong endemism. They harbour faunal assemblages dominated by complex animal communities associating microbial producers and secondary consumers that have co-evolved in a constraining environment. Several studies have shown that hydrothermal communities are shaped by dynamic, small- and large-scale geological processes which vary substantially in time and space. The spatial distribution of the fauna can be linked to fluid characteristics including concentrations of chemicals (methane, sulphide, metals) and fluid flow, to the type of substratum and also, to water depth (Sarradin et al. 1999; Sarrazin et al. 1999, 2002, Desbruyères et al. 2000, Le Bris et al. 2003, Sarradin et al. 2007, Cuvelier et al. submitted). Hydrothermal faunal communities also exhibit significant temporal changes that are linked to the temporal variability of their habitats and the ephemeral nature of energy sources (Sarrazin et al. 1997, Shank 1998). Most questions related to the dynamics of these ecosystems and their couplings to geosphere-hydrosphere processes remain unanswered due to the lack of long-term, simultaneous observations. Edifice scale Our recent studies on MAR faunal assemblages have been focussed on describing and characterizing the structure, distribution and habitat of different species at the scale of the Tour Eiffel hydrothermal edifice. This 11m edifice is colonized by different faunal assemblages, visibly dominated by either Bathymodiolus mussels or Mirocaris shrimps. Their spatial distribution appears to follow a systematic pattern on the entire sulphide structure. We want to understand what controls this distribution: is it simply linked to environmental cues such as distance from hydrothermal emissions, or is there a temporal succession pattern (Cuvelier et al. submitted)? We are now looking at year-to-year variations to assess the dynamics of these faunal assemblages, using video imagery acquired during several cruises (1994-2008, Cuvelier et al. in prep). Small scale The semi-quantitative study of 12 small sampling units located on the Tour Eiffel edifice (Sarrazin et al. in prep.; Exomar and MoMARETO cruises 2005, 2006) has demonstrated significant differences of environmental factors, and of the composition, diversity and biomass. Two distinct « assemblages » dominate our samples: low-temperature (mean ∼4-7°C) Bathymodiolus/polychaete assemblages and medium temperature Mirocaris fortunata assemblages (mean ∼ 7°-12°C, Sarrazin et al. in prep). A gradient of chemicals (CH4, total dissolved Fe, pH, total dissolved H2S) is documented in each sampling unit, corresponding to the mixing of the hot fluids with cold seawater. Dissolved copper follows a peculiar behaviour: a significant enrichment is observed in the cold part of the mussel habitats, resulting from the oxidative dissolution of copper sulphide particles in the anoxic / oxic transition zone (Sarradin et al. 2009). Our data also stress that the isotopic composition of some dominant macrofaunal species vary at the scale of a single structure (de Busseroles et al. accepted with revisions), highlighting the complexity of the trophic chain (Colaço et al, 2002). Overall, the food web structure of the Tour Eiffel hydrothermal edifice shows small-scale variations that can be attributable to variations in local food source availability, to environmental conditions or to specific feeding strategies. A strong relationship was observed between δ13C and δ15N isotope signatures and environmental conditions for certain species (B. azoricus, B. seepensis, Mirocaris fortunata, Protolira valvatoides). Our present working hypothesis is that vent fluid characteristics influence microbial production at small spatial scales and thus represent key factors in the variation of local carbon sources at vents (De Busserolles et al. accepted with revisions). Temporal studies The temperature and chemical data collected so far at Tour Eiffel suggest that temperature is a good proxi to describe the chemical conditions (CH4, dissolved Fe, pH, H2S, O2) at the scale of the low temperature vent

Add on to D12 26 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD habitats. Consequently, temperature measurements were used to assess the short term (the studies carried out during the Exomar and MoMARETO cruises have not exceeded 5 days) variability of environmental factors in our twelve sampling units. The results show that temperature variability is different in the different faunal assemblages. We have also identified common periods of variations between temperature probes deployed in different sampling units, suggesting an influence of regional (currents, tides) and local (turbulence, vent fluid flow, etc.) hydrodynamic processes on faunal distribution (Brind’Amour et al. in prep.). Longer time-series are required to link faunal characteristics with other larger-scale fundamental processes such as tectonics, seismicity, or volcanic activity. The dynamics of the fauna and environmental factors at Tour Eiffel were assessed during the MoMARETO experiment, using the autonomous instrument TEMPO (Sarrazin et al. 2007). TEMPO is a long-term imaging module using SEAMON technology and equipped with a deep-sea video camera and two LED lights. A CHEMINI Fe (Vuillemin et al., 2009) in situ analyzer and 3 temperature probes were coupled to the TEMPO module to monitor environmental changes in parallel to community dynamics. Due to technical difficulties, it has not been possible to recover TEMPO in 2007 but it was recovered in 2008 during the MoMAR08 cruise. After 2 years, the structure of the module was little affected by corrosion. The lens of the video camera was clean, validating the efficiency of the antifouling system used. Processing of the data is in progress and will allow us to refine our sampling strategy for MoMARSAT (acquisition frequency, duration of the video sequences, data processing, etc.), and to build a robust data treatment protocol especially concerning the video sequences.

16 14 12 10 8 6 4 T°C and [FeT] µM [FeT] and T°C 2 0 06/09/06-2 15/12/06 25/03/07 03/07/07 11/10/07 Time

The TEMPO module monitored the temporal dynamics Temperature and total dissolved iron concentrations measured of a mussel assemblage at the base of the Tour Eiffel in the mussel assemblage. Temperature was monitored during edifice during 45 days. Environmental conditions were 21 month using a NKE sensor while Fe concentrations were acquired simultaneously for a longer period. The module measured during 6 months with the chemical analyzer stayed on the bottom during 2 years. CHEMINI. For MoMARSAT, our main goal is to acquire longer time-series data to examine the temporal dynamics of faunal assemblages on the Tour Eiffel edifice, in relation to the variation of environmental factors at three different spatial scales: local, edifice, and vent field. More specifically, we plan to: 1. assess the variations of faunal assemblages in terms of composition, diversity and density at different spatial scales (local, edifice, vent field); 2. integrate data from different disciplines into our data base; 3. identify the variations of environmental factors at different spatial scales (local, edifice, vent field); 4. establish the links between faunal variations and environmental factors (conservative or not) at the different scales considered; 5. identify the factors that significantly affect the structure of faunal assemblages at vents through multivariate statistics; 6. continue mapping the distribution of faunal assemblages throughout the years on the Tour Eiffel edifice from 1994 to 2011 (on-going thesis, D. Cuvelier, MARBEF); Two ecological modules, similar to TEMPO, will be deployed, one being connected to the SEAMON East node near Tour Eiffel (located in Document 2). The second one will be used for short term moorings (2 to 6 hours of continuous acquisition). Near real time connection to shore, will allow transmission of a subset of the data (mainly chemical data), with the possibility to modify sampling rates during the experiment. The bandwidth limitation of acoustic transmission is not suitable to transmit video imagery. However, the transmission of still images will be tested at a low frequency. Video will be stored locally to be recovered during MoMARSAT-2011. Image analyses will permit extraction of biological data on dominant species morphology and size structure, estimation of minimal density and biomass as well as collection of data on species behaviour (feeding, predation, movement). Video imagery will also give insights about faunal assemblage variations, succession patterns, growth of visible species (mussels, shrimps, crabs), behavioural and biological interactions such as predation (Sarrazin et al., 1997).The sensors installed on the module will permit the measurements of environmental factors (oxygen and iron concentrations, temperature) within the studied faunal assemblage.

Add on to D12 27 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD To complete and validate the temporal approach, we will pursue the small–scale characterization of the different assemblages colonizing the studied edifice and other assemblages of the Lucky Strike vent field (cf. Thematic packages 1 and 3). The experimental design will rely on the acquisition of time series temperature data by a network of autonomous temperature probes deployed on selected mussel assemblages. In situ analysis will be completed by discrete sampling that will allow the acquisition of other important parameters (dissolved and particulate metal concentrations, methane, organic matter…) to understand the processes controlling the fluid/seawater mixing zone. The speciation of metallic species and their interaction with organic matter will be particularly studied. Fluid flow measurements will be added to the database (Sarrazin et al. submitted). Quantitative sampling of selected faunal patches will validate the data acquired with the video imagery. These samples will also be used to understand the variation of biochemical composition (condition/productivity index) of the animal patches in relation to the environmental factors. The temporal dataset gathered on Tour Eiffel from 1994 on, will be completed with video transects during each cruise following the Cuvelier et al. (submitted) protocol. A mooring with a sediment trap and a current meter will also be deployed close to Eiffel Tower to study the possible influence of the vent fluid on the ocean chemical balance and to tackle the question of the timing of reproduction in hydrothermal organisms. The composition (species diversity), the temporal fluctuation of larval production and the flux of the settling hydrothermal particles emitted by this active vent will be examined. Finally, the characterization, distribution and evolution of the microfauna are an important aim of deep sea hydrothermal ecosystem studies. Microbiological sampling and experiments with colonization devices have been carried out at Lucky Strike, most notably during the EXOMAR, GRAVILUCK and MoMAR2008-Leg 1 cruises. For the MoMAR-Demo / MoMARSAT project, we plan to deploy a set of microbial colonization devices in the immediate vicinity of chemical and temperature sensors, around the Tour Eiffel SEAMON ecology node (also called east node in location map of Document 2). These devices are deployed by ROV and are simple boxes containing standard mineral substrates.

3.5 Thematic Package 5: Physical oceanography Lucky Strike, as most segments of the Mid Atlantic ridge south of the Azores, is a site of active internal wave generation, as well as complicated local circulation influenced by bathymetry and mixing, both near the central volcano and elevated rift valley walls, and in the semi-enclosed deep nodal basins. Oceanographic data collected in 2006 and 2007 during the GRAVILUCK and BB-MoMAR cruises, provide an interesting first view of the internal waves in the area, the flow between the deep basins, and where mixing takes place, in particular in the channel to the east of the Lucky Strike volcano. We are lacking information closer to the volcano summit, which would stride a longer period. We plan to equip the surface BOREL buoy mooring of the SEAMON infrastructure both with a GPS, and with a set of T° (and P) autonomous probes, recording at relatively high frequency (1 minute). This data set will also be used for geodesy (see § 3.2). Current measurements at lower frequency (30') will be an important complement. We will use current meter data which are being recorded near NERIES BBOBS1 (see localisation in Document 2) in view of cleaning seismic data from noise associated with baroclinic tides. We also plan to document the local time variation of water flow patterns and the fluid exchange between the seafloor and the water column close to the Tour Eiffel ecology node. An autonomous CTD/ADCP instrument package has been assembled to that purpose during the EXOCET/D project. This system was deployed and validated for 3 days in 2006 during the MOMARETO cruise. We plan to upgrade this system for autonomous deployment over a longer period (6-12 months). This will involve extending the capability of the existing data logger, augmenting the energy supply, and improving the synchronization between the CTD and the ADCP. A new mechanical frame will be designed that allows for free flushing of the CTD sensors, an open range of the acoustic transducers of the ADCP while all systems being well protected during the deployment and recovery phase. Special care will also be taken in regard to corrosion and biofouling issues. Finally, we plan to complement the dataset recovered during the GRAVILUCK cruise concerning the spatial distribution of mixing over the water column and in the horizontal in the Lucky Strike segment. For this, we will perform fine scale measurements of hydrology and currents (vertical resolution of 1m for hydrology and 8m for currents), and microstructure measurements (i.e. vertical resolution of cm-mm). We plan to use the microstructure profiler VMP6000, and a rosette with CTD sensors and one LADCP. Our main purpose will be to characterize mixing induced by internal tides (the main component of the internal wave field). To this aim we plan to perform repeated profiles at fixed point stations over half a tidal cycle (at least 6h).

Section 4: Observatory infrastructure and data management The MoMAR-D experimental design combines autonomous instruments which will store data over the duration of the mission (1 year), and instruments that will be connected to shore via the SEAMON (Sea Monitoring Node) system (Blandin J. & Rolin J.F., 2005).

Add on to D12 28 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD 4.1 The SEAMON / BOREL technology The SEAMON system includes a set of long-term, non-cabled sub-sea observatory components, initially developed by Ifremer during the EU ASSEM project (2002-2004), which have since been upgraded and made more reliable. SEAMON is the generic name of the seabed stations serving a local set of sensors, whereas BOREL (Bouée relais) is the surface data transmission relay. The SEAMON stations are rated for 4000 mwd operations. Each one can provide 8 kWh, allowing for the sensors operation and for a daily data transmission of ca. 40 kbytes. You will find a table of connected instruments with indications of the volumes of transmitted data and energy requirements in Document 2. The main components of SEAMON are the following: COSTOF (Communication and Storage Front-end). This electronic unit serves a set of local sensors by providing them with data storage, communication channels and optionally energy. COSTOF communicates with the ROV via CLSI (see below), and with a ship, and the BOREL buoy via acoustic modems. The COSTOF robustness and modularity rely on the use of a low power field bus (CAN) linking a set of simple identical boards, each board devoted to one sensor. The measurement sequencing is left to each sensor. This way, a COSTOF failure does not prevent data acquisition at the sensor level. Conversely, data duplication at the COSTOF level is a safety factor in case of sensor damage. CLSI (Contact-Less Serial Interface) is a small device made of two halves, allowing serial communication between two units, without electrical connection. If one half is connected to a ROV, and the other half to the COSTOF, communication can be established between the ship and any connected sensor. It is very useful just after the ROV has completed a sensor mechanical installation, to check or fine tune its functioning before the ROV leaves the area.

BOREL The BOREL buoy is the data transmission relay between the SEAMON stations and the Iridium satellite constellation. It is moored within acoustic range of the SEAMON stations and is composed of two identical independent data transmission channels. Channel 2 can be activated from shore in case of a failure of channel 1. Each data transmission channel is powered independently and comprises an acoustic modem, a control electronics and an Iridium modem. The communication is bi-directional and BOREL supports three data transmission modes: periodic (typical rate 6 hours), triggered by events detected on the seabed, and triggered from shore. BOREL has now been used for two years in the Mediterranean Sea, where it is moored at 2000 m depth. The Mediterranean mooring will be modified for MoMAR-D to take into account the sea conditions prevailing in the mid-Atlantic. Its position and the local sea/wind state will be monitored throughout the experiment. The robustness of this mooring is clearly one of the technical challenges of the MoMAR-D experiment.

Acoustic data transmissions For five years now, successive SEAMON/BOREL systems have been using the same type of acoustic modems. Their reliability has now reached a satisfying level, but their energy requirement per transmitted bit (a key parameter for non-cabled observatories) can probably be significantly lowered. Ifremer is currently working on this issue. This work started in 2007 with a selection of five modems available on the world market. Among the selection criteria, the lowest energy necessary to transmit 1 bit at a given distance was sought. In 2008, three of these five modems were tested at sea, between a sub-sea station at a depth of 2200 m, and the R/V L’Europe. This test demonstrated that the latest modems require at least 15 times less energy to transmit one bit in those conditions, than the ones used on SEAMON until now. Longer term tests of the two best modems are planned in 2009, between the 2200 m-deep subsea station and a relay buoy. The MoMARSAT experiment will directly benefit from these improvements.

4.2 Configuration of the nodes Two SEAMON nodes will be deployed in the Lucky Strike vent field (see location in Document 2). A Table of the connected sensors, the volume of data transmitted an dthe energy required for transmission at each node is provides in Document 3: • SEAMON-East will be primarily devoted to thematic experiments 3 (Chemical fluxes), 4 (Ecology) and 5 (Physical oceanography). It will connect a video camera, chemical sensors and the CTD/ADCP package. T-probes connected to this station will also provide time-series data for experiment 1 (Seismicity and hydrothermal activity). This node will be moored at the base of the active hydrothermal edifice Tour Eiffel, near the location of the autonomous TEMPO station deployed during the MoMARETO cruise. • SEAMON-West will be primarily devoted to thematic experiments 1 (Seismicity and hydrothermal activity) and 2 (Seafloor deformation). It will connect the pressure probe, one OBS, and the OBM. This second node will be moored in the western part of the lava lake, near the present location of the pressure probe installed since 2006.

Add on to D12 29 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

Sketch of the MoMAR-D experiment The BOREL buoy

The MoMAR-D project includes pre-cruise integration of these sensors to the monitoring node, followed by their qualification and validation prior their deployment during one year. Underwater connection devices The sensors to be connected underwater will use a low cost connection device (CdC,) specially developed and validated during the ASSEM project. Data storage Each connected sensor will also independantly store data over the 12 months duration of the project. The Ecology package (TEMPO) and the pressure gauge already have tested operational SEAMON connections. Development will be carried out for the connected OBS (IPGP), the OBM (Univ. Bremen), the NOC continuous fluid flow analyzer and the CTD/ADCP mooring. Other sensors will be deployed as autonomous instruments, storing data that will be recovered at the end of the 1 year experiment. The table in section 4.4 presents a list of the sensor to be implemented during the cruise. Biofouling Biofouling is a major issue in the vent ecosystem. Biofilms form on every available surfaces and trap the mineral particles emitted by the hot fluids. The method used successfully (Exomar, 2005 and MoMARETO, 2006) for preventing bio-fouling on the lens of the TEMPO video camera and on an Aanderaa oxygen optode relies on localized microchloration. This method does not modify the image, and the concentrations of chemicals released are negligible. Feasability The SEAMON system has been deployed previously in the following sea-bed monitoring applications: • 2004, Gulf of Corinth, 380 m, 7 months, seismicity, geodesy - Ballu et al., gas emissions (CH4, O2), • 2004, Finneidfjord (Norway), 25 m, 4 months, slope stability - Strout et al. (pore pressure, T°C), gas emissions (CH4), • 2005-2007, Var canyon, 2000 m, 24 months, particle dynamics - Khripounoff et al. (dissolved O2, turbidity, current), • 2006, Bay of Douarnenez, 25 m, 2 months, experimental polluting shipwreck monitoring – Marvaldi et al. (ADCP, fluorimeter hc, turbidity, dissolved O2, CTD), • -2006-2008, Nice slopes, 35 m, 20 months, slope stability – Sultan et al. (pore pressure, T°C), • -2006-2008, Azores hydrothermal vent “Lucky Strike” (autonomous SEAMON TEMPO module), 1700 m, 18 months, hydrothermal ecosystems study – Sarradin et al. (video camera, dissolved Fe, T°C ), • -2007-2008 and 2008-2009, offshore Marseille, 20 m, 2 and 3 months, contaminants re-suspension – Gonzalez et al. (ADCP, turbidity, passive organic contaminant concentrator), • A modified version of the TEMPO-SEAMON node is presently connected to the VENUS cabled observatory in Canada. Feasibility of MoMAR-D and MoMARSAT also depends on the availability of ships, ROVs, on access to supporting shore-based infrastructures, and on additional funding from national agencies. The strong support received at the regional level is an asset of the project, allowing us access to facilities in the Azores, such as a GPS station at the University of the Azores for differential GPS location, and, most notably, the facilities in Faial Island. LabHorta is a laboratory facility that expands the capacity of research cruises for the experimental studies of the biology, physiology and behaviour of deep-sea hydrothermal vent fauna. The University of the Azores also maintains an Oceanographic instrumentation and Calibration Laboratory, which is dedicated to insure the operationality and precision of several types of oceanographic equipments. Last but not least, 2

Add on to D12 30 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD research vessels are based in the islands and could allow a quick response to an event occurring at Lucky Strike during the 12 month of the observatory deployment.

4.3. Data management and scientific integration Data management and dissemination is a key task in the implementation of a multidisciplinary long term observatory. Principles of data management and dissemination will be discussed within the MoMAR-D project in the spring of 2009, to obtain a formal participant agreement. The data management policy and procedure will be defined taking benefit of the experience gained by Neptune Canada. The principles to be specified are: i) the definition of the data to be acquired, ii) the procedures of control for these data and the definition of metadata in accordance with the standards recommendations on data documentation, and finally iii) the dissemination level. The framework for this discussion is defined in the ESONET Description of Work. Data management procedures will be fully compatible with international recommendations and standards in order to improve interoperability with other systems and to ease comparison with other datasets: ISO standards for metadata, COI/WMO standards for quality flag scale. SISMER will collect, flag and archive the data (in real time and after the recovery). Data will be made available online according to ESONET data policy and European directives. Data will also be forwarded to data centers involved in the ESONET project in order to be permanently archived and distributed. The MoMARSAT cruises will also produce data from autonomous sensors or complementary site studies. These data will be archived and part of the demonstration will be to design appropriate procedures for control and dissemination of these data. Biological site survey data acquired during the cruises will be available through the BIOCEAN database. A GIS database and interface is being implemented for the MoMAR sites with support from the ANR Mohtesiem (J. Escartin), and MoMARnet projects. It now contains all the available dive data and a subsequent subset of the geophysical data collected so far in the MoMAR area. It will be maintained by the MoMAR-Demo project and adapted to fit the ESONET policy on data property and accessibility. An important task will be to develop links between the MoMAR-Demo data management system, and the data management systems currently used for volcanic and seismic monitoring, and for ecosystem inventory and surveillance, at and near the Azores Islands. To this aim, we have secured the participation (to MoMAR-Demo, not involved in actual MoMARSAT cruise work) of colleagues from the Centro de Vulcanologia e Avaliação de Riscos Geológicos, and from the Department of Oceanography and Fisheries of the University of the Azores. Scientific integration of the data is a key point of this project. Data treatment will be done first at the Thematic package level, followed by a second step to understand the links and common sources of variability at the different scales studied. Data coming from all thematic packages will be analyzed to study the links between environmental changes and community structure and dynamics. This final data integration step will be the subject of a workshop, gathering all scientists involved in the MoMAR-D proposal. The Table below lists the data and sample sets which we plan to acquire, their timing of acquisition, the relevant thematic packages, and the corresponding tools or sensors. Instruments which we plan to connect to SEAMON are listed in bold. Those which will require some adaptation prior to the cruise are listed as “prototypes”. Sensor Thematic Type of Data or Acquisition SEAMON Acquisition Acquisition package(s) samples Cruise 1 (1 year) stored in situ Cruise 2 CHEMINI Fe, T and O2 1,3, and 4 Fluid chemistry and T° yes subset Yes/1 year yes sensor Video camera and lights 3 and 4 Visual monitoring of yes subset Yes/3 months yes vent habitat 1 Pressure probe 1, 2, and 5 On bottom pressure yes yes Yes/ 1 year yes

NOC analyser (Fe, Mn) 1,3, and 4 Fluid chemistry yes Subset Yes/1 year yes prototype 1 OBS 1, 2, and 3 seismicity yes Subset yes yes prototype 1 Ocean Bottom Motion 1, and 2 Tiltmeter data yes Subset yes yes Meter prototype 1 Bottom CTD-ADCP 2 and 5 Water column yes Subset yes yes structure prototype > 8 OBSs 1, 2, and 3 seismicity yes no Yes/1 year yes

> 30 T-probes 1,3, and 4 Fluid temperature yes no yes yes

1 Pressure probe 1, 2, and 5 On bottom pressure yes no Yes/1 year yes

2 Current meters 1, 2, and 5 Near bottom currents yes no Yes/1 year yes

Add on to D12 31 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD 8 T-probes in water column 2 and 5 Water column T° yes no yes yes

GPS 2 and 5 Sea surface elevation yes no Yes/ 1 year yes

Microprofiler VMP6000 2 and 5 Microstructure of water yes no no yes masses Rosette CTD-LADCP 2 and 5 Hydrology and yes no no yes currents « Pressionaute » 2 Mesure du réseau no no no yes géodésique Other chemical sensors 1,3, and 4 Fluid chemistry prototype no prototype prototype NOC (Methane…) Fibre optic temperature 1,3, and 4 Diffuse venting prototype no prototype prototype sensor temperatures CHEMINI (pH, H2S, O2), 1,3, and 4 Fluid chemistry and T° yes no no yes T°C FLO flow meter 1,3, and 4 Fluid flow rate yes no no yes

Treatment of collected data sets will be conducted in two stages: in near real time for the subset of data transmitted through the SEAMON system; and after the 12 months of the demonstration for the whole data set. The near real time data will serve both as support for scientific interpretation, and as an indicator that an “event” is occurring. Events at Lucky Strike may be volcanic (eruption, underground dyking event, or rapid degassing of the magma chamber), tectonic (displacement along axial faults), or hydrothermal. Understanding the impact of these events on biological communities (micro organism bloom, composition, structure,) is one of our key objectives. Our array of connected sensors will be able to detect all, or most of these events. Rapid response is particularly indicated in the case of a volcanic event, as it has been shown to profoundly modify vent ecosystems, with a variability of hours, days, and weeks (Haymon et al., 1993; Shank et al., 1998), probably extending to years. Our rapid response capability at Lucky Strike will be limited, but enough to open exciting opportunities: 1- the SEAMON capability for interrogating sensors and modifying certain parameters from shore shall allow us to modify data sampling rates for a given sensor, if an event is detected; 2- we also plan to take advantage of the access to the Azores-based RV Archipelago, which unfortunately does not allow for ROV-type intervention, but can perform water column sampling, and recover acoustically released devices; 3- finally, should evidence for a major event be collected, we will actively search for a larger ship of opportunity, with ROV capability (for example the new ROV-equipped Portuguese).

4.4. A regional managing strategy for the Azores node The growing interest and the increased number of science activities at the MoMAR vent fields have led the Portuguese and Regional administration to propose, in 2006, the area as a Marine Protected Area (MPA) within the OSPAR network. This proposal followed a workshop organized in Horta in 2002 (Santos et al, 2003). The Lucky Strike vent field is identified in the MPA proposal «with the aim of promoting knowledge, monitoring and conservation of an area that best represents species, habitats and ecological processes in deep-sea hydrothermal vents in the OSPAR area, while enabling sustainable scientific research and promoting education and environmental public awareness and interest ». MoMAR-Demo will undertake to comply with the MPA rules and develop a coherent experimental site management plan. This plan will include a set of rules for PI’s, based on the MPA code of conduct and on the InterRidge code of conduct. These rules will aim at minimizing the impact of research on the environment, and at ensuring the compatibility of all the experiments planned. In this context, we plan to devote one MoMARSAT dive in 2011 to clean the area around our experimental network of the abundant non-native material left over the years of scientific work. Acquired video imagery data will be used as the background of the site management objective. MoMAR-Demo will for the greater part be financed by the participating institutions and their respective national funding agencies. This partnership, together with the Portuguese maritime authorities, MPA authorities, and the Regional Government of the Azores, will form the embryo for the future Regional Legal Entity of the ESONET Azores node.

Section 5: Public outreach Near real time transmission of data (and video images) from the Lucky Strike vents will open new opportunities for public outreach. Our plan for the MoMAR-Demo is to fully use these opportunities, both in the direction of the general public, and toward school and university students. The dissemination plan will be designed at the beginning of the project in collaboration with the dedicated ESONET Workpackage. It will cover international to

Add on to D12 32 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD regional initiatives such as the production of a didactic kit, in Portuguese, on hydrothermal vents and seafloor observatories for the different school levels, in connection with in the Azores University. Taking advantage of the contacts made in 2006 with the GRAVILUCK and MoMARETO cruises, we will also start a collaborative project with the European Aquarium Network. The public outreach strategy for the MoMAR project will be designed in close collaboration with Oceanopolis, with the Public Relation Offices of Ifremer, CNRS, NOC and the other participating institutions. This strategy includes press conferences before the cruises, maintenance of a cruise web site, and organization of a live event from the vessel, with video conferences and transmission of live images from the seafloor such as the nuit des abysses done during MoMARETO (Sarrazin et al.). We also will seek the participation of journalists interested in making a movie out of this seafloor observatory adventure. The project web site will allow an access to the “real time” data edited and commented by scientists. Our plan is to have an exhibit, which will last over the 12 months of the MoMAR- Demo, with access to the most recent data and images from the seafloor, at the Oceanopolis aquarium in Brest. Mirror sites and exhibit material could also be set in other large aquariums in Europe.

Section 6: Workplan Due to weather constraints, submersible cruises to the MoMAR area can only take place in the summer (May to August). Deployment is planned for the summer of 2010, which will leave us time to achieve the physical integration of the sensors on the SEAMON nodes. To comply with ESONET need for visible results prior to the end of 2010, we have defined the MoMAR-D work plan with a core period (January 2009 to December 2010) after which we will report on all technological and integration aspects, as well as on the test of the system at sea during the first MoMARSAT cruise. We will then produce an updated final report in December 2011, after the MoMARSAT–2 cruise, integrating the full results of 1 year operation of the system. Seven Milestones have been identified throughout the MoMAR-D project, corresponding to crucial steps: submission of the cruise proposal (M1), agreement on a data management policy (M2), on shore integration and trials (M3), system deployment (M4), intermediate report to ESONET (M5), system recovery (M6), final report (M7). January 09 Start of the MoMAR-D ESONET project. Submission of a cruise proposal to the French fleet. M1 January 09- Preparation of the WP (integration, data management, public outreach, …) M2 January10 Physical integration of the sensors on the SEAMON nodes On shore validation of the subsystems and complete system M3 January 10- June 10 Cruise preparation July 10 Cruise MoMARSAT-1 : Deployment of the system M4 July 10 – August 10 Data integration over the 1 month recording period and shore-based integration of near real time transmitted data August 10- December Data integration over the 1 month recording period and shore-based integration of near real 10 time transmitted data December 10 End of the core MoMAR-D period M5 August 11 Cruise MoMARSAT-2: Recovery of the seafloor observing system M6 December 11 Evaluation of the project : results, data integration over the 1 year recording period, M7 prospective

Section 7: Synergies with European and national funded initiatives. The ESONET project has provided the framework for the MoMAR-Demo project within its internal call on Demonstration mission. The MoMARSAT cruises are proposed to carry out MoMAR-D. This proposal builds upon over 10 years of work on hydrothermal systems of the Azores area, much of which was achieved with combined European and national funding. Two EC-FP6 projects directly concerned MoMAR: one for development of observatory sensors (EXOCET/D; Sarradin et al., 2007) has provided support for the MoMARETO cruise and the deployment of the TEMPO SEAMON module at Lucky Strike; the other is a research and training EC network that funded 13 PhD and 3 post docs for MoMAR research (MoMARnet; Cannat et al., 2006). A more recently funded FP6 project, NERIES, funds the installation for 3 years of the broadband Ocean Bottom Seismometer near Lucky Strike (part of BBMoMAR project; W. Crawford and S. Singh). More recently, the SENSEnet Marie Curie Research network, coordinated by D. Connelly and focused on sensor development for deep sea hydrothermal environments, has been selected for funding and is now in negociation stage with the EC. This project will support students and researchers involved particularly in Thematic Package 3 of MoMAR- Demo.

Add on to D12 33 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD National funded initiatives in the MoMAR “chantier” have mostly been French so far (Ifremer, INSU, ANR), with a significant Portuguese contribution (the Marine Protected Areas initiative, the Lab-Horta biological facility), and UK involvement in Electro-Magnetic site surveys at MoMAR vents. Scientific and technological discussions within EXOCET-D and MoMARnet, and during the initial stages of ESONET, have strengthened this UK participation (attracting new partners for fluid chemical studies), and have allowed us to find German partners for the geodetic aspects of MoMAR-D. Part of the MoMARSAT experiments will be funded through the DEEP OASES project (Thematic package 4, D. Desbruyères). The project is supported by the Ifremer programs « Ressources minérales, énergétiques et écosystèmes profonds” (L. Lemoine), and by the GDR ECCHIS. It is also supported by INSU through the MoMAR chantier, and the “Soutien campagnes” for travel and freight expenses. Part of the MoMAR-D project (Thematic package 4) was submitted to the FP7 call ENV.2008.2.2.1.2. Deep-Sea ecosystems within a proposal linked to the actual HERMES project (HERMIONE, PI P. Weaver, contract signature). An important aspect of the MoMAR-D project is to develop interoperability of sensors and data management solutions, within ESONET and internationally. For this last aspect, we will take advantage of the opportunities offered through the Memorandum of Understanding that links Ifremer and the Univ. of VICTORIA, the leading institution behind the VENUS cabled observatory and the NEPTUNE Canada seafloor observatory initiative. An observing module called TEMPO mini was connected to the Venus coastal network in the autumn 2008 and will be recovered in February 2009. After this first coastal trial allowing to validate the instruments and the interfaces with the cable, the module will be moored at the Endeavour hydrothermal node of NEPTUNE in Summer 2009 as a part of an integrated multidisciplinary study (contact Mairi Best [email protected]). Our technical objective is to learn from the larger Neptune initiative, and our scientific goal is to compare the temporal dynamics of hydrothermal fauna assemblages between a slow spreading ridge (Lucky Strike), and an intermediate spreading ridge (Endeavour segment of the Juan de Fuca ridge).

References cited in Document 1.

Baker, E. T., C. R. German and H. Elderfield (1995). Geophysical Monograph 91: 47-71. Blandin, J., Rolin, J.F Sea Technology December 2005, Volume 46, No. 12. Boulart et al., 2008. Optics Express, vol 16, no 17. Campbell JM. RRS Charles Darwin cruise 121:. cruise report. Southampton: Southampton Oceanography Centre; 2000. Charlou, J. L., H. Bougault, P. Appriou, P. Jean-Baptiste, J. Etoubleau and A. Birolleau (1991). Deep Sea Research 38: 569-596. Charlou, J.L., J.P. Donval, E. Douville, P. Jean-Baptiste, J. Radford-Knoery, Y. Fouquet, A. Dapoigny, and M. Stievenard, Chemical Geology, 171 (1-2), 49-75, 2000. Colaço, A., R.S. Santos & VENTOX party. 2002. Arquipélago. Life and Marine Sciences. Supplement 3: XII + 64 pp. Cooper, M.J., H. Elderfield, and A. Schulz. Journal of Geophysical Research, 105 (B8), 19369-19375, 2000. Desbruyères D, Biscoito M, Caprais JC, Colaço A, Comtet T, Crassous P, Fouquet Y, Khripounoff A, Le Bris N, Olu K, Riso R, Sarradin PM, Segonzac M, Vangriesheim A (2001) Deep-Sea Research I 48: 1325-1346 Desbruyères, D, Almeida, A, Biscoito, M, Comtet, T, Khripounoff, A, Le Bris, N, Sarradin, PM and Segonzac, M (2000). Hydrobiologia, Vol 440, pp 201-216. Desbruyères, D., M. Biscoito, J.-C. Caprais, A. Colaço, T. Comtet, P. Crassous, Y. Fouquet, A. Khripounoff, N. Le Bris, K. Olu, R. Riso, P.-M. Sarradin, M. Segonzac, and A. Vangriesheim. Deep-Sea Research, 48, 1325-1346, 2001. Dziak, R.P., D.K. Smith, D.R. Bohnenstiehl, C.G. Fox, D. Desbruyeres, H. Matsumoto, M. Tolstoy, and D.J. Fornari . Journal of Geophysical Research-Solid Earth, 109 (B12), 2004. Dusunur, D., Cannat, M., and Escartin, J.. Geophysical Research Abstracts, Vol. 10, EGU2008-A-05366, 2008. Escartin, J., Garcia, R., Delaunoy, O., Ferrer, J., Gracias, N., Elibol, A., Cufi, X., Neumann, L., Fornari, D.J., Humphris, S.E., and Renard, J., 2008, Geochemistry Geophysics Geosystems, v. 9. Fabian, M. and Villinger, H. (2007). Marine Geophysical Researches, 28, pp. 13-26. Fabian, M., and H. Villinger (2008) Geochemistry Geophysics Geosystems, 9(7), pp. 12. Fiala Medioni, A, McKiness, ZP, Dando, P, Boulègue, J, Mariotti, A, Alayse-Danet, MA, Robinson, JJ and Cavanaugh, CM (2002). Marine Biology, Vol 141, pp 1035-1043. Fouquet, Y., H. Ondreas, J.L. Charlou, J.P. Donval, J. Radfordknoery, I. Costa, N. Lourenco, and M.K. Tivey. Nature, 377 (6546), 201-201, 1995. Haymon, R.M., D.J. Fornari, K.L. Von Damm, M.D. Lilley, M.R. Perfit, J.M. Edmond, W.C. Shanks, R.A. Lutz, J.M. Grebmeier, S. Carbotte, D. Wright, E. McLaughlin, M. Smith, N. Needle, and E. Olson. 1991, Earth and Planetary Science Letters, 119, 85-101, 1993. Humphris, S. E., Fornari, D. J., Scheirer, D. S., German, C. R. & Parson, L. M. Geochemistry, Geophysics, Geosystems 3, 2001GC000284 (2002). Jouanne, F., T. Villemin, A. Berger, and O. Henriot. Geophysical Journal International, 167 (3), 1439-1446, 2006. Kendall, J.M., G.W. Stuart, C.J. Ebinger, I.D. Bastow, and D. Keir,. Nature, 433 (7022), 146-148, 2005. Langmuir, C., S. Humphris, D. Fornari, C. Van Dover, K. Von Damm, M.K. Tivey, D. Colodner, J.-l. Charlou, D. Desonie, C. Wilson, Y. Fouquet, G. Klinkhammer, and H. Bougault. Earth and Planetary Science Letters, 148, 69-91, 1997. Le Bris, N, Sarradin, PM and Caprais, JC (2003). Deep Sea Research I, Vol 50,N°6, pp 737-747. Lucazeau, F. et al. Geochemistry Geophysics Geosystems 7 (2006). Miranda, J. M., Luis, J. F., Lourenco, N. & Santos, F. M. Journal of Geophysical Research-Solid Earth 110 (2005). Mowlem M. (PhD). Southampton: University of Southampton; 2002. Ondreas, H., Fouquet, Y., Voisset, M. & Radford-Knoery, J. Marine Geophysical Researches 19, 231-255 (1997).

Add on to D12 34 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Ondreas, H., Cannat, M., Fouquet, Y., Normand, A., Sarradin, P.M., and Sarrazin, J., in press, Geochemistry Geophysics Geosystems. Pester, N J , Rough, M , Ding, K , and Seyfried, W E (Abstract) AGU San Francisco 2008. Poland, M., M. Hamburger, and A. Newman, Journal of Volcanology and Geothermal Research, 150 (1-3), 1-13, 2006. Ruegg, J.C., J.C. Lepine, A. Tarantola, and M. Kasser. Geophysical Research Letters, 6 (11), 817-820, 1979. Santos R.S., Colaço A. & Christiansen S. (Eds.) 2003.. Arquipélago – Life and Marine Sciences, Supplement 4: xii + 70 pp. Sarradin, PM, Caprais, JC, Riso, R, Kerouel, R and Aminot, A (1999). Cahiers de Biologie Marine, Vol 40, pp 93-104. Sarrazin, J, Robigou, V, Juniper, SK and Delaney, JR (1997). Marine Ecology Progress Series, Vol 153, pp 5-24. Sarrazin, J., S. K. Juniper, G. Massoth and P. Legendre (1999). Marine Ecology Progress Series 190: 89-112. Sarrazin, J.P. Lévèque, L. Delauney, S. Dentrecolas, P. Dorval, J. Dupont, D. Leroux, J. Legrand, P. Léon, P. Rodier, R. Vuillemin, P.M. Sarradin. Oceans 07 proceedings 2007. Sarrazin, P.M. Sarradin, E. Buffier, A. Christophe, G. Clodic, D. Desbruyères, Y. Fouquet, M. Gouillou, M. Jannez, Y. Le Fur, J. Le Rest, F. Lecornu, O. Lefort, S. Lux, B. Millet, P. Guillemet. Oceans 07 proceedings 2007. Schultz, A., and H. Elderfield. Philosophical Transactions of the Royal Society of London, 355, 387-425, 1997. Shank, T.M., D.J. Fornari, K.L. Von Damm, M.D. Lilley, R.M. Haymon, and R.A. Lutz, Deep-Sea Research Part Ii-Topical Studies in Oceanography, 45 (1-3), 465-+, 1998. Sarradin, P.-M., Sarrazin, and the EXOCET/D participants, 2007. InterRidge News 16, 17-21. Sarrazin, J., Sarradin, P.M., participants, t.M.c., 2006. InterRidge News 15, 24-33. Singh, S.C., W.C. Crawford, H. Carton, T. Seher, V. Combier, M. Cannat, J.P. Canales, D. Dusunur, J. Escartin, and J.M. Miranda. Nature, 442 (7106), 1029-1032, 2006. Sinha, M. C., et al. (1997), Phil. Trans. R. Soc. Lond., 355, 233-253. Sohn, R.A., D.J. Fornari, K.L. Von Damm, J.A. Hildebrand, and S.C. Webb. Nature, 396, 159-161, 1998. Sohn, R. A. Journal of Geophysical Research-Solid Earth 112 (2007). Sohn, R. A. Journal of Geophysical Research-Solid Earth 112 (2007). Statham PJ, Connelly DP, German CR, Brand T, Overnell JO, Bulukin E, et al. Environmental Science & Technology. 2005 Dec;39(24):9440-5. Sturkell, E., P. Einarsson, F. Sigmundsson, H. Geirsson, H. Olafsson, R. Pedersen, E. de Zeeuw-van Dalfsen, A.T. Linde, S.I. Sacks, and R. Stefansson. Journal of Volcanology and Geothermal Research, 150 (1-3), 14-34, 2006. Thurnherr, A. M., et al. (2008) J. Mar. Res., 66(3), 347-372. Von Damm, K.L., A.M. Bray, L.G. Buttermore, and S.E. Oosting. Earth and Planetary Science Letters, 160 (3-4), 521-536, 1998. Wilcock, W.S.D. . Geochemistry Geophysics Geosystems, 5, 2004. Wilcock, W.S.D., and J.R. Delaney. Earth and Planetary Science Letters, 145, 49-64, 1996.

Add on to D12 35 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

DOCUMENT N° 2 MoMARSAT

DESCRIPTIF DES CAMPAGNES 2010 et 2011

1- Infrastructure et déroulement du projet Les objectifs des campagnes MOMARSAT peuvent être résumés ainsi : - Etude temporelle des processus actifs sur le site hydrothermal Lucky Strike, - Déploiement d’un observatoire multidisciplinaire non câblé pourvu d’un système de transmission de données quasi-temps réel, - Opération de cet observatoire pendant douze mois. Pour répondre à ces objectifs, le projet MOMAR-Demo est structuré en plusieurs tâches sur une durée de 36 mois (voir tableau en Section 6 du Document 1). Les campagnes à la mer en 2010 et 2011 correspondent aux phases de mise en place et de récupération de l’observatoire et à l’acquisition de données complémentaires sur site. Le projet est financé partiellement dans le cadre du WP4 « Missions de démonstration » du réseau d’excellence ESONET (MoMAR-Demo, A. Colaço et P.M. Sarradin ; voir détail du plan de distribution des fonds alloués par ESONET dans la Fiche Synthétique 2). MoMARSAT repose sur un parc de matériel en grande partie existant (Cf Tableau du Document 1 § 4.3). Le réseau d’observation utilise le système SEAMON – BOREL et les capteurs associés. L’année 2009 sera consacrée à l’adaptation des stations et des capteurs et à leur qualification. A partir des données de bathycélérimètrie disponibles sur la zone, une étude de propagation acoustique du site sera effectuée, étude qui déterminera la position optimale de la bouée par rapport aux stations. L’intégration du système dans sa totalité (y compris la gestion des données) et les tests d’endurance à terre auront lieu au second semestre 2009. En parallèle, la politique de mise à disposition et de traitement des données sera définie et acceptée par tous les participants au projet. La tâche « communication vers le grand public » suivra un calendrier analogue, aux échelles nationale et européenne. Afin de valider, et de valoriser les séries temporelles, il sera nécessaire de disposer d’une part de mesures ponctuelles des mêmes paramètres sur une zone plus large, et d’autre part de mesures ponctuelles de paramètres qu’on ne sait pas mesurer sur le long terme. Ces mesures ponctuelles sont indispensables pour les expériences sur l’écologie, sur la chimie des fluides, et sur la géodésie. Pour l’écologie, l’acquisition de données sur site sera focalisée sur Tour Eiffel et aura lieu pendant les 2 campagnes MOMARSAT. Pour la chimie des fluides, l’échantillonnage concernera plusieurs sites sur tout le champ hydrothermal et débutera en 2009 durant Bathyluck afin d’obtenir une série sur 3 ans. Pour la géodésie, nous prévoyons une seconde campagne de mesure du réseau de repères (voir Figure en fin de Document 2) en 2011. Nous privilégierons les plongées longues (≥ 24 h), permettant de couvrir les objectifs de plusieurs manips, sauf pour les premières plongées de mises en place du dispositif SEAMON en 2010, qui doivent être rapidement suivies de tests. Nous utiliserons si nécessaire la navette ascenseur et nous organiserons le planning de ces plongées pour que les échantillons fragiles (biologie en particulier) soient prélevés peu de temps avant la remontée.

2- Campagne 2010 La première campagne du projet en 2010 permettra la mise en place de l’infrastructure de l’observatoire (bouée BOREL et nœuds SEAMON) et des capteurs connectés (environ 6 jours). Cette mise en place sera précédée d’une reconnaissance rapide et du marquage des zones à instrumenter (1 jour). La récupération et le redéploiement de l’instrumentation autonome qui aura été mouillée durant la campagne Bathyluck 2009 prendra environ 6 jours: récupération et redéploiement de 2 jauges de pression, des colonisateurs microbiens, et du réseau de capteurs autonomes de T° des fluides sur 5 sites hydrothermaux du champ Lucky Strike (Y3, Statue of Liberty, Tour Eiffel and Nuno-Hélène ; cf Figure en fin de Document 2). Environ huit jours seront en outre nécessaires pour l’acquisition de données d’écologie et de chimie des fluides afin de valider les séries temporelles et de les situer dans un contexte plus général. Enfin, les temps de reconditionnement du ROV entre les plongées seront consacrés à des opérations de pont : récupération et redéployement de 10 OBS (4 INSU, 5 portuguais, 1 BBOBS-IPGP), et manips d’océanographie physique. Les opérations à mener durant la campagne MoMARSAT 2010 sont donc les suivantes : 1. Reconnaissance rapide et marquage des zones à instrumenter 2. Mouillage des Nœuds (free falling + déplacement par VICTOR) et de la bouée BOREL, mise en place des capteurs connectés à Seamon, tests de fonctionnement, maintenance éventuelle 3. Acquisition de données sur sites (chimie, écologie) 4. Déploiement des capteurs autonomes 5. Travaux de surface Add on to D12 36 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

2-1 Reconnaissance du champ, choix et marquage des zones à instrumenter Les données de microbathymétrie et les mosaiques photos acquises sur le site avec le Module de Mesures en Route du ROV VICTOR durant les campagnes MoMARETO et MoMAR2008-Leg1 (Cartes en fin de document 2) permettent une navigation et une recherche des cibles très rapides. Les zones à instrumenter (Tour Eiffel, sites Est et Nord Ouest, lac de lave) seront repérées par des marqueurs passifs. L’étude de propagation acoustique sera validée sur site. Une reconnaissance petite échelle de l’édifice Tour Eiffel sera ensuite effectuée suivant le protocole développé par Cuvelier et al, (soumis, DSR). Cette reconnaissance permettra de marquer les zones d’études et d’acquérir la donnée vidéo nécessaire à l’étude temporelle de l’édifice (Thematic package 4). L’ ensemble de cette reconnaissance prendra 24h (1ère plongée). 2-2 Mouillage des Nœuds et de la bouée. L’infrastructure du réseau sera mouillée immédiatement après la plongée de reconnaissance. Les nœuds seront mouillés en « free falling » depuis le navire. Le mouillage comprend un lest de descente, une flottabilité additionnelle et une balise/ largueur BUC. Sur le fond (Plongée 2), les mouillages seront déployés et positionnés par le submersible. La durée approximative pour le mouillage est de 2 h pour chaque nœud. Le positionnement sur le fond de chaque nœud par Victor durera entre 4 et 6 heures. Le mouillage Borel comprend un lest de 1600 kg, une ligne de mouillage de 1700 m (Polypropylène, Nylon) et la bouée équipée (1300kg, diamètre 2.3 m). La stratégie de mouillage comprend la mise à l’eau de la bouée à 2000 m du point, le filage de la ligne de mouillage en remontant au-delà du point, et le largage du lest. La durée estimée de mise en place de la bouée est de 6 h. Le mouillage de la bouée sera effectué après la seconde plongée, durant le reconditionnement de Victor. 2-3 Mise en place des capteurs connectés à SEAMON, Une contrainte technique importante réside dans le déploiement des capteurs par Victor et leur connexion aux nœuds SEAMON (Nœud Est « écologie », Nœud Ouest « géophysique » ; cartes en fin de Document 2 et liste des capteurs à connecter dans le tableau du § 2.8 de ce Document). Cette opération a déjà été réalisée par le submersible habité Thetys (HCMR) en 2004 dans le Golfe de Corinthe. L’étape préalable de reconnaissance et de marquage des zones à instrumenter est déterminante pour la mise en place des capteurs sur ces sites à topographie très perturbée. Pour faciliter le déploiement, certains capteurs pourront être connectés à leur nœud d’accueil sur le fond en utilisant des connecteurs CdC. La durée de mise en place de chaque capteur par le ROV a été estimée entre 3 et 4h, soit environ 12h pour le nœud Ouest (3 capteurs, tableau au § 2.8) et 20h pour le nœud Est (Plongée 3). Les tests conduits pendant cette phase de déploiement du dispositif pourront conduire à récupérer tout ou partie du système pour réparation ou remplacement. Ceci pourrait dans le pire des cas représenter 2 plongées supplémentaires (environ 56h). Nous prenons un pied de pilote intermédiaire de 28h (Plongée 4 et reconditionnement ROV), étant entendu que le fonctionnement du système SEAMON a déjà été testé à de nombreuses reprises (cf § 4.2 du Document 1). 2-3-1 Ecologie : Tempo, précurseur du Nœud écologie, a été mouillé pendant la campagne MoMARETO. Tempo est constitué de 2 modules : le module énergie rassemblant les composants SEAMON et le module capteurs relié par un câble de 15 m. Lors du mouillage, le module capteur est logé dans le module énergie. Victor positionne le module énergie sur le fond à proximité de la zone d’étude. Il déploie ensuite le module capteurs à portée optique de l’assemblage cible. Les paramètres de la caméra (cadrage, zoom et focus) sont réglés depuis la surface à l’aide d’un lien CLSI. Finalement, la canule de prélèvement de l’analyseur in situ, associée à 3 sondes de températures autonomes et une optode à oxygène, est mise en place dans l’assemblage. Le bon fonctionnement de l’ensemble est vérifié sur place via le lien CLSI. 2-3-2 Etude des flux chimiques : Le module CTD/ADCP et le capteur Fe / Mn, seront connectés sur le fond au Nœud Est. Le module CTD/ADCP sera positionné à la base de Tour Eiffel, l’analyseur de Fe/Mn sur une émission diffuse à proximité du module TEMPO. 2-3-3 Sismicité. Le dispositif comprendra un OBS 3 composantes acquis pour l’opération, modifié pour être manipulable par le ROV (suppression de la flottabilité et montage d’une poignée adaptée), et pour être connecté au nœud SEAMON Ouest (l’enregistrement autonome des données sera conservé, un second processeur de type Persistor prendra en charge l’interface avec SEAMON). 2-3-4 Géodésie : La jauge de pression JPP2 est opérationnelle sur le site en mode autonome depuis l’été 2006 (campagne GRAVILUCK). En 2008 l’instrument a été remplacé dans un conditionnement différent, mais la jauge reste similaire à celle utilisée pendant la démonstration ASSEM dans le Golfe de Corinthe. Nous disposons donc de la technologie pour la connecter au nœud SEAMON. Le capteur autonome sera récupéré, et un capteur modifié sera déployé puis connecté. 2-3-5 Procédure de récupération des nœuds Add on to D12 37 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD En cas de dysfonctionnement constaté lors des premiers tests sur les nœuds, ceux ci pourront être récupérés assez rapidement en utilisant la navette ascenseur NASA. Celle-ci a une capacité d’emport de 170 kg dans l’eau, suffisante pour remonter un nœud SEAMON.

2-4 Acquisition de données sur sites 2-4-1 Ecologie : L’objectif principal du nœud « écologie » est la surveillance d’un assemblage dominé par la modiole B. azoricus. Afin de compléter et de valider l’approche temporelle, nous poursuivrons la caractérisation à petite échelle des différents assemblages colonisant l’édifice Tour Eiffel. Ceci permettra de multiplier le nombre d’unités d’échantillonnage et donc, d’élargir l’échelle spatiale de notre étude ainsi que d’obtenir des données à des intervalles annuels. La stratégie, utilisée lors de la campagne MoMARETO, repose sur la mise en place d’une série de sondes de température autonomes sur différents assemblages. En 2010, 12 unités d’échantillonnage seront ainsi caractérisées (chimie, physique, biologie « imagerie ») et instrumentées par 24 sondes de température autonomes (poursuite du plan d’échantillonnage amorcé au cours des campagnes Exomar et Momareto). En 2011, ces unités seront de nouveau caractérisées (chimie, physique, imagerie) et la faune prélevée de façon quantitative. Idéalement, cette étude de dynamique temporelle des assemblages sur la zone Lucky Strike sera poursuivie pendant plusieurs années et appliquée à d’autres structures géologiques (extension de l’échelle spatiale). L’environnement physico-chimique sera caractérisé par 2 méthodes complémentaires en utilisant une instrumentation spécifique développée durant le projet EXOCET/D (Sarradin et al IR News 2007). L’analyseur in situ CHEMINI (Vuillemin et al. 2009) permettra de mesurer les concentrations en sulfure total (Sarradin et al., 1999) et FeII (Sarradin et al 2005) à) proximité des organismes. Deux électrodes Unisense, intégrées au circuit, permettront également de mesurer le pH et l’oxygène. Le préleveur d’eau PEPITO permettra de prélever des échantillons pour compléter la caractérisation du milieu (métaux [Riso et al, 1997, Sarradin et al. 2009] et matière organique dissous et particulaires, radioéléments, méthane). Le capteur de débit sera déployé pour caractériser la vitesse des émissions sur l’assemblage cible (Sarrazin et al, submitted). L’utilisation d’un second module vidéo miniature en cours de développement permettra l’acquisition de séquences vidéo continues de 2 à 6h (associées à des mesures de température) afin d’évaluer la dynamique temporelle de différents assemblages et leur variabilité haute fréquence. L’aspect long terme sera pris en compte par le module vidéo connecté à SEAMON (3 min de vidéo par jour durant 12 mois). Le prélèvement “quantitatif” de faune, associant prélèvement à la pince et à l’aspirateur à faune sur des surfaces définies, permettra de valider les données acquises par les methodes d’imagerie. Un système de prélèvement quantitatif sur substrat dur est en cours d’étude à Ifremer. Les données obtenues seront traitées par des analyses statistiques multivariées, en collaboration avec Pierre Legendre (Université de Montréal). Ce plan d’échantillonnage sera mis en œuvre sur d’autres assemblages chimiosynthétiques profonds, que ce soit en zone hydrothermale (campagne BIG) ou en zone de fluides froids (campagnes MEDECO et WACS). 2-4-2 Chimie des fluides. L’échantillonnage des fluides chauds sera réalisé sur la dizaine de sites équipés de capteurs de température autonomes dans le cadre du thème 1 (Sismicité et dynamique du système hydrothermal ; cf Document 1). On prélèvera également des fluides diffus sur le site « écologie » L’échantillonnage sera conduit en utilisant les seringues titane et le PEP de Victor (et ou PEPITO). Les échantillons seront analysés à bord (alcalinité, pH, oxygène, sulfure et CH4) ou acidifiés et stockés dans des flacons LDPE pour analyses à terre. La composition chimique des fluides prélevés (fluides diffus et fluides haute température) sera déterminée : éléments majeurs et traces, compositions isotopiques (isotopes stables et radiogéniques). Cette opération sera répétée en 2011.

2-5- Déploiement des capteurs autonomes Des sondes de température autonomes seront mises en place dans les sorties de fluides d’une dizaine de sites répartis sur le champ hydrothermal de Lucky Strike. Ce dispositif reproduira celui de la campagne BATHYLUCK 2009. Des modules dédiés à l’étude de la colonisation par les microorganismes seront installés à proximité immédiate des deux sites SEAMON. Ces modules sont constitués de plusieurs tubes avec des substrats minéraux ou organiques différents. L’utilisation d’un système de mesure de la température par fibre optique (Fiber Bragg grating) sera testée durant la campagne sur une zone d’émissions diffuses proche du site de Tour Eiffel.

2-6- Travaux de surface Les périodes de reconditionnement de Victor (8 heures entre chaque plongée) seront mises à profit pour effectuer les récupérations et mouillages (Nœuds SEAMON, bouées BOREL, Piège à particules, OBSs) mais également pour effectuer des profils CTD / Rosette et de microprofileur VPM6000 au dessus du volcan de Lucky Strike, afin de mieux contraindre la structure de la colonne d’eau au cours de la campagne. Le réseau de surveillance sismique local constitué de 4 OBS du réseau national INSU et de 5 OBSs portuguais, sera déployé sur les flancs du volcan de Lucky Strike selon la configuration la plus adaptée (cf légende de la Figure en fin de document 2). Add on to D12 38 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

Par ailleurs, on installera en surface, sur la bouée BOREL, un GPS permettant de suivre les variations de hauteur d’eau. Ces variations serviront à extraire le signal géodésique des données du capteur de pression. Le signal de ce GPS sera analysé en utilisant un GPS de référence à terre, installé à Faial et maintenu pendant toute la durée de l’expérience (1 an) par nos collaborateurs de l’Université de Lisbonne. Enfin, le câble de la bouée BOREL sera équipé de 10 à 15 capteurs de température (ou T-P) autonomes, capables d’un enregistrement par minute pendant 1 an. Ces capteurs permettront de suivre l’évolution de la colonne d’eau, avec des objectifs d’océanographie physique (ondes internes). L’intégration de ces données de température avec les données GPS sur la hauteur de la colonne d’eau permettra aussi d’interpréter les données du capteur de pression en termes de déplacements du sol.

2-8 Calendrier prévisionnel de la campagne 2010 L’organisation de la campagne prendra en compte l’expérience acquise durant la campagne Medeco avec notamment l’utilisation de plusieurs ascenseurs au cours d’une même plongée. Ceci nous permettra de programmer des plongées d’une durée moyenne supérieure à 24h. Le programme ci-dessous prévoit une durée uniforme de 24h et est indicatif. Il sera affiné au cours du projet puis validé avec Genavir pour tenir compte des contraintes opérationnelles. Nous avons inséré une marge pour nous permettre de récupérer et remouiller des instruments défaillants. En cas de bon fonctionnement, ce temps de travail pourra être utilisé pour des prélèvements et mesures complémentaires (fluides, écologie) et pour des prélèvements de modioles sur le site Menez Gwen pour le projet BioBaz. Ce projet a pour objectif la compréhension des relations de Bathymodiolus avec ses symbiontes et son environnement dans trois champs hydrothermaux du chantier MoMAR (Menez Gwen, Lucky Strike et Rainbow). Une demande de campagne BIOBAZ est soumise par F . Lallier pour 2011. Pendant MoMARSAT, les échantillons de modioles pourront être récupérés par J. Sarrazin, A. Colaço et P.M. Sarradin, également impliqués dans BioBaz.

J heure Travaux surface Durée Travaux Plongée 1 Mobilisation, Horta 2 Appareillage, transit vers Lucky 20h Strike 3 Arrivée sur Zone 0800 Plongée n°1 de Victor 24 h Reconnaissance de la zone, marquage des zones cibles pour le déploiement des Nœuds et de l’instrumentation. 4 0800 Fin de plongée 1 Mouillage des 2 Nœuds 8h 1600 Plongée n°2 24h Déploiement du Nœud Géophysique 5 Déploiement et test des capteurs « Géophysique » 1600 Fin de plongée 2 8h Mouillage de la Bouée BOREL, tests de transmission fond surface 6 0000 Plongée 3 24h Déploiement du Nœud « Ecologie » 2400 Fin de plongée 3 Déploiement et test des capteurs « Ecologie » 7 Tests de transmission fond surface 8h Profils CTD 0800 Plongée 4 24h Fin de déploiement des capteurs connectés Acquisition de données sur site Capteurs autonomes 8 0800 Fin de plongée 4 Tests de transmission fond surface 2h 1600 Océanographie (CTD, profiler) 24 Plongée 5 Acquisition de données sur site Capteurs autonomes 9 1600 Fin de plongée 5 Déploiement de capteurs autonomes Récupération puis mouillage OBSs 8h Océanographie (CTD, profiler) 10 0000 Plongée 6 24h Capteurs autonomes Acquisition de données sur site 2400 Fin de plongée 6 11 Récupération puis mouillage OBSs 8h 0800 Océanographie (CTD, profiler) 24h Capteurs autonomes Plongée 7 Acquisition de données sur site 12 0800 Fin de plongée 7 Récupération puis mouillage OBSs 8h Capteurs autonomes 1600 Océanographie (CTD, profiler) 24h Acquisition de données sur site Plongée 8 13 1600 Fin de plongée 8 Prélèvements de fluides / sédiments Récupération puis mouillage OBSs 8h Océanographie (CTD, profiler) Add on to D12 39 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD 14 0000 Plongée 9 24h Capteurs autonomes Acquisition de données sur site Récupération puis mouillage OBSs 2400 Océanographie (CTD, profiler) Fin de plongée 9 15 Récupération puis mouillage OBSs 8h 0800 Océanographie (CTD, profiler) 24h Capteurs autonomes Plongée 10 Acquisition de données sur site 16 0800 Fin de plongée 10 Mouillage du piège à particules 8h 1600 Récupération puis mouillage OBSs 24h Acquisition de données sur site Océanographie (CTD, profiler) Capteurs autonomes Plongée 11 17 1600 Fin de plongée 11 Test fonctionnement réseau Récupération puis mouillage OBSs 8h Océanographie (CTD, profiler) 18 0000 Plongée 12 24h Acquisition de données sur site 2400 Fin de plongée 12 Capteurs autonomes 19 Récupération puis mouillage OBSs 8h 0800 Océanographie (CTD, profiler) 24h Acquisition de données sur site Plongée 13 Déploiement de capteurs autonomes 20 0800 Fin de plongée 13 Récupération puis mouillage OBSs 8h 1600 Océanographie (CTD, profiler) 24h Acquisition de données sur site Plongée 14 21 1600 Fin de plongée 14 Déploiement de capteurs autonomes Récupération puis mouillage OBSs 8h Océanographie (CTD, profiler) 22 0000 Début Plongée 15 24h Acquisition de données sur site 2400 Fin de Plongée 15 Déploiement de capteurs autonomes 23 0800 Récupération puis mouillage OBSs 8h 2000 Océanographie (CTD, profiler) 12 Tour des instrumentations Début de plongée 16 Test fonctionnement Fin plongée 16 24 Transit retour (Plongée BIOBAZ Menez Gwen ?) 25 Démobilisation Horta

3- La campagne de 2011 (22 jours sur zone) est prévue pour la récupération de tous les instruments et de l’infrastructure au terme de la démonstration ESONET. Cependant, dans la mesure où l’objectif de MoMARSAT est de pérenniser l’instrumentation du site, cette stratégie sera adaptée en fonction des perspectives offertes en ce sens d’ici 2011 (maintenance de certains équipements au lieu de leur récupération). En 2011, il est prévu de récupérer tous les capteurs de T° C autonomes déployés sur 5 sites du champ hydrothermal (Nuno, SEAMON Ouest, Tour Eiffel-SEAMON Est, Y3, Statue of Liberty ; voir Figure en fin de document 2), et le volet d’acquisition de données sur sites sera complet (écologie, chimie des fluides sur les deux sites SEAMON, et géodésie). Il est également prévu une plongée pour nettoyer le site de tous les déchets qui auraient pu s’accumuler autour des noeuds SEAMON au cours ou avant l’expérience. Le déroulement général sera le suivant : 1. Récupération ou maintenance des instruments connectés. La récupération des Nœuds sera effectuée par Victor en utilisant des mouillages de flottabilité. Victor ira ensuite connecter le mouillage flottabilité et le Nœud avant de larguer le lest de descente. L’étape de récupération a été estimée à 6 jours. 2. Récupération ou maintenance des instruments autonomes et des mouillages. 3. Acquisition de données sur site (écologie, géodésie, chimie) : Pour les volet écologie (5 jours), et chimie (échantillonnage des fluides chauds et des fluides diffus ; 3 jours), la stratégie sera identique à celle de 2010. Pour le volet géodésie, 6 jours sont prévus pour une seconde campagne de mesure du réseau géodésique (10 repères installé et mesuré une première fois en 2006 ; voir carte en fin de Document 2). La mesure du réseau, effectuée avec le “pressionaute” de l’IPGP un outil comprenant plusieurs jauges de pression Paroscientific, suppose des boucles de mesures (voir fiche de valorisation de la campagne GRAVILUCK). 4. Travaux de surface : Les périodes de reconditionnement de Victor (8 heures entre chaque plongée) seront mises à profit pour effectuer des profils CTD / Rosette au dessus du volcan de Lucky Strike, afin de mieux contraindre la structure de la colonne d’eau au cours de la campagne. 5. Une plongée « nettoyage de site » dans le cadre de la gestion de l’aire marine protégée est prévue en 2011. Les lests abandonnés seront localisés sur les mosaiques photo (voir fiche de valorisation de la campage MoMAR2008-Leg1). La procédure de remontée ou déplacement de ces lests est à étudier. Nous ne proposons pas de calendrier précis pour la MoMARSAT 2011. Son déroulement sera en grande partie similaire à celui de la campagne 2010. Les principales modifications seront une durée plus courte des opérations sur l’infrastructure SEAMON, mais l’ajout de 6 jours de mesure du réseau géodésique. Si la Add on to D12 40 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD demande de campagne BIOBAZ 2011 soumise par Lallier et al. est retenue, le volet d’écologie de MoMARSAT 2011 devra en outre être coordonné avec les opérations BIOBAZ sur Lucky Strike. Quelques participants (Ifremer, IUEM, IMAR) sont d'ailleurs impliqués dans les 2 projets

4- Déroulement général des deux campagnes

2010 2011 Durée totale 25 jours 26 jours Nombre de jours effectifs de plongées 21.5 jours 22 jours Temps de transit, à 11 Noeuds 2*20h 2*20 Mise à disposition à Horta 2 jours 2 jours

Position géographique de la zone de travail : Lucky Strike 37°17,29' N 32°16,45' W 1700 m

Période souhaitée : La zone de travail est soumise à des conditions de mer généralement difficiles pour la mise en œuvre du submersible, la période la plus favorable est de mi-mai à mi-août.

5- Synthèse des capteurs déployés pour un an

Capteur Institut Données échantillonnage Données Données Energie nécessaire à générées transmises par la transmission par jour jour acoustique (1 an*) SEAMON WEST (Geophysical node) OBS IPGP Accelerations x, 62.5 Hz 67 Mbytes 200 bytes (OBS 1.62 Wh y, z technical status + seismic alert) Pressure probe IPGP Pressure, tilt 1 minute 12 kBytes 12 kBytes 100 Wh OBM U. Tilt, acceleration ? ? 12 kBytes 100 Wh Bremen Total 25 kBytes 202 Wh SEAMON EAST (Tour Eiffel node) Video camera Ifremer Video images 6 min / day 120 MBytes 40 kBytes 332 Wh Chemini Ifremer Fe 12 hours 4912 Bytes 256 Bytes 2.08 Wh concentration

Aanderaa Ifremer T°, O2 15 min 960 Bytes 960 Bytes 7.79 Wh optode Chemical NOCS Fe, Mn 12 hours 5 kBytes 256 Bytes 2.08 Wh analyser concentrations CTD/ADCP MARUM C, T°, P, current 10 minute bursts 10 MBytes - MByte - Wh profiles every hour, 1 Hz Total 130 MBytes 41.5 kBytes 344 Wh BOREL (Surface buoy) GPS Ifremer x, y 1 hour 1750 bytes 1750 bytes - Air / wind sensor Ifremer Wind speed / 30 s /hour 624 bytes 624 bytes - direction Air T air P Buoy attitude Ifremer Tilt (x,y) 1 hour 360 bytes 360 bytes * Estimation effectuée sur la base de 10 mJ pour transmettre 1 bit à la bouée.

Instrumentation autonome Capteur Institut Location Output data GPS IPGP Bouée BOREL x, y, z, t T°, P probes Locean Ligne de mouillage BOREL T°, P 5 OBS U. Lisbon Autour du volcan x, y, z accélérations Geodetic benchmarks IPGP 10 sites autour du volcan P, tilt

Methane sensor NOCS Tour Eiffel CH4 concentration Fiber optic temperature sensors NOCS Tour Eiffel T° array T° probes IPGP / Ifremer Around LS vent field T° Current-meters Ifremer /INSU Mooring close to the Tour Eiffel Current speed / direction Sediment trap Ifremer Mooring close to the Tour Eiffel Falling particle samples

Add on to D12 41 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

6- Cartes de situation

Carte de situation générale

Carte bathymétrique du volcan de Lucky Strike (données de la campagne FLORES, mnt par H. Ondréas) montrant la localisation des repères du réseau géodésique, ainsi que la distribution actuelle des deux sondes de pression autonomes (PG1 et 2), des 4 OBSs du parc INSU (OBS1 à 4), et de l’OBS large bande (BBOBS7) du réseau NERIES. Le courantomètre qui permet d’analyser le bruit sur cet instrument est localisé à proximité. Dans la configuration MoMARSAT, les sondes de pression seront localisées au même endroit mais PG1 sera connectée au système SEAMON Ouest et transmettra ses données en temps semi-réel. BBOBS7 sera maintenu. Un OBS adapté sera connecté au réseau SEAMON Ouest et transmettra une partie de ses données en temps semi-réel. Les autres OBSs (>4 portuguais) seront distribués sur les flancs et autour du volcan afin d’obtenir la meilleure localisation des séismes associés aux interactions entre failles, chambre magmatique et système hydrothermal.

Carte des pentes établie à partir des données de microbathymétrie du ROV Victor (campagne MoMARETO, Ondréas et al., sous presse). Les sites hydrothermaux. La localisation prévue pour les deux boités de jonction (ou « nœuds ») SEAMON, et pour le mouillage de la bouée BOREL sont représentées par des étoiles.

Add on to D12 42 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

DOCUMENT N° 3 MoMARSAT

MOYENS A METTRE EN OEUVRE

1- Navire support, submersible et positionnement N.O. pourquoi pas ? Option préférée car il offre 30 places pour l’équipe scientifique (cf Document 5- Equipe Scientifique) et une importante surface de laboratoire. Une navette (financée par ESONET) sera effectuée avec le N/O Archipelago pour une rotation de 6 personnes. L’utilisation de l’Atalante entraînerait une révision du projet (séparation en 2 legs et perte de flexibilité dans l’organisation).

Submersible : VICTOR 6000. La stratégie proposée repose sur les capacités de Victor à travailler en mode chantier sur ces zones perturbées (Sarradin et al. 2002, Michel et al. 2003, Sarrazin et al. 2006, Sarradin et al 2007). Michel, J. L., M. Klages, F. J. A. S. Barriga, Y. Fouquet, M. Sibuet, P.-M. Sarradin, P. Simeoni and J. F. Drogou (2003). Victor 6000: Design, Utilization and first improvements. Thirteenth International Offshore and Polar Engineering Conference, Honolulu, Hawai, USA. Sarradin, P. M., K. Olu Leroy, O. H., M. Sibuet, M. Klages, Y. Fouquet, B. Savoye, J. F. Drogou and J. L. Michel (2002). Evaluation of the first year of scientific use of the French ROV Victor 6000. Underwater Technology, Tokyo. Sarrazin, J., Sarradin, P.M. and the MoMARETO cruise participants, MoMARETO: a cruise dedicated to the spatio-temporal dynamics and the adaptations of hydrothermal vent fauna on the Mid-Atlantic Ridge InterRidge News, (2006), V15, 24-33. Sarradin Pierre-Marie, Jozée Sarrazin, Yves Fouquet, Daniel Desbruyères, FEED BACKS : 3 multidisciplinary cruises on the Pourquoi pas ? TSM 2007, Décembre 2007, La Londe les Maures, Fr.

Positionnement : GPS différentiel et base ultra courte POSIDONIA du submersible.

2- Équipements fixes mis en œuvre par GENAVIR

Fréquence d’utilisation Remarque ADCP de coque Chaîne du froid (-20 et –80°C) En permanence Transmission haut débit (Bande 7 jours Si une opération de communication passante 2Mbps) est prévue

3- Équipements mobiles mis en œuvre par GENAVIR, par l'IPEV, par l’IRD ou les parcs nationaux (INSU)

Fréquence d’utilisation Remarque Victor 6000 et son matériel de mise Genavir en œuvre lasers Module de prélèvements de base Genavir seringues titane Bouteilles titane, PEP, 2 / 3 sondes de température, 6 Boîtes de prélèvement APN2 1 plongée 2 Navettes ascenseur NASA et plusieurs mouillages par plongée Genavir Nautile 2 Largueurs BUC Pour mouillage des nœuds Genavir SEAMON CTD / Rosette Pendant les reconditionnements Genavir Victor 4 OBS Mouillage pour 12 mois INSU 2 courantomètres Mouillage pour 12 mois INSU Microprofiler VPM6000 Pendant les reconditionnements INSU Victor

4- Laboratoires et outils de dépouillement informatique nécessaires à bord - Tous les laboratoires scientifiques, y compris laboratoire thermostaté, hotte à flux laminaire - Laboratoire de microbiologie, congélateur -20 et -80°C, hotte chimique, hotte flux laminaire, machine à glace, autoclave. -Transmission haut débit (Bande passante 2Mbps) - Sumatra, Adélie, Alamer, Casino Add on to D12 43 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

5- produits chimiques ou radioactifs La liste des produits chimiques sera précisée ultérieurement. A ce jour, il n’est pas prévu d’utiliser de produits radioactifs.

6- Matériel propre de l'équipe demandeuse (avec identification des instituts responsables pour chaque équipement)

Outillage existant à intégrer sur Victor : ƒ Analyseur chimique in situ (CHEMINI) équipé d’électrodes UNISENSE et préleveur d’eau PEPITO (Ifremer) ƒ Lien CLSI (Ifremer) ƒ « pressionaute » pour la mesure du réseau géodésique (déjà utilisé sur le Nautile pendant la campagne GRAVILUCK)

Instrumentation autonome : ƒ Capteur de débit FLO (Ifremer) ƒ Sondes de température (Ifremer, IPGP) ƒ Optode Oxygène Aanderaa (Ifremer) ƒ Modules de colonisation (IPGP, Ifremer) ƒ 5 OBSs (FCUL) ƒ Thermistors et gauges de pression pour mesure température colonne d’eau (LOCEAN-INSU) ƒ Matériel pour CTD rosette (LOCEAN-INSU) ƒ Préleveurs de fluide (NOC) ƒ Analyseurs chimiques in situ (Ifremer et NOC) ƒ Capteurs de méthane (NOC LMTG)

Matériel de laboratoire ƒ Système d’extraction de gaz, analyseur GC (NOC) ƒ Système de production d’eau permuté (Ifremer ) ƒ Petit matériel analytique

Instrumentation « observatoire »: a- Capteurs à connecter à SEAMON (avec indication des développements prévus) ƒ TEMPO (Ifremer) - caméra, éclairage, optode O2 Aanderaa, sondes de température et Chemini Fer, maintenance à effectuer après récupération en 2008, bilan fonctionnel, interface données vidéo / SEAMON à développer. ƒ CTD / ADCP (Marum) - connexion à SEAMON à développer. ƒ Capteurs Fe/Mn (NOC) - tests long terme et interfaces SEAMON à effectuer. ƒ OBS (INSU) - 3 composantes, connexion à SEAMON à développer. ƒ Capteur de pression géodésie (IPGP) - connexion à ASSEM réalisée, modifications mineures prévues. ƒ GPS géodésie (IPGP) - connexion à SEAMON : modifications mineures prévues. ƒ Capteurs température NKE (IPGP) - connexion SEAMON à développer. ƒ Ocean Bottom Motion Meter (Univ. Bremen) – interface SEAMON à développer. Add on to D12 44 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD b- Infrastructure observatoire : système bouée et 2 boîtes de jonction (ou nœuds) SEAMON (Ifremer)

Bouée Description Avec ligne de mouillage 2000 m, 2 voies de communication fond de mer - terre // indépendantes Valeur estimée 90 000 € Aménagements à prévoir -Achat d’un deuxième baffle pour transducteur (3800 €) et aménagement de la structure inférieure pour l’accueillir -Ajustement de la longueur de ligne -Nettoyage, sablage et remise en peinture du flotteur (1000 €) Consommables à -Lest, anodes, accastillage, batteries et panneaux de rechange : 3500 € approvisionner -Communications Iridium : jusqu’ici prises en charges par IDM/RIC SEAMON Conteneur énergie Au moins 2 disponibles Description 4kWh chacun, qualifiés 4000 m Valeur estimée 3500 € sans les piles Aménagements à prévoir - Consommables à Piles au lithium : 3000 € par conteneur approvisionner Anodes de protection COSTOF 2 sont disponibles Description Jusqu’à 6 capteurs interfaçables, qualifiés 4000 m Valeur estimée 9200 € par COSTOF Aménagements à prévoir Développement logiciel embarqué pour s’adapter aux nouveaux capteurs. On compte 1 à 2 semaines pour un capteur conventionnel. Ce sera certainement beaucoup plus pour la caméra et le sismo. Consommables à Anodes de protection - approvisionner Modem acoustique fond 2 sont disponibles Description Fonctionnent en réseau, 200 bits/s, qualifiés 2500 m Valeur estimée 21000 € par modem Aménagements à prévoir - Consommables à Anodes de protection - approvisionner Boîtes de jonction, 2 ensembles sont disponibles (dont celui de Tempo) connectique et câblage équipression Description Raccorde les sous-ensembles électriques de Seamon Valeur estimée 4100 € Aménagements à prévoir Connectique spécifique de nouveaux instruments à approvisionner / câbler. Consommables à Uniquement pour les connexions effectuées sous l’eau (géodésie, sismo…) approvisionner Structure Description Nous disposons d’une structure fond de mer pouvant accueillir les différents sous-ensembles d’une station de géophysique. Valeur estimée 6000 € Aménagements à prévoir A définir Consommables à Anodes de protection - approvisionner

Prix des liaisons Iridium Coût des SBDs = messages adaptés à des petits paquets (< 3 koctets) : 14 € / mois + 1 € / koctet Coût de la liaison données (intéressant pour des volumes > 5 koctets) : 30 € / mois + 1 € / minute

Coûts pour MoMARSAT Abonnements (Base 15 mois) = 15 * (14 + 30) = 660 € Coûts des SBD : Base 4400 octets / jour = 1600 € Coût des communications « data » : Base 64 koctets / jour à 2200 bits/s = 1500 € Total Iridium = 3760 €

7. Personnel spécialisé : Équipe ROV : mise en œuvre et opération de VICTOR Parc OBS INSU: Mise en œuvre, récupération des OBS et des données de sismicité (2 personnes prévues) Add on to D12 45 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Electronicien Genavir pour CTD / Rosette et acquisition données ADCP Ingénieurs des équipes européennes responsables des différents instruments mis en oeuvre

8 - Moyens terrestres à mettre en œuvre GPS (manip de géodésie) mis en œuvre par U. Lisbonne (Rui Manuel Fernandez) sur l’île de Faial pendant la durée de la démonstration (2010-2011).

Annexe : Description de certains instruments propres aux équipes demanderesses :

The Ocean Bottom motion meter, Univ. Bremen The equipment consists of one instrument, the OBM. The OBM has a weight of about 170kg (in water 60kg). It has a triangular shape with a triangular base plate on three legs. Overall dimensions of the OBM are 1.36 m for the long edge, 0.68 m for the perpendicular bisector of the base plate and 0.96 m for the short edges, with a total height of the instrument of 0.78 m. The OBM must be leveled at the sea floor, so that a ROV is necessary for installation and recovery. The OBM dimensions are such that it can be deployed by the ROVs Quest, KIEL 6000, Jason 2 and Victor 6000. The OBM has accelerometers with 10-5 m/s2 resolution, to record acceleration from DC to 10 Hz in three perpendicular directions. It has a tilt sensor with two perpendicular horizontal axes with 0.1 rad resolution, to record local slow sea floor tilt. An absolute pressure gauge (Paroscientific DigiQuarz) with Bennest technology is integrated in the system and records vertical seafloor displacements with respect to the sea surface with millimeter resolution. Additional thermistors record sensor temperature and sea water temperature, to control environmental conditions for OBM operation. The OBM runs autonomously, but monitoring in real-time through a network are preferred. During the cruise the OBM has to be prepared for deployment, i.e. all components and the batteries have to be checked thoroughly before the OBM will be deployed by an ROV. It will continuously record long-term time series of acceleration, tilt, pressure and temperature until recovery during the second cruise by an ROV. The OBM should be installed next to one of the geodetic benchmarks and the pressure data recorder at the summit of the volcano. We prefer to integrate it in the network depending on the networks capability, but it can also run autonomously. The time series of acceleration, tilt, pressure and temperature will be analyzed for their spectral information and correlated for the interpretion of seafloor deformation processes and magmatic and hydrothermal activity.

CTD/ADCP package The equipment consists of a CTD, a profiling Doppler current meter, a central data logger and an energy supply. The instrument package is completely autonomous. It will be programmed for the mission and the data will be read out after retrieval. An autonomous instrument package consisting of a CTD sensor, an ADCP and a data logger together with the necessary energy supply will be deployed. A location close to a hydrothermal vent has to be selected preferably where fluid samples are taken as well. The data set collected will consist of the following parameters – temperature, pressure, salinity and current speeds. Theses data will be sampled at a repetition rate of 0.25 Hz continuously with a total time endurance of 3 months. If possible the system should be deployed at least for these three months. No specific preparatory work on board or on shore is needed. The system can be deployed by the elevator of IFREMER and then be positioned by the ROV VICTOR. After retrieving the raw data from the sensor systems some post processing has to be done to achieve time synchronisation and filter out outliers. To be able to interpret the data adequately it is also necessary to know precisely about the topography around the measurement location and to have knowledge about tide cycles. A basic model is currently developed at the University of Bremen but it will be essential to discuss and evaluate the data with a colleague from Lamont Doherty Laboratories, Andreas Thurnherr, who is an expert in this field. He already indicated his interest in participating in the data evaluation.

Temperature sensors The sensors are autonomous and can record T at a rate of <5 min over >1 years. They are available for measurement of high-T (>400°C) and low-T (<100°C) fluids. Data wil be processed upon the recovery of the instruments in 2011, to study temporal variability (tidal forcing, random T variations, seasonal/current-induced changes), spatial correlation of these variations among different sites, and their correlation with seismicity.

NOC chemical and temperature sensors NOC though NERC funded programmes has been involved in the development of sensors for the determination of dissolved reduced species of manganese and iron. Early work demonstrated the use of the Mn sensor on Autonomous Underwater Vehicles (AUV’S) in shallow coastal systems (Statham et al., 2003, 2005). This technology was developed further and recently the sensors developed at NOC for the determination of Fe and Mn species, in collaboration with the WHOI deep submergence group, and had success in the pin-pointing of hydrothermal vent sites using AUV’s (German et al., 2006). The use of a Fiber Bragg grating allows the multi-point temperature sensing with a high level of accuracy and sensitivity. It is envisaged that a number of sensing nodes will be deployed around the selected vent sites. We are in the Add on to D12 46 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD process of developing and in-situ methane sensor as part of the MOMARnet project, this is showing great promise and we will have a fully deployable prototype of the system for the cruise in 2010. We will require time to integrate our sensors onto the system to be deployed during the cruise, this will occur ideally before the cruise. We envisage that the system for dissolved iron and manganese will have a functioning life on the order of 2 months. The temperature sensor and the methane sensor will be operable for the entire length of the deployment. We will require a minimum of 3 people on each cruise. This will allow the deployment of the systems, and, we will work in association with Valerie Chavagnac to collect fluid samples for the chemical characterisation of the environment at the time of deployment and recovery.

TEMPO TEMPO [Sarrazin et al. 2007] is a long-term imaging module equipped with a deep-sea video camera and two LED lights. An efficient biofouling protection is installed on the camera port hole and on the lights. A CHEMINI Fe in situ analyzer and 3 temperature probes are coupled to the TEMPO module to monitor environmental changes in parallel to community dynamics. The whole system is powered by a SEAMON node [Blandin et al. 2005]. TEMPO was tested and deployed during the Momareto cruise and was set to acquire time series (video images, temperature and Fe concentrations) during 3 months on the bottom. Due to technical difficulties, it has not been possible to recover TEMPO in 2007, but data is stored in the instrument, and recovery is planned for the summer of 2008. A second generation of in situ chemical analyzer (CHEMINI, Vuillemin et al. in press) based on flow analysis and colorimetric detection was used for the analysis of total sulfide and iron II or total iron (II + III, Sarradin et al. 2005). Sampling followed by on board analysis remains often the only analytical way to complement the range of geochemical species covered by in situ sensor, and to validate data obtained by in situ measurements. Pepito is a small volume water sampler combining high number of samples (up to 25). It has been tested and used for many different purposes: ground truthing of the CH4 sensor, in situ filtration, sampling of water samples in the water surrounding hydrothermal assemblages. The Aanderaa dissolved oxygen (DO) sensor 3830 is a life-time based optical sensor based on dynamic fluorescence quenching (Tendberg et al.) .

Add on to D12 47 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

DOCUMENT N° 4 MoMARSAT

ANALYSE ET TRAITEMENT DES ECHANTILLONS ET DES DONNEES

L’analyse et le traitement des données concerneront les 5 thèmes définis dans le document 1 : • Thematic Package 1: Seismicity and hydrothermal activity • Thematic Package 2: Vertical deformation of the seafloor at the Lucky Strike volcano • Thematic Package 3: Chemical fluxes at Lucky Strike vents • Thematic Package 4: Ecology at Lucky Strike vents • Thematic Package 5: Physical oceanography Dans les § qui suivent nous ne rentrons pas dans le le détail des traitements prévus : des informations peuvent être trouvés dans le document 1, les références bibliographiques, et les fiches de valorisation des campagnes antérieures. Les données analysées à bord proviendront d’échantillonnage (fluides et biologie), de capteurs manipulés par le ROV, de capteurs autonomes déployés pour de courtes durées (≤ durée campagne), de capteurs autonomes déjà en place avant la campagne, et des capteurs connectés à SEAMON pour lesquels l’ensemble des données n’auront pas été transmises par satellite (ex : sismomètre, caméra vidéo). Vous trouverez un tableau de tous ces instruments dans le document 1 (§ 4). Un tableau spécifique aux instruments connectés à SEAMON se trouve dans le document 2. Le travail à terre concernera d’une part les données en temps semi-réel transmises par l’observatoire, et d’autre part le traitement plus poussé des données acquises pendant les campagnes. L'essentiel de l'exploitation des résultats devra être réalisé dans un délai de 12 à 24 mois après la seconde campagne. L’aspect original par rapport à des campagnes d’instrumentation plus classiques sera le fort poids donné à l’intégration de données de type très différent (ex. données sismique et chimie, température des fluides), et l’ambition des objectifs en termes de gestion et d’archivage des données. La mise au point d’une politique de dissémination des données et d’une stratégie de traitement de ces données multidisciplinaires est un des objectifs du projet MoMAR-Demo (cf plan de travail prévisionnel, Section 6 du Document 1). La liste des participants et leurs principales responsabilités thématiques figurent dans le document 5.

1- Analyses et traitements des échantillons et des données effectués à bord

1-1 Ecology at Lucky Strike vents Echantillons/ données Traitement Analyse à bord

Imagerie optique Logiciel Adélie Analyses automatiques et manuelles Données in situ Calibration laboratoire Chemini Calibration in situ Analyseusr NOC Collecte d’échantillons pour comparaison Capteur méthane Capteur débit Température Optode O2 Reconstruction vidéo 3D Construction d’un MNT Prélèvements discrets Acidification, congélation Mesures pH Particules Fixation Echantillons biologiques Tri Dissection Fixation (alcool, formol, azote liquide) Transfert vers LabHorta Echantillons microbiologiques Fixation (alcool, formol, azote liquide) 1-2 Chemical fluxes at Lucky Strike vents Stockage des échantillons, acidification des fluides hydrothermaux chauds, mesures de base (oxygène dissout, alcalinité, H2S). Analyse des teneurs en méthane des fluides diffus prélevés près des capteurs de chimie pour calibration. Egalement analyse des nutriments. 1-3 Seismicity and hydrothermal activity En 2010 récupération d’un an de donnée des OBSs autonomes qui auront été redéployés en 2009 (BATHYLUCK-2009) sur le pourtour du volcan (localisation sur carte document 2). En 2011, récupération d’un an d’enregistrement sur tous les instruments autonomes et connectés (OBSs, dont l’OBS connecté dont on n’aura transmis qu’un subset de données via la liaison SEAMON, et sondes de température), premier traitements et analyse préliminaire des séries temporelles.

Add on to D12 48 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

1-4 Vertical deformation of the seafloor at the Lucky Strike volcano En 2010, récupération des données des capteurs de pression qui auront été réinstallés en 2009 pendant Bathyluck-2009 (localisation sur carte document 2), récupération des données GPS acquises en cours de campagne puis dépouillement. En 2011, les données d’un des capteur de pression auront été récupérées en temps semi réel, ainsi que celles des deux GPS (bouée Borel et station fixe à Faial). On mènera la seconde campagne de mesures du réseau géodésique (5 ans après la première en 2006) et on intégrera ces données aux données des deux capteurs de pression permanents. 1-5 Physical oceanography Acquisition et traitement des données de CTD, d’ADCP de coque et, en 2011, d’un an d’enregistrement des capteurs de température sur le mouillage de la bouée Borel.

2- Analyses et traitements des données en temps semi-réel transmises par l’observatoire Les modalités de ce traitement feront l’objet d’un groupe de travail mis en place dès le printemps 2009 par le projet MoMAR-Demo. En tout état de cause, ce traitement se fera en étroite collaboration entre les 4 thèmes qui bénéficieront de données transmises par SEAMON et acquises par les capteurs autonomes, afin de coupler, les données de température, de chimie des fluides, de sismicité, et de déformation verticale du sol. Un des objectifs du travail préliminaire au cours de l’année 2009-2010 sera de préparer la détection d’évènements dans une optique de « réponse rapide » et de faire l’interface avec les ingénieurs qui mèneront l’adaptation des instruments au système SEAMON. Par exemple modifier le rythme d’échantillonnage de certains capteurs, éventuellement organiser une intervention sur zone avec l’Archipelago (par exemple faire des prélèvements d’eau pour détecter un panache après une éruption). 2-1 Ecology at Lucky Strike vents Analyse régulière des données transmises par SEAMON, suivi des enregistrements des capteurs environementaux. 2-2 Chemical fluxes at Lucky Strike vents Analyse régulière des données transmises par les capteurs de chimie. 2-3 Seismicity and hydrothermal activity Analyse régulière des données transmises par l’OBS. 2-4 Vertical deformation of the seafloor at the Lucky Strike volcano Analyse régulière des données transmises par le capteur de pression et par les 2 GPS (bouée Borel et station fixe à Faial).

3- Analyses et traitements à terre des données acquises pendant les campagnes Pour l’interprétation, il sera primordial de maintenir une communication étroite entre les groupes des différents thèmes. En effet, l’essentiel du bénéfice scientifique viendra de la confrontation des données des différents capteurs. Plusieurs réunions sont prévues dans le cadre du projet MoMAR-Demo. Une réunion générale sera organisée en fin 2011 afin de finaliser le traitement des données temporelles acquises par les différentes équipes.

3-1 Ecology at Lucky Strike vents Echantillons Traitement/stockage Analyse

Imagerie optique DVD Plaquage sur MNT Mise à l’échelle Traitements manuels et automatiques en cours de développement Prélèvements discrets (eau / Acidification PSA, ICP-MS, HSS-GC, MEB, CI particules) Congélation Données courants Traitement Echantillons biologiques Fixation -Composition, densité, biomasse Congélation - Calorimétrie, isotope stables - Echantillonnage pour ADN et ARN 3-2 Chemical fluxes at Lucky Strike vents Analyse géochimique plus poussée (incluant rapports isotopiques stables et radiogéniques pour les fluides hydrothermaux chauds). Dépouillement des séries temporelles des capteurs chimiques. Interprétation. 3-3 Seismicity and hydrothermal activity Dépouillement des enregistrements sismiques complets, identification des évènements, caractérisation des profondeurs hypocentrales (en utilisant les modèles de vitesse établis pour le substratum du volcan pendant la campagne SISMOMAR ; Seher et al., 2006). Comparaison avec les données enregistrées simultanéement par le réseau régional d’hydrophones (AHA ; projet MARCHE, J. Goslin, J. Perrot et al.). Analyse des mécanismes

Add on to D12 49 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD au foyer des principaux évènements. Interprétation. Dépouillement conjoint des enregistrements des sondes de température autonomes, analyse des variations temporelles et géographiques, interprétation, modélisation.

3-4 Vertical deformation of the seafloor at the Lucky Strike volcano Synthèse des 3 ans de données sur le réseau géodésique (2006-2011), intégration des données d’océanographie physique et des données GPS et interprétation en termes de mouvements verticaux du sol. Analyse des séries temporelles, intégration des données des 2 campagnes de mesure du réseau géodésique, lien avec la sismicité et les variations de température et de chimie des fluides, interprétation. 3-5 Physical oceanography Synthèse d’un an d’enregistrement de la chaîne de thermistances autonomes, étude de la dynamique de la colonne d’eau, ondes de volume.

4- Archivage Les opérations effectuées pendant la campagne seront archivées via le logiciel embarqué Alamer. Les échantillons et données seront ensuite référencés dans la base de données BIOCEAN et associés à leur détenteur. Cette base sera consultable par les participants à la campagne. Les rapports de plongées et les données acquises par le submersible seront accessibles après la mission sous forme de CD-ROM. Les données vidéoscopiques brutes seront à la disposition des participants de la campagne après engagement de confidentialité vis-à-vis des médias. L’archivage, et le contrôle des données issues des campagnes et délivrées par l’observatoire seront pris en compte par le département IDM Ifremer sur une base existante. Les modalités de cette prise en compte seront définies en début de projet par les participants, en accord avec les standards ESONET et internationaux. Les principes de la mise à disposition des données pendant la durée du projet seront approuvés par chaque participant et répondront également aux spécifications qui seront définies dans le cadre du NoE ESONET. En fin de projet, ces données seront accessibles via la base de données ESONET.

Add on to D12 50 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

DOCUMENT N°5 MoMARSAT

EQUIPE SCIENTIFIQUE ET TECHNIQUE

1 - Equipe demandeuse

Chef(s) de mission : Mathilde Cannat, IPGP Jérôme Blandin, Ifremer Pierre-Marie Sarradin, Ifremer

Equipe embarquée Les participations à la campagne 2010 sont définies sous réserve de changements qui seront dans tous les cas effectués sous la responsabilité des équipes partenaires, afin d’assurer la mise en œuvre des instruments dont elles ont la responsabilité. Les participations à la campagne 2011 sont ouvertes pour l’instant (chaque personne impliquée ayant donné son accord de principe) et seront définies dans les mêmes conditions. Les noms des PIs des principales expériences sont en gras. Les thèmes principaux listés pour chaque participant sont ceux du projet scientifique soit : • Thematic Package 1: Seismicity and hydrothermal activity • Thematic Package 2: Vertical deformation of the seafloor at the Lucky Strike volcano • Thematic Package 3: Chemical fluxes at Lucky Strike vents • Thematic Package 4: Ecology at Lucky Strike vents • Thematic Package 5: Physical oceanography Gabriella Queiroz, directrice du Centro de Vulcanologia e Avaliação de Riscos Geológicos, Université des Açores, ou un de ses post-docs, participera à la campagne 2011 dans le but de renforcer, par des échanges scientifiques et méthodologiques et l’échange de données, l’intégration entre monitoring sismique et volcanologie terrestre et fond de mer et entre les différents chantiers du nœud Açores d’ESONET.

Nom Prénom Institut Spécialité 2010 2011 Responsabilité Thème(s) Laboratoire et rôle à bord Cannat, Mathilde IPGP Géologie/géophysique 1 X Chef de mission 1 Coordination géologie/ géophysique Blandin, Jérôme Ifremer TSI Electronique 2 X Chef de mission SEAMON Coordination Technique Sarradin, Pierre Ifremer DEEP Biogéochimie 3 X Chef de mission 4 Marie Coordination écologie et plongées Acquisition données environnementales Colaço, Ana IMAR DOP, biology 4 X Site management 4 Azores Trophic ecology Etudiant IMAR DOP, biology 5 X Site management 4 Azores Trophic ecology Sarrazin, Jozée Ifremer DEEP écologie 6 X Ecologie 4 Coordination Public outreach, Ing (C. Le Gall) Ifremer DEEP Chimie 7 X Acquisition données in situ / 4 CHEMINI/Instrumentation Tech 2 Ifremer DEEP Biologie 8 X Echantillonnage / Préparation plongées/ 4 Adélie / Biocéan Etudiant Ifremer DEEP Ecologie 9 X 4 Waeles, Mathieu IUEM UBO Chimie 10 X Echantillonnage eau / Analyse métaux / 3, 4 PEPITO Khripounoff, A. Ifremer DEEP Biologie 11 X Déploiement et récupération de piège à 4, 5 particules Legrand, Julien Ifremer TSI électronique 12 X SEAMON SEAMON Coail, Jean Yves Ifremer TSI électronique 13 X SEAMON SEAMON Ifremer TSI mécanique 14 SEAMON – CDC SEAMON Ifremer TSI/ou mécanique 15 SEAMON/BOREL/ instrumentation Victor SEAMON DEEP Dentrecolas S. Ifremer SM 16 X Imagerie TEMPO SEAMON Escartin , Javier IPGP géophysique 17 X Temperature sensors 1 Fabrice Fontaine IPGP géophysique X Temperature sensors 1 Crawford, Wayne IPGP géophysique 18 X OBS 1 Singh Satish IPGP Géophysique X OBS 1 Etudiant IPGP Géophysique 19 X Temperature sensors and OBSs 1 Christophe IPGP mécanique 20 X OBS 1 Courrier Romual Daniel IPGP électronique 21 OBS 1 Ballu, Valérie IPGP géophysique X Geodesy 2 Pot, Olivier IPGP mécanique X

Add on to D12 51 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Lecomte, Benoit IPGP électronique 22 X Geodesy 2 Rommevaux, IPGP géomicrobio 23 X Colonisation 4 Céline Cedric Boulart LMTG, Toulouse Chimie 24 Chemical sensors and Fluid sampling 3 Valérie Chavagnac LMTG, Toulouse Chimie 25 X Fluid sampling 3 Christophe Monnin LMTG, Toulouse chimie X Fluid sampling 3 Reverdin, Gilles LOCEAN océanographie 26 ADCP(CTD), waterT 5 Pascale Bouruet LOCEAN océanographie X ADCP(CTD), waterT 5 Miranda, M. FFCUL/CGU géophysique 27 Mouillage et récupération de 4 OBS 1 Lisbon autonomes Ingénieur FFCUL/CGU géophysique 28 0BS 1 Lisbon Villinger Heinrich Univ. Bremen géophysique 29 X OBM deployment and recovery 2 Kaul Norbert Univ. Bremen géophysique 30 X OBM deployment and recovery 2 Connelly, Doug NOC, Chimie 31 X Chemical sensors and Fluid sampling 3 Southampton Cedric Floquet NOC, Chimie 32 X Chemical sensors 3 Southampton B. Murton NOC, Instrumentation 33 FBG T°C sensor 3 Southampton engineer NOC, Instrumentation X Chemical sensors 3 Southampton Von Halem, O. Marum, Germany Oceanography 34 X CTD/ADCP deployment and recovery 5 Gabriela Queiroz CVARG, Azores Vulcanologie X Volcanology 1 Girhon, Sylvain Océanopolis, education 35 X Education Public Brest Outreach Webmaster Ifremer ou INSU communication 36 X Web campagnes Public Outreach Com 1 Télé journalisme X Film campagne Public Outreach Com 2 télé journalisme X Film campagne Public Outreach 2 à 4 embarquants sont prévus pour le projet communication à définir (site web, dissémination dans le réseau d’aquarium et film grand public). Une navette avec l’Archipelago (financement ESONET) permettra l’embarquement de 36 scientifiques. L’utilisation de cette navette en cours de campagne permet d’optimiser le séjour à bord pour 6 personnes et d’augmenter la capacité du navire.

Equipe à terre Nom Prénom Institut Spécialité Responsabilité et rôle Temps consacré Laboratoire (Equivalent temps plein) Tous les participants listés plus haut Et : Carval, T. Ifremer IDM Data Data management 15% Matt Mowlem NOC ingénieur chimie 30% Francis Lucazeau IPGP géophysique Flux et température fluides 20% Rui Manuel Fernandez U. Lisbonne géophysique GPS 20% (Portu) Fernando Santos U. Lisbonne géophysique Sismicité-EM 10% (Portu) Ricardo Santos IMAR DOP biologie Site managemt/ Econ. Users 10% Jean Goslin IUEM géophysique Sismicité régionale 30% Julie Perrot IUEM géophysique Sismicité régionale 30% Jérome Ammann IUEM ingénieur géodésie 15% Pascal Tarits IUEM géophysique EM 30% Satish Singh IPGP géophysique Contexte géophysique 5% Pierre Agrinier IPGP géochimie Isotopes fluides 5% Magalie Ader IPGP géochimie Isotopes fluides 5% Hélène Ondréas Ifremer géologie Cartographie-SIG 10% Delauney, Laurent Ifremer ERT Instrumentation Méthode antifouling 5% Riso, Ricardo Labo de chimie Chimie Analyse des métaux 10% marine IUEM Cosson, Richard Isomer Ecotoxicologie Analyse des échantillons de modioles 15% Legendre, P. Univ. Montréal Biostatistiques Traitement des données 5% A. Guillemot Ifremer / TSI Informatique Réception de données à terre 5% M.C . Fabri Ifremer / DEEP Ecologie / Informatique Traitement des données, base de données Biocéan 15%

Campagnes auxquelles les membres de l’équipe demandeuse ont participé au cours des 6 dernières années Nom des campagnes Année Noms des membres de l’équipe demandeuse ayant participé RV L’Atalante / Victor 6000 (ATOS) 2001 P.M Sarradin, Ana Colaço, JCR 65, 2001, (James Clark Ross. U.K), 2001 D. Connelly MAR CD 128, 2001. (Charles Darwin, U.K.) 2001 D. Connelly CD 168 Indian Ocean 2001 V. Chavagnac

Add on to D12 52 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD R/V Martha Black. Atlantique N. ROPOS. 2001 J. Sarrazin SWIFT 2001 M. Cannat R/V Aegaeo / manned sub Thetys 2002 J. Blandin, J.P. Lévêque, J. Ammann RV L’Atalante / Victor 6000 (SEAHMA) 2002 Ana Colaço R/V Arquipélago 2002 Ana Colaço ODP Leg 205 2002 V. Chavagnac PHARE 2002 P.M Sarradin LuckyFlux 2003 F. Lucazeau, J. Escartin RV Meteor 58/3 / ROV Quest 2003 Ana Colaço R/V Arquipélago (Cage recoveries) 2003 Ana Colaço SWIR 61-65 2003 M. Cannat R/V Aegaeo 2004 J. Blandin, J.P. Lévêque, J. Ammann AT 11/7 EPR 2004 J. Escartin R/V Aegaeo / manned sub Thetys 2004 J. Blandin, J.P. Lévêque, J.Y. Coail, J. Legrand, J. Ammann, V. Ballu KM04-17, 2004. (RV Kilo Moana, USA) 2004 D. Connelly PHABOP. 2004. (N/O Côtes de la Manche) 2004 C. Boulart R/V Aegaeo / manned sub Thetys 2004 J. Blandin, J.P. Lévêque, J.Y. Coail, J. Legrand, J. Ammann R/V Knorr V. 182 2005 J. Escartin (shore-based PI) SISMOMAR 2005 W. Crawford, M. Cannat, D. Dusunur EXOMAR – R/V L’Atalante / Victor 6000 2005 Ana Colaço, P.M Sarradin EXOCET/D-MOB-0 - R/V Arquipélago 2005 Ana Colaço, P.M Sarradin CD 167. 2005. (Charles Darwin. U.K.) 2005 D. Connelly ENCENS 2006 F. Lucazeau Graviluck 2006 V. Ballu, J. Ammann, J. Escartin, M. Cannat ENCENS-FLUX 2006 F. Lucazeau (PI), D. Dusunur MoMARETO - R/V Pourquoi Pas ? /Victor 2006 P.M. Sarradin, J. Sarrazin, C. Le Gall, J. Legrand. A.G. Allais, S. Dentrecolas KH06-4. 2006. (R/V Hakuho Maru, 2006 D. Connelly, C. Boulart JAMSTEC) MEDECO - R/V Pourquoi Pas ? /Victor 2006 Sarrazin, Le Gall BBMoMAR RV Le Suroit 2007 et Crawford, W. Tarits P. 2008 MoMAR2008-Leg1 2008 Escartin J., Sarradin

2 - Références scientifiques de l’équipe demandeuse cf fiche validation de campagne : ATOS (2001),SWIR61-65 (2003), SISMOMAR (2005), Graviluck (2006), , MoMARETO (2006), BBMoMAR (2007-2008) et MoMAR2008-Leg1 (2008)

Assenbaum, M., and G. Reverdin, Near real-time analyses of the mesoscale circulation during the POMME experiment, Deep- Sea Research Part I-Oceanographic Research Papers, 52 (8), 1345-1373, 2005. Bacon, S., G. Reverdin, I.G. Rigor, and H.M. Snaith, A freshwater jet on the east Greenland shelf, Journal of Geophysical Research- Oceans, 107 (C7), 2002. Ballu V., Diament M., Briole P. et Ruegg J.C., 2003, 1985-1999 gravity field temporal variations across the Asal Rift : insights on vertical movements and mass transfer - Earth Planet. Sci. Lett., 208, 41-49. Bojariu, R., and G. Reverdin, Large-scale variability modes of freshwater flux and precipitation over the Atlantic, Climate Dynamics, 18 (5), 369-381, 2002. Boulart, C., P. Flament, V. Gentilhomme, K. Deboudt, C. Migon, F. Lizon, M. Schapira and A. Lefebvre (2006). "Atmospherically-promoted photosynthetic activity in a well-mixed ecosystem: Significance of wet deposition events of nitrogen compounds." Estuarine, Coastal and Shelf Science 69(3-4): 449.Beer, D. de, Sauter, E., Niemann, H., Kaul, N., Bourras, D., G. Reverdin, H. Giordani, and G. Caniaux, Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic, Journal of Geophysical Research-Atmospheres, 109 (D18), 1-19, 2004. Caniaux, G., A. Brut, D. Bourras, H. Giordani, A. Paci, L. Prieur, and G. Reverdin, A 1 year sea surface heat budget in the northeastern Atlantic basin during the POMME experiment: 1. Flux estimates, Journal of Geophysical Research-Oceans, 110 (C7), 2005b. Caniaux, G., S. Belamari, H. Giordani, A. Paci, L. Prieur, and G. Reverdin, A 1 year sea surface heat budget in the northeastern Atlantic basin during the POMME experiment: 2. Flux optimization, Journal of Geophysical Research-Oceans, 110 (C7), 2005a. Cannat, M., C. Rommevaux-Jestin, and H. Fujimoto, Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E)., Geochemistry, Geophysics, Geosystems, 4 (8), 2002GC000480, 2003. Cannat, M., D. Sauter, V. Mendel, E. Ruellan, K. Okino, J. Escartin, V. Combier, and M. Baala, Modes of seafloor generation at a melt-poor ultra-slow-spreading ridge, Geology, 34 (7), 605-608, 2006. Cannat, M., J. Cann, and J. Maclennnan (2004), Some hard rock constraints on the supply of heat to mid-ocean ridges, in Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, Geophys. Monogr. Ser., vol. 148, edited by C. R. German, J. Lin, and L.M. Parson, pp. 111-150, AGU, Washington, D. C. Cardigos, F., A. Colaço, P.R. Dando, S.P. Avila, P.M. Sarradin, F. Tempera, P. Conceiçao, A. Pascoal and R. Serrao Santos (2005) Shallow water hydrothermal vent field fluids and communities of the D. Joao de Castro Seamount (Azores). Chemical Geology, 224: 153-168. Chausson F., C. R. Bridges, P. M. Sarradin, B. N. Green, R. Riso, J. C. Caprais and F. H. Lallier (2001) Structural and functional properties of hemocyanin Cyanagraea praedator, a deep-sea hydrothermal vent crab. Proteins, 45, 351-359. Chausson, F., S. Sanglier, E. Leize, A. Hagège, C.R. Bridges, P.M. Sarradin, B. Shillito, F. Lallier and F. Zal. (2004). Respiratory adaptations of a deep-sea hydrothermal vent crab. Micron, 35, 27-29. Chavagnac, V., A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle, Lithos, 75 (3-4), 253-281, 2004. Chavagnac, V., B.M. Jahn, I.M. Villa, M.J. Whitehouse, and D.Y. Liu, Multichronometric evidence for an in situ origin of the ultrahigh- pressure metamorphic terrane of Dabieshan, China, Journal of Geology, 109 (5), 633-646, 2001a. Chavagnac, V., C.R. German, J.A. Milton, and M.R. Palmer, Sources of REE in sediment cores from the Rainbow vent site (36 degrees 14 ' N, MAR), Chemical Geology, 216 (3-4), 329-352, 2005. Chavagnac, V., J.D. Kramers, T.F. Nagler, and L. Holzer, The behaviour of Nd and Pb isotopes during 2.0 Ga migmatization in paragneisses of the Central Zone of the Limpopo Belt (South Africa and Botswana), Precambrian Research, 112 (1-2), 51- 86, 2001b.

Add on to D12 53 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Chu, N.C., R.N. Taylor, V. Chavagnac, R.W. Nesbitt, R.M. Boella, J.A. Milton, C.R. German, G. Bayon, and K. Burton, Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections, Journal of Analytical Atomic Spectrometry, 17 (12), 1567-1574, 2002. Colaço A., Desbruyères D. & Dehairs F., 2002. Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep-Sea Research.49: 395-412. Colaço, A., Bustamante, P., Fouquet, Y., Sarradin, P.M., Serrao Santos, R. (2006) Bioaccumulation of Hg, Cu, and Zn in the Azores triple junction hydrothermal vent fields food web. Chemosphere. Colaço, A., F. Dehairs, D. Desbruyères, N. Le Bris and P.M. Sarradin . (2002). d13C signature of hydrothermal mussels is related with the end-member fluid concentrations of H2S and CH4 at the Mid-Atlantic Ridge hydrothermal vent fields. Cahiers de Biologie Marine 43(3- 4), 259-262. Colaco, A., F. Dehairs, D. Desbruyeres, N. Le Bris, and P.M. Sarradin, delta C-13 signature of hydrothermal mussels is related with the end-member fluid concentrations of H2S and CH4 at the Mid-Atlantic Ridge hydrothermal vent fields, Cahiers De Biologie Marine, 43 (3-4), 259-262, 2002. Connelly D.P. and C.R. German. 2002. Total dissolvable manganese anomalies over the Knipovich Ridge: Evidence for hydrothermal activity. EOS Trans. Amer. Geophys. U83, OS 205-206. Crawford, W.C., and S.C. Webb, Removing tilt noise from low frequency (<0.1 Hz) seafloor vertical seismic data, Bull. Seis. Soc. Am., 90 (4), 952-963, 2000. Crawford, W.C., and S.C. Webb, Variations in the distribution of magma in the lower crust and at the Moho beneath the East Pacific Rise at 9°-10°N, Earth Plan. Sci. Lett., 203 (1), 117-130, 2002. Crawford, W.C., J.A. Hildebrand, L.M. Dorman, S.C. Webb, and D.A. Wiens, Tonga Ridge and Lau Basin crustal structure from seismic refraction data, J. Geophys. Res., 108 (4), 19 pp, 2003. Crawford, W.C., R.A. Stephen, and S.T. Bolmer, A second look at low-frequency marine vertical seismometer data quality at the OSN-1 site off Hawaii for seafloor, buried and borehole emplacements, Bull. Seis. Soc. Am., 96 (5), 1952-1960, 2006. Crawford, W.C., The sensitivity of seafloor compliance measurements to sub-basalt sediments, Geophys. J. Int., 157 (1130- 1145), 2004. De Busserolles F, Sarrazin J, Gauthier O , Gélinas Y, Fabri MC, Sarradin PM, Desbruyères D, Are spatial dietary variations of hydrothermal fauna linked to local environmental conditions? 2009, Deep Sea Research part II, accepted with revisions. de Sigoyer, J., V. Chavagnac, J. Blichert-Toft, I.M. Villa, B. Luais, S. Guillot, M. Cosca, and G. Mascle, Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites, Geology, 28 (6), 487-490, 2000. de Sigoyer, J., V. Chavagnac, J. Blichert-Toft, I.M. Villa, B. Luais, S. Guillot, M. Cosca, and G. Mascle, Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites: Reply, Geology, 29 (2), 192-192, 2001. Desbruyères D., M. Biscoito, J. C. Caprais, A. Colaço, P. Crassous, Y. Fouquet, A. Khripounoff, N. Le Bris, K. Olu, R. Riso, P. M. Sarradin, M. Segonzac and A. Vangriesheim (sous presse) Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge when approaching the Azores plateau. (2001) Deep-Sea Research I 48: 1325-1346 Desbruyeres, D., A. Almeida, M. Biscoito, T. Comtet, A. Khripounoff, N. Le Bris, P.M. Sarradin, and M. Segonzac, A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls, Hydrobiologia, 440 (1-3), 201-216, 2000. Desbruyeres, D., M. Biscoito, J.C. Caprais, A. Colaco, T. Comtet, P. Crassous, Y. Fouquet, A. Khripounoff, N. Le Bris, K. Olu, R. Riso, P.M. Sarradin, M. Segonzac, and A. Vangriesheim, Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau, Deep-Sea Research Part I-Oceanographic Research Papers, 48 (5), 1325- 1346, 2001. Desbruyères, D., M. Biscoito, J.C. Caprais, A. Colaco, T. Comtet, P. Crassous, Y. Fouquet, A. Khripounoff, N. Le Bris, K. Olu, R. Riso, P.M. Sarradin, M. Segonzac and A. Vangriesheim (2001) Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores Plateau. Deep-Sea Research I, 48, 1325-1346. Deser, C., M. Holland, G. Reverdin, and M. Timlin, Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperatures, Journal of Geophysical Research-Oceans, 107 (C5), 2002. Dewitte, B., and G. Reverdin, Vertically propagating annual and interannual variability in an OGCM simulation of the tropical Pacific Ocean in 1985-94, Journal of Physical Oceanography, 30 (7), 1562-1581, 2000. du Penhoat, Y., G. Reverdin, and G. Caniaux, A Lagrangian investigation of vertical turbulent heat fluxes in the upper ocean during Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE), Journal of Geophysical Research- Oceans, 107 (C5), 2002. Ducet, N., P.Y. Le Traon, and G. Reverdin, Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2, Journal of Geophysical Research-Oceans, 105 (C8), 19477-19498, 2000. Durand, F., and G. Reverdin, A statistical method for correcting salinity observations from autonomous profiling floats: An ARGO perspective, Journal of Atmospheric and Oceanic Technology, 22 (3), 292-301, 2005. Edmonds H.N., Michael P.J., Baker E.T., Connelly D.P. Snow J.E., Langmuir C.H., Dick H.J.B., German C.R. and D.W. Graham. 2003. Abundant hydrothermal venting along the ultra-slow spreading Gakkel Ridge, Arctic Ocean. Nature. 421 (6920): 252-256. Escartín, J, The Oceanic Lithosphere, in Geophysics and Geochemistry, J. Lastovicka (Ed.), in Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO, Eolss Publishers, Oxford, UK, [http://www.eolss.net], 2004. Escartín, J., C. Mével, C.J. MacLeod, and A.M. McCaig, Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45'N, Geochemistry, Geophysics, Geosystems, 4 (8), 1067, doi:10.1029/2001GC000278, 2003. Escartin, J., D.K. Smith, and M. Cannat, Parallel bands of seismicity at the Mid-Atlantic Ridge, 12-14°N, Geophysical Research Letters, 30 (12), 2003GL017226, 2003. Escartín, J., M. Cannat, G. Pouliquen, A. Rabain, and J. Lin, 2001. Crustal thickness of the V-shaped ridges south of the Azores: Interaction of the Mid-Atlantic Ridge (36°-39°N) and the Azores hot spot, J. Geophys. Res., 106, 21719-21735. Evans, R.L., S.C. Webb, W.C. Crawford, C. Golden, K. Key, L. Lewis, H. Miyano, E. Roosen, and D. Doherty, Crustal resistivity structure at 9°50'N on the East Pacific Rise: Preliminary results of an electromagnetic survey, Geophys. Res. Lett., 29 (6), 4 pp, 2002. Nédélec, F., P.J. Statham, and M. Mowlem, Processes influencing dissolved iron distributions below the surface at the Atlantic Ocean - Celtic Sea shelf edge. Marine Chemistry., 2006. in press. Ferry, N., and G. Reverdin, Sea surface salinity interannual variability in the western tropical Atlantic: An ocean general circulation model study, Journal of Geophysical Research-Oceans, 109 (C5), 2004. Ferry, N., G. Reverdin, and A. Oschlies, Seasonal sea surface height variability in the North Atlantic Ocean, Journal of Geophysical Research-Oceans, 105 (C3), 6307-6326, 2000. Fontaine, F. J., and S. D. Wilcock (2006), Dynamics and storage of brine in mid-ocean ridge hydrothermal systems, J. Geophys. Res., 111, B06102, doi:06110.01029/02005JB003866. Fontaine, F. J., M. Rabinowicz, and J. Boulègue (2001), Permeability changes due to mineral diagenesis in fractured crust: implications for hydrothermal circulation at mid-ocean ridges, Earth Planet Sci. Lett., 184, 407-425. Fontaine, F. J., W. S. D. Wilcock, and M. Rabinowicz (2006, in press), Physical constraints on the dynamics and storage of brines in Mid- Ocean Ridge hydrothermal systems, Earth Planet Sci. Lett.

Add on to D12 54 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Geret, F., R. Riso, P.M. Sarradin, J.C Caprais and R. Cosson. (2002). Metal compartmentalization and metallothioneins in the shrimp, Rimicaris exoculata, from the Rainbow hydrothermal field (Mid Atlantic Ridge); preliminary approach to the fluidorganism relationship. Cahier de Biologie Marine 43, 43-52. German, C.R., Edward T. Baker , Douglas Connelly , John Lupton , Joseph Resing , Ralf Prien , Sharon Walker , Henrietta Edmonds , Charles H. Langmuir 2006. Hydrothermal Exploration of the Fonualei Rift & Spreading Centre and the North East Lau Spreading Centre. Geochemistry, Geophysics and Geosystems. In Press. Goslin, J., Lourenço, N., Dziak, R.P., Bohnenstiehl, D.R., Joe Haxel, J. and Luis, J., 2005. Long-term seismicity of the Reykjanes Ridge (North Atlantic) recorded by a regional hydrophone array. Geophysical Journal International, 162, 516- 524. Hulme, T., A. Ricolleau, Sara Bazin, W.C. Crawford, and S.C. Singh, Shear wave structure from joint analysis of seismic and seafloor compliance data, Geophys. J. Int., 155, 514-520, 2003. Hulme, T., W.C. Crawford, and S.C. Singh, The sensitivity of compliance to two-dimensional low-velocity anomalies, Geophys. J. Int., 163, 547-558, 2005. Hurrell, J.W., M. Visbeck, A. Busalacchi, R.A. Clarke, T.L. Delworth, R.R. Dickson, W.E. Johns, K.P. Koltermann, Y. Kushnir, D. Marshall, C. Mauritzen, M.S. McCartney, A. Piola, C. Reason, G. Reverdin, F. Schott, R. Sutton, I. Wainer, and D. Wright, Atlantic climate variability and predictability: A CLIVAR perspective, Journal of Climate, 19 (20), 5100-5121, 2006. Illig, S., B. Dewitte, N. Ayoub, Y. du Penhoat, G. Reverdin, P. De Mey, F. Bonjean, and G.S.E. Lagerloef, Interannual long equatorial waves in the tropical Atlantic from a high-resolution ocean general circulation model experiment in 1981-2000, Journal of Geophysical Research-Oceans, 109 (C2), 2004. Krahmann, G., M. Visbeck, and G. Reverdin, Formation and propagation of temperature anomalies along the North Atlantic Current, Journal of Physical Oceanography, 31 (5), 1287-1303, 2001. Laurian, A., A. Lazar, G. Reverdin, K. Rodgers, and P. Terray, Poleward propagation of spiciness anomalies in the North Atlantic Ocean, Geophysical Research Letters, 33 (13), 2006. Le Bris, N., P.M. Sarradin and J.C. Caprais (2003). Contrasted sulphide chemistries in the environment of 13°N EPR vent fauna. Deep Sea Research I, 50: 737-747. Le Cann, B., M. Assenbaum, J.C. Gascard, and G. Reverdin, Observed mean and mesoscale upper ocean circulation in the midlatitude northeast Atlantic, Journal of Geophysical Research-Oceans, 110 (C7), 2005. Lucazeau, F., A. Bonneville, J. Escartin, R.P. Von Herzen, P. Gouze, H. Carton, M. Cannat, V. Vidal, and C. Adam, Heat flow variations on a slowly accreting ridge: Constraints on the hydrothermal and conductive cooling for the Lucky Strike segment (Mid-Atlantic Ridge, 37 degrees N), Geochemistry Geophysics Geosystems, 7, 2006. M Mowlem, G. Benazzi, D. Holmes, H. Morgan, C. Haas, M. Kraft, A. Taberham, V. Chavagnac, P.J. Statham, and P. Burkill. Micro System Technology for Marine Measurement. in Oceans 06. 2006. Boston, MA, USA. Maciej Sosna, Guy Denuault, Robin W. Pascal, Ralf D. Prien, and Matt Mowlem, Development of a reliable microelectrode dissolved oxygen sensor. Sensors and actuators B, 2006. in press. Marques, A.F.A., F. Barriga, V. Chavagnac, and Y. Fouquet, Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge, Mineralium Deposita, 41 (1), 52-67, 2006. Memery, L., G. Reverdin, J. Paillet, and A. Oschlies, Introduction to the POMME special section: Thermocline ventilation and biogeochemical tracer distribution in the northeast Atlantic Ocean and impact of mesoscale dynamics, Journal of Geophysical Research-Oceans, 110 (C7), 2005. Mikhailov, V., S. Tikhotsky, M. Diament, I. Panet, and V. Ballu, Can tectonic processes be recovered from new gravity satellite data?, Earth and Planetary Science Letters, 228 (3-4), 281-297, 2004. Montagner, J.-P., J.-F. Karczewski, E. Stutzmann, G. Roult, W.C. Crawford, P. Lognonné, L. Béguery, S. Cacho, G. Coste, J.-C. Koenig, J. Savary, B. Romanowicz, and D. Stakes, "Geophysical Ocean Bottom Observatories or temporary portable networks? Erice workshop Proc., Sept. 1999," Dev. Mar. Tech., 12, pp. 59-82, 2002. Ondréas H., M. Cannat, Y. Fouquet, A. Normand, P.M Sarradin and J. Sarrazin. Recent volcanic events and the distribution of hydrothermal venting at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst., doi:10.1029/2008GC002171, in press, 2009. Oufi, O., M. Cannat, and H. Horen, Magnetic properties of variably serpentinized abyssal peridotites, Journal of Geophysical Research, 107 (B5), 2001JB000549, 2002. Paci, A., G. Caniaux, M. Gavart, H. Giordani, M. Levy, L. Prieur, and G. Reverdin, A high-resolution simulation of the ocean during the POMME experiment: Simulation results and comparison with observations, Journal of Geophysical Research- Oceans, 110 (C7), 2005. Piccino P, F. Viard, P.M. Sarradin, N. Le Bris, D. Le Guen, D. Jollivet. (2004). Thermal selection of PGM allozymes in newly founded populations of the thermolerant vent polychaete Alvinella pompejana. Proceedings of the Royal Society of London, 271, 2351-2359. Rabain, A., M. Cannat, J. Escartín, G. Pouliquen, C. Deplus and C. Rommevaux-Jestin, 2001, Focused volcanism and growth of a slow- spreading segment (Mid-Atlantic Ridge, 35°N), Earth Planet. Sci. Lett., 185, 211-224. Ravaux, J., F. Gaill, N. Le Bris, P.M. Sarradin , D. Jollivet and B. Shillito (2003). Heat shock response and temperature resistance in the deep-sea vent shrimp Rimicaris exoculata. Journal of Experimental Biology, 203(14) 2345-2354. Reverdin, G., and F. Hernandez, Variability of the Azores Current during October-December 1993, Journal of Marine Systems, 29 (1-4), 101-123, 2001. Reverdin, G., F. Durand, J. Mortensen, F. Schott, H. Valdimarsson, and W. Zenk, Recent changes in the surface salinity of the North Atlantic subpolar gyre, Journal of Geophysical Research-Oceans, 107 (C12), 2002. Reverdin, G., M. Assenbaum, and L. Prieur, Eastern North Atlantic Mode Waters during POMME (September 2000-2001), Journal of Geophysical Research-Oceans, 110 (C7), 2005. Reverdin, G., P.P. Niiler, and H. Valdimarsson, North Atlantic Ocean surface currents, Journal of Geophysical Research- Oceans, 108 (C1), 2003. Reverdin, G., The influence of ocean circulation on climate variability, Houille Blanche-Revue Internationale De L Eau (8), 52- 56, 2002. Roult, G., and W. Crawford, Analysis of 'background' free oscillations and how to improve resolution by subtracting the atmospheric pressure signal, Phys. Earth Plan. Int., 121, 325-338, 2000. Sarradin, P.M., J. Sarrazin, E. Sauter, B. Shillito, C. Waldmann , K. Olu, A. Colaco and the EXOCET/D consortium. (2003). EXtreme ecosystem studies in the deep OCEan: Technological developments: EXOCET/D. InterRidge News 12(2), 11. Sarradin, P.M., N. Le Bris, C. Le Gall and P. Rodier (2005) Fe analysis by the ferrozine method: Adaptation to FIA towards in situ analysis in hydrothermal environment. Talanta 66: 1131-1138. Sarradin Pierre-Marie, Delphine Lannuzel, Matthieu Waeles, Philippe Crassous, Nadine Le Bris, Jean Claude Caprais, Yves Fouquet, Marie Claire Fabri, Ricardo Riso. Dissolved and particulate metals (Fe, Zn, Cu, Cd, Pb) in two habitats from an active hydrothermal field on the EPR at 13°N. STOTEN, accepted for publication, 2007. Sarradin Pierre-Marie, Matthieu Waeles, Solène Bernagout, Christian Le Gall, Jozée Sarrazin, Ricardo Riso. Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37°N). (2009) Science of the Total Environment 407 (2) 869 Sarrazin, J., C. Levesque, S.K. Juniper and M.K. Tivey. (2002). Mosaic community dynamics on Juan de Fuca Ridge sulphide edifices : Substratum, temperature and implications for trophic structures. Cahiers de Biologie Marine 43, 275-279. Sarrazin, J., Sarradin, P.M. and the MoMARETO cruise participants, MoMARETO: a cruise dedicated to the spatio-temporal dynamics and the adaptations of hydrothermal vent fauna on the Mid-Atlantic Ridge InterRidge News, (2006), V15, 24-33.

Add on to D12 55 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Sarrazin J., Walter C., Sarradin P.M., Brind’Amour A., Desbruyères D., Briand P., Fabri M.C., Van Gaever S., Van Reusel A., Bachraty C., Thièbaut E. Cah. Biol. Mar. (2006) 47 Sarrazin J., P.M. Sarradin, E. Buffier, A. Christophe, G. Clodic, D. Desbruyères, Y. Fouquet, M. Gouillou, M. Jannez, Y. Le Fur, J. Le Rest, F. Lecornu, O. Lefort, S. Lux, B. Millet, P. Guillemet. A real-time dive on active hydrothermal vents. OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Sarrazin J., J. Blandin, L. Delauney, S. Dentrecolas, P. Dorval, J. Dupont, J. Legrand, D. Leroux, P. Léon, J.P. Lévèque, P. Rodier, R. Vuillemin, P.M. Sarradin. TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal Vents. OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Sasagawa, G., W. Crawford, O. Eiken, S. Nooner, T. Stenvold, and M. Zumberge, A new seafloor gravimeter, Geophysics, 68 (2), 544-553, 2003. Searle, R.C., and J. Escartín, The morphology and rheology of oceanic lithosphere, in Mid Ocean Ridges. Hydrothermal interactions between the lithosphere and the oceans, edited by C. R. German, J. Lin, and L. M. Parson, AGU Monograph n. 148, 63-94, 2004. Seyler, M., M. Cannat, and C. Mével, Evidence for major element heterogeneity in the mantle source of abyssal peridotites from the southwest Indian Ridge (52 to 68° East), Geochemistry, Geophysics, Geosystems, 4 (2), 2002GC000305, 2003. Seyler, M., M. Toplis, J.P. Lorand, A. Luguet and M. Cannat, 2001, Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology, 29, 155-158. Shillito, B., D. Jollivet, P.M. Sarradin, P. Rodier, F. Lallier, D. Desbruyeres, and F. Gaill, Temperature resistance of Hesiolyra bergi, a polychaetous annelid living on deep-sea vent smoker walls, Marine Ecology-Progress Series, 216, 141-149, 2001. SHILLITO B., G. HAMEL, C. DUCHI, D. COTTIN, J. SARRAZIN, P.-M. SARRADIN, J. RAVAUX, and F. GAILL. Live capture of macrofauna from 2300m depth, using a newly-designed pressure recovery device. (2008). Deep-Sea Research I 55 881– 889. Singh, S.C., W.C. Crawford, H. Carton, T. Seher, V. Combier, M. Cannat, J.P. Canales, D. Dusunur, J. Escartin, and J.M. Miranda, Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field, Nature, 442 (7106), 1029-1032, 2006. Smith, D. K., J. Cann, J. Escartín, Widespread active detachment faulting and core complex formation near 13°N at the Mid- Atlantic Ridge, Nature, 442, 440-443, 2006. Smith, D.K., J. Escartin, M. Cannat, M. Tolstoy, C.G. Fox, D.R. Bohnenstiehl, and S. Bazin, Spatial and temporal distribution of seismicity along the northern Mid-Atlantic Ridge (15°-35°N), Journal of Geophysical Research, 108 (3), 2002JB001964, 2003. Stutzmann, E., J.-P. Montagner, A. Sebai, W.C. Crawford, J.-L. Thirot, P. Tarits, D. Stakes, B. Romanowicz, J.-F. Karczewsk, D. Neuhauser, and S. Etchemendy, MOISE: a prototype multiparameter ocean-bottom station, Bull. Seis. Soc. Am., 91 (4), 885-892, 2001. Tiberi, C., C. Ebinger, V. Ballu, G. Stuart, and B. Oluma, Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone, Geophysical Journal International, 163 (2), 775-787, 2005. Vauclair, F., Y. du Penhoat, and G. Reverdin, Heat and mass budgets of the warm upper layer of the tropical Atlantic Ocean in 1979-99, Journal of Physical Oceanography, 34 (4), 903-919, 2004. Verbrugge, N., and G. Reverdin, Contribution of horizontal advection to the interannual variability of sea surface temperature in the North Atlantic, Journal of Physical Oceanography, 33 (5), 964-978, 2003. Vuillemin R., D. Le Roux, P. Dorval, K. Bucas, J.P. Sudreau, M. Hamon, C. Le Gall, P.M. Sarradin. CHEMINI: a new in situ CHEmical MINIaturized analyzer. 2009, Deep Sea Research part I. Instruments and methods, sous presse. Vuillemin R., D. Le Roux, P. Dorval, M. Hamon, J. P. Sudreau, C. Le Gall and P.M. Sarradin. CHEMINI : CHEmical MINIaturised analyser : A new generation of in situ chemical analysers for marine applications. MARTECH07,Conference proceedings, Instrumentation viewpoint, 6, p.9. Weiss, D., E.A. Boyle, J.F. Wu, V. Chavagnac, A. Michel, and M.K. Reuer, Spatial and temporal evolution of lead isotope ratios in the North Atlantic Ocean between 1981 and 1989, Journal of Geophysical Research-Oceans, 108 (C10), 2003. Weiss, D., E.A. Boyle, V. Chavagnac, M. Herwegh, and J.F. Wu, Determination of lead isotope ratios in seawater by quadrupole inductively coupled plasma mass spectrometry after Mg(OH)(2) co-precipitation, Spectrochimica Acta Part BAtomic Spectroscopy, 55 (4), 363-374, 2000.

3 - Collaborations prévues : reportez vous aussi à la Section 7 du Document 1

Les collaboration établies pour MoMARSAT sont celles du projet MoMAR-D et recoupent donc la structure du NoE ESONET. Les participants à terre ou en mer du projet, qui viennent de France, d’Allemagne, du Portugal et du Royaume Uni. Nous avons aussi, via les « Work Packages » d’ESONET, des collaborations prévues avec un plus grand nombre d’instituts européens et extra-européens. Par exemple, tout ce qui concerne le « Data management » sera mis au point en lien avec le WP correspondant d’ESONET, et nous avons déjà des interactions avec plusieurs partenaires non participants à MoMARSAT, pour le développement des communications acoustiques en particulier. Une mention spéciale va à Neptune Canada avec qui nous aurons des liens importants, via le MoU qui lie l’Ifremer et l’Université de Victoria. Nous avons aussi des collaborations prévues avec les partenaires du futur réseau Marie Curie SENSEnet pour le développement de capteurs biogéochimiques adaptés aux environnements hydrothermaux sous-marins. Au sein du projet MoMAR, la demande MoMARSAT aura des liens avec la demande Hydro-MoMAR ou MARCHE 3 soumise par J. Perrot et J. Goslin pour la maintenance du réseau régional d’hydrophones.

Nous aurons aussi des collaborations avec l’équipe du projet BioBaz (F. Lallier et al.), si celui si est retenu.

Enfin, les aspects écologie du projet MoMARSAT recoupent certains objectifs du projet HERMIONE (suite au projet HERMES ; appel d’offre FP7 call ENV.2008.2.2.1.2. Deep-Sea ecosystems). Les participants impliqués viennent d’Ifremer, IMAR et NOC. HERMIONE, coordonné par P. Weaver du NOCS, est en cours de signature.

Add on to D12 56 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

DOCUMENT N°6 MoMARSAT

ASPECTS INTERNATIONAUX ET ENGAGEMENTS CONTRACTUELS

Contacts préliminaires éventuellement pris et interlocuteurs privilégiés des pays riverains La zone de travail (Lucky Strike), est située dans la ZEE portugaise. L’équipe portugaise l’Universidade do Azores (IMAR), à Horta fait partie intégrante du projet ESONET et embarque 2 scientifiques. L’équipe de l’Université de Lisbonne est responsable d’une partie de l’instrumentation sismique et embarque 2personnes. Enfin, le centre de Volcanologie et d’Evaluation des Risques Géologiques de l’Université des Açores embarquera une personne sur la campagne 2011.

Personnel étranger invité, engagements contractuels dans le cadre de programmes européens Ce projet s’inscrit dans le cadre de l’appel d’offres « Demonstrations missions » du Réseau d’excellence ESONET. Dans ce cadre, ESONET nous permettra de financer du temps personnel et des frais de fonctionnement. Ce projet d’observatoire regroupe des participants de l’Université de Brême, et du centre MARUM en Allemagne, des Universités de Lisbonne et des Açores au Portugal, et du NOC (Southampton) an Grande- Bretagne, tous partenaires du NoE ESONET.

Manifestations éventuelles post-campagnes (colloques, conférences, échanges de personnel) Le projet de démonstration MoMAR-Demo, retenu par ESONET, comprend plusieurs réunions pre et post campagnes. Par ailleurs, ce projet sera intégré au travail des différents Work Packages d’ESONET. Il sera donc discuté dans le cadre plus général des réunions ESONET et bénéficiera des possibilités offertes par ESONET pour l’échange de personels. Le projet « Grand public » de MoMAR-Demo reprendra les bases du projet mis en place durant MoMARETO (Sarrazin et al. 2007) et permettra la dissémination de nos résultats vers le grand public à travers des conférences, site web, publications et surtout expositions dans le réseau d’aquarium européen. Une retransmission de plongée en direct est également envisagée.

NEPTUNE Canada Les résultats obtenus dans le cadre de MoMAR-D pourront être comparés à ceux obtenus par l’observatoire câblé NEPTUNE Canada. Cette comparaison pourra se faire aussi bien du point de vue technologique (câblé vs non câblé, antifouling, boîtes de jonction, connecteurs utilisés, …) que scientifique. Ainsi, un module TEMPO doit être connecté au printemps 2009 sur le site hydrothermal Endeavour (Juan de Fuca). Cette collaboration s’effectue dans le cadre d’un Memorandum of Understanding signé entre Ifremer et l’Université de Victoria.

Add on to D12 57 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

DOCUMENT N°7 MoMARSAT

CURRICULUM VITAE DES CHEFS DE MISSION

Mathilde Cannat Directrice de recherche CNRS

Equipe de Géosciences Marines C.N.R.S. UMR 7154. Institut de Physique du Globe de Paris, 4 place Jussieu, Tour 14, 5ème étage, 75252 Paris Cedex 05, France. Tél: (33) 01 44275192 Fax: (33) 01 44279969. E-mail: [email protected]

Thème de Recherche Structure de la lithosphère océanique et modalités de son accrétion, en particulier en contexte d’expansion lente.

Animation et administration de la recherche • Représentante française au "Lithosphere Panel" du programme ODP de 1990 à 1994. • Organisatrice des séminaires du GDR-GEDO, Brest (1988-1991). • Membre du comité scientifique du programme "Dorsales" depuis sa création en 1992 jusqu’en 1996. Créatrice et éditrice de La Lettre Dorsales pendant cette période. • Organisatrice de plusieurs sessions à l’AGU (co-responsabilité du programme des sessions de « tectonique » à l’AGU de printemps 1997), à l’EGS, et pour la SGF. • Co-Organisatrice de plusieurs workshops nationaux et internationaux sur la thématique dorsales. • Présidente du programme "InterRidge" (12/1996-12/1999). Responsable du bureau du programme à Paris (1,5 emplois plein temps, budget ~ 150 kEuros/an). • Responsable de l’équipe "Accrétion Océanique" de l'UPRESA 7058 (1998-2000). • Chargée de Mission INSU "Géosciences Marines" (01/2000-10/2002). Suivi en particulier des programmes Adhoc Océans, Dorsales, Euromargins, et ODP, du GDR Marges, des commissions Géosciences et Flotte de l’IFREMER, et gestion du crédit de soutien aux embarquants (~200 kEuros/an). • Représentante française au Comité Exécutif (EXCOM) du programme ODP (01/2000-2004). • Membre du Review Committee du programme « Euromargins » (ESF ; 10/2002- ). • Membre élue de la Section 18 du Comité National du CNRS (2004-2008). • Experte pour les projets Marie Curie de la Commission Européenne (thème Environnement ; 2004-). • Membre de la commission Nationale Géosciences de l’Ifremer (2004-2006). • Coordinatrice du Réseau Marie Curie (EC) « MOMARNET» financé pour 4 ans (2004-2008) à hauteur de 2.7 MEuros. • Présidente du comité INSU-Ifremer de pilotage du chantier MOMAR au niveau français (2004-). • Membre élue du CA de l’IPGP (2005-). • Directrice de l’équipe Géosciences Marines de l’UMR 7154 (2008- ).

Expérience de terrain et campagnes à la mer Nombreuses campagnes de terrain sur les ophiolites de Californie du Nord, d'Ecosse, du Laddakh, d'Oman et d'Albanie. 19 campagnes à la mer, dont quatre (soulignées) en tant que chef ou co-chef de mission (ODP Leg 118, 1987; VEMANAUTE, 1988; HYDROSNAKE, 1988; GARRETT, 1990; SEADMA I, 1991; FARANAUT, 1992; KANAUT, 1992; SEADMA II, 1993; ODP leg 153, 1993-1994; GALLIENI, 1995; EDUL, 1997; SUDAÇORES, 1998; INDOYO, 1998 ; SWIFT, 2001 ; SWIR 61-65, 2003, SisMoMAR, 2005, Graviluck 2006, Serpentine 2007, MoMAR2008-Leg1).

Publications depuis 2001 Seyler, M., M. Toplis, J.P. Lorand, A. Luguet and M. Cannat, 2001, Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology, 29, 155-158. Rabain, A., M. Cannat, J. Escartín, G. Pouliquen, C. Deplus and C. Rommevaux-Jestin, 2001, Focused volcanism and growth of a slow- spreading segment (Mid-Atlantic Ridge, 35°N), Earth Planet. Sci. Lett., 185, 211-224. Escartín, J., M. Cannat, G. Pouliquen, A. Rabain, and J. Lin, 2001. Crustal thickness of the V-shaped ridges south of the Azores: Interaction of the Mid-Atlantic Ridge (36°-39°N) and the Azores hot spot, J. Geophys. Res., 106, 21719-21735. Sauter, D., Patriat, P., Rommevaux-Jestin C., Cannat M., Briais, A., and the Gallieni Shipboard Scientific Party, 2001. The Southwest Indian Ridge between 49°15’E and 57°E : Focused accretion and magma redistribution. Earth Plan. Sci. Lett., 192, 303-317. Oufi, O., M. Cannat, and H. Horen, Magnetic properties of variably serpentinized abyssal peridotites, Journal of Geophysical Research, 107 (B5), 2001JB000549, 2002. Seyler, M., M. Cannat, and C. Mével, Evidence for major element heterogeneity in the mantle source of abyssal peridotites from the southwest Indian Ridge (52 to 68° East), Geochemistry, Geophysics, Geosystems, 4 (2), 2002GC000305, 2003. Smith, D.K., J. Escartin, M. Cannat, M. Tolstoy, C.G. Fox, D.R. Bohnenstiehl, and S. Bazin, Spatial and temporal distribution of seismicity along the northern Mid-Atlantic Ridge (15°-35°N), Journal of Geophysical Research, 108 (3), 2002JB001964, 2003. Cannat, M., C. Rommevaux-Jestin, and H. Fujimoto, Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E)., Geochemistry, Geophysics, Geosystems, 4 (8), 2002GC000480, 2003. Escartin, J., D.K. Smith, and M. Cannat, Parallel bands of seismicity at the Mid-Atlantic Ridge, 12-14°N, Geophysical Research Letters, 30 (12), 2003GL017226, 2003. Add on to D12 58 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Searle, R., M. Cannat, K. Fujioka, C. Mével, H. Fujimoto, A. Bralee, and L. Parson, Fuji Dome: a large detachment fault near 64°E on the very slow-spreading southwest Indian Ridge, Geochemistry Geophysics Geosystems, 4 (8), 2003GC000519, 2003. Cannat, M., J. Cann, and J. Maclennnan (2004), Some hard rock constraints on the supply of heat to mid-ocean ridges, in Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, Geophys. Monogr. Ser., vol. 148, edited by C. R. German, J. Lin, and L.M. Parson, pp. 111-150, AGU, Washington, D. C. Sauter, D., V. Mendel, C. Rommevaux-Jestin, L.M. Parson, H. Fujimoto, C. Mével, M. Cannat, and K. Tamaki, Focused magmatism versus amagmatic spreading along the ultra-slow spreading Southwest Indian Ridge: Evidence from TOBI side scan sonar imagery., Geochemistry Geophysics Geosystems, 5 (10), 2004GC000738, 2004. Cannat, M., D. Sauter, V. Mendel, E. Ruellan, K. Okino, J. Escartin, V. Combier, and M. Baala, Modes of seafloor generation at a melt-poor ultra-slow-spreading ridge, Geology, 34 (7), 605-608, 2006. Lucazeau, F., A. Bonneville, J. Escartin, R.P. Von Herzen, P. Gouze, H. Carton, M. Cannat, V. Vidal, and C. Adam, Heat flow variations on a slowly accreting ridge: Constraints on the hydrothermal and conductive cooling for the Lucky Strike segment (Mid-Atlantic Ridge, 37 degrees N), Geochemistry Geophysics Geosystems, 7, 2006. Singh, S.C., W.C. Crawford, H. Carton, T. Seher, V. Combier, M. Cannat, J.P. Canales, D. Dusunur, J. Escartin, and J.M. Miranda, Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field, Nature, 442 (7106), 1029-1032, 2006. Fontaine, F.J., Cannat, M., and Escartin, J., 2008, Hydrothermal circulation at slow-spreading mid-ocean ridges : the role of along-axis variations in axial lithospheric thickness: Geology. Ballu, V., Ammann, J., Pot, O., de Viron, O., Sasagawa, G., Reverdin, G., Bouin, M.N., Cannat, M., Deplus, C., Deroussi, S., Maia, M., and Diament, M., 2008, A seafloor experiment to monitor vertical deformation at the Lucky Strike volcano, Mid-Atlantic Ridge: Journal of Geodesy. Sauter, D., Cannat, M., Mendel, V., Patriat, P. Magnetization of 0-26.5 Ma seafloor at the ultraslow-spreading Southwest Indian Ridge 61°- 67°E Geochemistry Geophysics Geosystems, 9, 2008. Cannat, M., Sauter, D., Bezos, A., Meyzen, C., Humler, E., and M. Le Rigoleur, Spreading rate, spreading obliquity, and melt supply at the ultraslow-spreading Southwest Indian Ridge. Geochemistry Geophysics Geosystems, 9, 2008. Combier*, V., Singh, S.C., Cannat, M., and Escartin, J., 2008, Linking seafloor structure and crustal melt distribution : mechanical and thermal coupling between brittle upper crust and axial magma chamber at the fast spreading East Pacific Rise: Earth and Planetary Science Letters. Crawford, A.J., Singh, S.C., Seher, T., Combier, V., Dusunur, D., and Cannat, M., submitted, Crustal structure, magma chamber and faulting beneath the Lucky Strike hydrothermal field, in Diversity of Hydrothermal Systems on Slow-spreading Ocean Ridges, P. Rona, C.D., B. Murton and J. Dyment, ed., AGU Monograph Series (accepted with minor revisions). Cannat, M., Manatschal, G., Sauter, D., and Peron-Pinvidic, G., in press, Assessing the conditions of continental breakup at magma-poor rifted margins : what can we learn from slow-spreading mid-ocean ridges ? Comptes Rendus Acad. Sci. Paris. Cannat, M., Fontaine, F.J., and Escartin, J., in press, Serpentinization and associated hydrogene and methane fluxes at slow-spreading ridges, in Diversity of Hydrothermal Systems on Slow-spreading Ocean Ridges, P. Rona, C.D., B. Murton and J. Dyment, ed., AGU Monograph Series Ondreas, H., Cannat, M., Fouquet, Y., Normand, A., and Sarradin, P.M., in press, Recent volcanic events and the distribution of hydrothermal venting at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge. Geochemistry Geophysics Geosystems.

Jérôme Blandin, Instrument Systems Project Manager, Ifremer, TSI, BP70 29280 Plouzané, France, [email protected]

Professional Career After graduating in 1987 with a diploma of Electrical Engineering from the Institut National des Sciences Appliquées de Lyon (France), Jérôme Blandin worked for two years in the railway industry as a Test Engineer for the Franco-British train manufacturer GEC-ALSTHOM. He tested and fine-tuned the motor-blocks of the future Eurostar high-speed train, in Preston (UK). He then joined an 18 person company (LIM Geotechnologie) specialized in geotechnical instrumentation, as the technical responsible for the products of soil-injection process control, for four years. His activities included the technological choices (mainly in electronics) for the products range, their development, tests and maintenance and also some sensors enhancement. In December 1994, he joined the Institut Français de Recherche pour l’Exploitation de la Mer (French Research Institute for Exploitation of the Sea, IFREMER), as an electronics development engineer for oceanographic instrumentation. He was involved in numerous projects including the ROV Victor 6000 science module and the design of the electrical / electronic architecture of the deep sea penetrometer Penfeld. He introduced the use of a field bus (Controller Area Network, CAN) as a modular and reliable backbone inside multi-sensor deep-sea platforms. He designed the near-real-time communication system of the deep-sea seismic observatory GEOSTAR. From 2002 to 2004, he directed the EU funded ASSEM project, a research and technological development project of a long term distributed seabed monitoring solution, including a novel modular seabed infrastructure, its real time communication means and the data management system on shore. The project included two years of development as well as technological cruises with a manned submersible for demonstrating the monitoring system at scale one. He is currently responsible for the design of several seabed observatories derived from the ASSEM technology, with applications in slopes stability monitoring, deep sea ecosystems study and shipwrecks pollution monitoring.

Some Publications REVIEWED PUBLICATIONS Marvaldi J., Aoustin Y., Ayela G., Barbot D., Blandin J., Coudeville J.M., Fellmann D., Loaëc G., Podeur C. and Priou A (2002) Design and realisation of Communication Systems for the GEOSTAR project. Science-Technology Synergy for Research in the Marine Environment: challenges for the XXI Century. Elsevier, Developments in marine technology, Vol. 12, 161-181 Add on to D12 59 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Marinaro G., Etiope G., Gasparoni F., Calore D., Cenedese S., Furlan F., Masson M., Favali P. and Blandin J. GMM – A gas monitoring module for long-term detection of methane leakage from the seafloor. Environmental Geology (2004) 46:1053-1058 ARTICLES Blandin J., Rolin, J.F. An Array of Sensors for the Seabed Monitoring of Geohazards, a Versatile Solution for the Long - Term Real-Time Monitoring of Distributed Seabed Parameters. Sea Technology December 2005, Volume 46, No. 12. CONFERENCE CONTRIBUTIONS Blandin J., Person R., Strout J.M., Briole P., Etiope G., Masson M., Golightly C.R., Lykousis V., Ferentinos G. (2002) ASSEM : Array of sensors for long term seabed monitoring of geohazards. Underwater Technology Conference organised by IEEE and OES. 16-19 April 2002, Tokyo. Blandin J., Person R., Strout J.M., Briole P., Etiope G., Masson M., Smolders S., Lykousis, V, Ferentinos G. (2003) ASSEM : Array of sensors for long term seabed monitoring of geohazards. 6th Underwater Science Symposium organised by the Society for Underwater Technology, 3-6 April 2003, Aberdeen University, Scotland. Blandin J., Person R.,Strout J.M., Briole P., Etiope G., Masson M., Smolders S., Lykousis V., Ferentinos G. & Legrand J. (2003) ASSEM: a new concept of regional observatory. The 3rd international workshop on scientific use of submarine cables and related technologies, 25-27 June 2003, Tokyo. Blandin J., Person R., Strout J.M., Briole P., Ballu V., Etiope G., Masson M., Golightly C.R., Lykousis V. and Ferentinos G. (2003) ASSEM : A new concept of observatories for long term seabed monitoring. Ocean Margin Conference, 15- 17 September 2003, Paris. Blandin J., Person R., Strout J.M., Briole P., Etiope G., Masson M., Smolders S., Lykousis V. (2003) ASSEM: A New Concept of Observatory Applied to Long Term Seabed Monitoring of Geohazards. Oceans’03 MTS/IEEE conference, 22-26 September 2003, San Diego. Rolin J.F., Blandin J., Strout J.M., Briole P., Etiope G., Masson M., Cathie D., Lykousis V., Ferentinos G. (2005) ASSEM (Array of Sensors for long term Monitoring of geohazards): monitoring based on modularity. European Geosciences Union General Assembly, 24-29 April 2005, Vienna, Austria. Rolin J.F., Blandin J., Lykousis V., Strout J.M., Etiope G., Favali P., Briole P., Ballu V., Papatheodorou G., Ferentinos G., Cathie D., Masson M. (2005) Common issues between cabled and non cabled observatories in ASSEM project. Oceans’05 IEEE conference, 20-23 June 2005, Brest.

Pierre-Marie Sarradin Cadre de recherche 2 Chimiste, Environnement biogéochimique des ecosystems hydrothermaux, Instrumentation. Departement Etudes des Ecosystèmes Profonds, Laboratoire Environnement Profond Ifremer - Centre de Brest 29 280 Plouzané, France Tel : 33 (0)2 98 22 46 729 • FAX : 33 (0)2 98 22 47 57• e-mail : [email protected]

• Dr. en Chimie et Microbiologie de l'Eau (1993). • Département Environnement Profond, centre de Brest de l'Ifremer depuis 1994. • Participant au projet européen AMORES [MAS3-CT950040] • Responsable du WP4 (campagne ATOS), participants aux WP2 et WP5 du projet VENTOX (EVK3-CT 1999-00003) • Coordinateur du projet Européen EXOCET/D (GOCE-CT-2003-505342), 2003-2006 • Membre du comité d'organisation MOMAR. • Membre du Comité de Pilotage de l’Arrêt technique Victor (2003-2004) • Secrétaire de la commission OPCB (2003-2007)

Campagnes à la mer 2007 et 2008 MoMAR07 et 08 2006MoMARETO Pourquoi pas Victor – Chef de mission (avec J. Sarrazin) 2003 ESSCOROV, Méditerranée Victor 2002 PHARE, EPR, Victor 2001 ATOS, MAR, Victor- Chef de mission 2000 ESSCOROV, Atlantique, Victor 1999 HOPE99, EPR, Nautile 1998 VICTOR1°, MAR, Victor 1998 PICO, MAR,Nautile 1997 MARVEL, MAR, Nautile 1996 HOT96, EPR, Nautile 1994 DIVA2, MAR, Nautile

Publications depuis 2005 De Busserolles F, Sarrazin J, Gauthier O , Gélinas Y, Fabri MC, Sarradin PM, Desbruyères D, Are spatial dietary variations of hydrothermal fauna linked to local environmental conditions? 2009, Deep Sea Research part II, accepted with revisions. Add on to D12 60 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Ondreas, H., Cannat, M., Fouquet, Y., Normand, A., and Sarradin, P.M., in press, Recent volcanic events and the distribution of hydrothermal venting at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge. Geochemistry Geophysics Geosystems. Sarradin Pierre-Marie, Matthieu Waeles, Solène Bernagout, Christian Le Gall, Jozée Sarrazin, Ricardo Riso. Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37°N). (2009) Science of the Total Environment 407 (2) 869 Vuillemin R., D. Le Roux, P. Dorval, K. Bucas, J.P. Sudreau, M. Hamon, C. Le Gall, P.M. Sarradin. CHEMINI: a new in situ CHEmical MINIaturized analyzer. 2009, Deep Sea Research part I. Instruments and methods, sous presse. Bettencourt Raul, Paul Dando Valentina Costa, Domitília Rosa, Virginie Riou, Ana Colaço, Jozée Sarrazin, Pierre-Marie Sarradin, and Ricardo Serrão Santos. Changes in gill tissues of the vent mussel Bathymodiolus azoricus held for 6 months in aquaria at atmospheric pressure. (2008). Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology. Volume 150, Issue 1, Pages 1-7 SHILLITO B., G. HAMEL, C. DUCHI, D. COTTIN, J. SARRAZIN, P.-M. SARRADIN, J. RAVAUX, and F. GAILL. Live capture of macrofauna from 2300m depth, using a newly-designed pressure recovery device. (2008). Deep-Sea Research I 55 881– 889. Sarradin, P.-M., Lannuzel, D., Waeles, M., Crassous, P., Le Bris, N., Caprais, J.C., Fouquet, Y., Fabri, M.C., Riso, R., 2008. Dissolved and particulate metals (Fe, Zn, Cu, Cd, Pb) in two habitats from an active hydrothermal field on the EPR at 13°N. Science of the Total Environment 392 (1), 119-129. Sarradin P.-M., J. Sarrazin, A.G. Allais, D. Almeida, V. Brandou, A. Boetius, E. Buffier, E. Coiras, A. Colaço, A. Cormack, S. Dentrecolas, D. Desbruyères, P. Dorval, H. du Buf, J. Dupont, A. Godfroy, M. Gouillou, J. Gronemann, G. Hamel, M. Hamon, U. Hoge, D. Lane, C. Le Gall, D. Leroux, J. Legrand, P. Léon, J.P. Lévèque, M. Masson, K. Olu, A. Pascoal, E. Sauter, L. Sanfilippo, E. Savino, L. Sebastião, R. Serrão Santos, B. Shillito, P. Siméoni, A. Schultz, J.P. Sudreau, P. Taylor, R. Vuillemin, C. Waldmann, F. Wenzhöfer, F. Zal. 2007, EXtreme ecosystem studies in the deep OCEan : Technological Developments. InterRidge News, v16, 17-21. Colaço, A., Bustamante, P., Foiuquet, Y., Sarradin, P.M., Serrao Santos, R., 2006, Bioaccumulation of Hg, Cu, and Zn in the Azores triple junction hydrothermal vent fields food web. Chemosphere, Volume 65, Issue 11, December 2006, Pages 2260-2267 Sarradin, P.-M., N. Le Bris, et al. (2005). "Fe analysis by the the ferrozine method: Adaptation to FIA towards laboratory and in situ analysis in hydrothermal environment."Talanta” :1131-1138.

Add on to D12 61 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

DOCUMENT N°8 MoMARSAT

ACCORD DES PERSONNELS EMBARQUANT (Chaque embarquant devra indiquer les autres propositions de campagnes pour lesquelles il a donné son accord)

Dear Pierre Marie, The LMTG group involved in this programme is composed of valérie Chavagnac, Christophe Monnin and potentially Masters and Ph.D. students. We are contributing to the following cruises: BATHYLUCK'09 and Smooth Seafloor'09. We plan to participate in the MOMARSAT10 and MOMARSAT'11 cruises. With best wishes,

Valérie Dear Pierre-Marie, We at NOC are hoping to join the cruises in 2010 and 2011, we will ideally need 3 berths. I am also involved in the Bathyluck Cruise in 2009. Hope that helps, let me know if you need more information. All the best, Doug.

Dr. Douglas Connelly Geochemistry Group National Oceanography Centre Southampton SO14 3ZH, United Kingdom Dear Mathilde

I am very interested and involved in the monitoring experiments and Lucky Strike. I plan to participate in the cruises, and be directly dealing with aspects of temperature monitoring of hydrothermal fluids.

Best, javier

De : Pascale Bouruet-Aubertot Date : 14 janvier 2009 19:00:26 HNEC @ : Mathilde Cannat Objet : accord pour embarquement sur MoMARSAT

Mathilde je te confirme mon accord pour embarquer sur MoMARSAT Pascale Bouruet-Aubertot Jérôme, Pierre-Marie,

Je confirme mon accord pour participer aux campagnes MoMARSAT, afin de déployer et récupérer les stations SEAMON et la bouée de transmission de données associée.

Julien LEGRAND Ingénieur électronicien Observatoires Fond de Mer DOP/TSI/ME IFREMER Centre de Brest mail : [email protected] tel : 0298224881 De : "DANIEL Romuald" Date : 9 janvier 2009 17:22:50 HNEC @: "'Mathilde Cannat'" Objet : RE: ESONET MoMAR-DEMO :caract√©ristiques des capteurs que nous brancherons sur SEAMON

Mathilde,

Bonne année,

Je t'ai rempli le tableau en pièce jointe. Pour le tableau des noms des embarquant pour la mission de demo, la seconde personne (ingenieur OBS) sera surement Christophe Courrier (électronicien).

@ + romuald De : Céline Jestin Add on to D12 62 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Date : 9 janvier 2009 12:36:57 HNEC à : Mathilde Cannat Objet : R√©p : campagne Momar demo

Chère Mathilde,

Impliquée depuis 2006 dans le monitoring du site Lucky Strike, je te confirme ma participation à la campagne et continuer avec l'aspect géomicrobiologique et colonisation à long terme.

Bien toi,Céline

Dear Pierre-Marie, first of all congratulations to the success of your demo mission proposal! It has been unanimously voted as best proposal. I will participate in both cruises 2010 and 2011. I may also be involved in another German ship proposal in 2010 with RV METEOR going to MOMAR site. Greetings,

Christoph MARUM University of Bremen Dear Pierre-Marie, provided that we will get the founding for our part of the MoMAR cruise proposal, we will participate on both cruises 2010 and 2011 with one person, i.e. me, Marcus Fabian or a colleague.

Best Regards Marcus.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dr. Marcus Fabian, Dipl.-Phys. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ University of Bremen Department 5, Geosciences Sea Technics / Sensors Klagenfurter Straße, GEO 4360 D-28359 Bremen, Germany Bonjour Pierre-Marie,

Suite à notre conversation téléphonique je te confirme notre intérêt pour l’embarquement d’une personne d’Océanopolis pour les campagnes MoMARSAT de 2010 et 2011.

Amicalement,

Sylvain Ghiron Océanopolis Port du Moulin Blanc

29200 Brest De : "J M MIRANDA" Date : 16 janvier 2008 03:45:16 HNEC À : "'Mathilde Cannat'" Objet : campagne Momar-demo

Dear Mathilde Cannat

I confirm that CGUL (Geophysical Center of the University of Lisbon) will join MoMAR Demo cruises in 2010 and 2011 as planned, to deploy then recover 4 OBS.

J M Miranda Head of CGUL/IDL University of Lisbon Dear Pierre Marie,

The DOP-UAç group involved in this programme is composed of Ana Colaço, Ricardo Serrão Santos, Raul Bettencourt, Filipe Porteiro, Valentina Costa, and potential Masters, Ph.D. students and PosDocs.

We plan to participate in the MOMARSAT'10 and MOMARSAT'11 cruises.

With best wishes,

Ana

Ana Colaço IMAR- Dept Oceanography and Fisheries-Univ of Azores Add on to D12 63 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD Cais de Sta Cruz 9901-862 Horta Portugal Salut Pierre-Marie,

Je participerai à ces 2 campagnes

DENTRECOLAS Stéphane Systemes Electroniques Electriques Embarqués IFREMER Zone portuaire de Brégaillon BP 330 83507 La Seyne sur Mer Tél : 04.94.30.44.82 Fax : 04.94.30.44.16 E-mail : [email protected] Pierre-Marie, je pense possible étant donné les ressources du laboratoire de m'engager sur la participation de un technicien et trois chercheurs. Daniel.

Pierre-Marie SARRADIN a écrit :

Daniel Pourrais tu me confirmer l'intérêt du LEP pour participer aux campagnes MoMARSAT. Les personnels impliqués sont : Jozée Sarrazin , chercheure en écologie Un ingénieur Chimiste pour l acquisition de données in situ un technicien biologie pour l'échantillonage de la faune, le tri à bord, la préparation des plongées (Adélie et Biocéan) Alexis Khripounoff (ou spécialiste instrumentation) Chercheur en biologie Et P.M. Sarradin , chercheur et co chef de mission. Merci -- Daniel Desbruyeres Responsable du Departement Etude des Ecosystemes Profonds (DEEP) Centre de Brest de l IFREMER

Cher Pierre-Marie,

Desolé pour le retard dans notre reponse, je suis a Vanuatu et donc le coordination va plus lentement! L'équipe de géosciences marines de l'IPGP est impliquée dans les projets NERIES, BBMOMAR et ESONET MoMAR-Demo. Pour les aspects sismologiques, nous assurerons le lien du projet avec le réseau NERIES et fournirons l'assistance technique pour la mise en oeuvre d' OBSs du parc INSU pendant les campagnes MoMARSAT si elles sont programmées. Les personnes impliquées pour ces aspects sismiques seront : Satish Singh, Wayne Crawford, Romuald Daniel et les ingénieurs et techniciens assurant la mise en oeuvre du parc d'OBSs.

Cordialement, Wayne Crawford

Add on to D12 64 Fiche de valorisation de campagne ATOS 2001

DEEP-SEA HYDROTHERMAL VENTS:A NATURAL POLLUTION LABORATORY, (EVK3 CT1999-00003)

ATOS cruise Nom de la campagne : ATOS Programme : VENTOX (EVK3-CT1999-00003) Navire : NO Atalante Engins lourds : Victor Dates de la campagne : Juin, juillet 2001 Zone : Atlantique , Açores Chef de projet : D. Desbruyères Organisme : Ifremer Chef de mission 1 : P.M. Sarradin Organisme : Ifremer Chef de mission 2 : Organisme :

Fiche remplie par : P.M. Sarradin Date de rédaction de la fiche : janvier 2004, révision 01/09 Adresse : Ifremer DRO EP, BP 70 F-29280 PLOUZANE Email : [email protected] Tel : 02 98 22 46 72 Fax :

Résultats majeurs obtenus : Etude des adaptations et processus spécialisés développés par les organismes hydrothermaux et leurs communautés microbiennes associées en réponse à un environnement « toxique ».

Nombre 1 Publications d’articles originaux dans des revues avec comité de lecture référencées SCI 53 2 Publications dans d’autres revues scientifiques 7 3 Publications sous forme de rapports techniques 13 4 Articles dans des revues / journaux grand public 16 5 Publications de résumés de colloques 2 6 Communications dans des colloques internationaux 41 dont communications orales dont posters 7 Communications dans des colloques nationaux 12 dont communications orales dont posters 8 Rapports de contrats (CEE, FAO, Convention, Collectivités …) 9 Applications (essais thérapeutiques ou cliniques, AMM …) 10 Brevets 11 Publications d’atlas (cartes, photos) 12 Documents vidéo-films 1 13 Publications électroniques sur le réseau Internet 14 DEA ayant utilisé les données de la campagne 2 15 Thèse ayant utilisé les données de la campagne 16 Validation des données terminée : .... 17 Transmission au SISMER Oui : .... 18 Transmission à d’autres banques de données Biocean Oui : .... 19 Transmission à d’autres équipes Oui : .... 20 Considérez-vous l’exploitation en cours : .... X

Rubrique 1: Refereed papers published

Anderson, L., Lechaire, J.P., Boudier, T., Halary, S., Frébourg, G., Zbinden, M., Marco, S., Gaill, F., 2008. Tomography of bacteria-mineral associations within the deep sea hydrothermal vent shrimp Rimicaris exoculata. C.R. Chimie 11 (3), 268-280. Bebianno, M.J., Company, R., Serafim, A., Camus, L., Cosson, R.P., Fiala-Medoni, A., 2005. Antioxidant systems and lipid peroxidation in Bathymodiolus azoricus from Mid-Atlantic Ridge hydrothermal vent fields. Aquatic Toxicology 75 (4), 354-373. Biscoito, Manuel, Michel Segonzac, Armando J. Almeida, Daniel Desbruyères, Patrick Geistdoerfer, Mary Turnipseed & Cindy Van Dover. 2002. Fishes from the hydrothermal vents and cold seeps – An update. Cahiers de Biologie Marine (2002) 43: 359-362. Casse, N., E. Pradier, M.-V. Demattei, Y. Bigot, and M. Laulier, 2002. Mariner transposons are widespread genetic parasites in the genome of hydrothermal invertebrates. Cahiers de Biologie Marine 43: 325-328. Chausson, F., Sanglier, S., Leize, E., Hagege, A., Bridges, C.R., Sarradin, P.M., Shillito, B., Lallier, F.H., Zal, F., 2004a. Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge. Micron 35 (1-2), 31-41. Chausson, F., Sanglier, S., Leize, E., Hagège, A., Bridges, C.R., Sarradin, P.M., shillito, B., Lallier, F.H., Zal, F., 2004b. Respiratory adaptations of a deep-sea hydrothermal vent crab. Micron 35, 27-29. Colaço, A., F. Dehairs and D. Desbruyères. (2002). Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep-Sea Research I, 49, 395-412.

Add on to D12 65 Fiche de valorisation de campagne ATOS 2001 Colaço, A., F. Dehairs, D. Desbruyères, N. Le Bris and P.M. Sarradin. (2002). d13C signature of hydrothermal mussels is related with the end-member fluid concentrations of H2S and CH4 at the Mid-Atlantic Ridge hydrothermal vent fields. Cahiers de Biologie Marine, 43(3-4), 259-262. Colaço, A., Bustamante, P., Fouquet, Y., Sarradin, P.M., Serrao-Santos, R., 2006. Bioaccumulation of Hg, Cu, and Zn in the Azores triple junction hydrothermal vent fields food web. Chemosphere 65 (11), 2260-2267. Company, R., Serafim, A., Bebianno, M.J., Cosson, R., Shillito, B., Fiala-Medioni, A., 2004. Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus. Marine Environmental Research 58 (2-5), 377-381. Company, R., Serafim, A., Cosson, R., Fiala-Medioni, A., Dixon, D., Joao Bebianno, M., 2006a. Temporal variation in the antioxidant defence system and lipid peroxidation in the gills and mantle of hydrothermal vent mussel Bathymodiolus azoricus. Deep Sea Research Part I: Oceanographic Research Papers 53 (7), 1101-1116. Company, R., Serafim, A., Cosson, R.P., Camus, L., Shillito, B., Fiala-Medioni, A., Bebianno, M.J., 2006b. The effect of cadmium on antioxidant responses and the susceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolus azoricus. Marine Biology 148 (4), 817-825. Company, R., Serafim, A., Cosson, R., Fiala-Medioni, A., Dixon, D.R., Bebianno, M.J., 2007. Adaptation of the antioxidant defence system in hydrothermal-vent mussels (Bathymodiolus azoricus) transplanted between two Mid-Atlantic Ridge sites. Marine Ecology 28 (1), 93- 99. Company, R., Serafim, A., Cosson, R.P., Fiala-Médioni, A., Camus, L., Colaço, A., Serrão-Santos, R., Bebianno, M.J., 2008. Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal vent. Science of the Total Environment 389 (2-3), 407-417. Compère P., Martinez A.S., Charmentier-Daures M., Toullec J.-Y., Goffinet G. et Gaill F. 2002 Does sulfide detoxication occur in the gills of the hydrothermal vent shrimp, Rimicaris exoculata? C. R. Biologies, 325, 591-596 Cosson, R.P., Thiebaut, E., Company, R., Castrec-Rouelle, M., o, A.C., Martins, I., Sarradin, P.-M., Bebianno, M.J., 2008. Spatial variation of metal bioaccumulation in the hydrothermal vent mussel Bathymodiolus azoricus. Marine Environmental Research 65 (5), 405-415. Cravo, A., Foster, P., Almeida, C., Company, R., Cosson, R.P., Bebianno, M.J., 2007. Metals in the shell of Bathymodiolus azoricus from a hydrothermal vent site on the Mid-Atlantic Ridge. Environment International 33 (5), 609-615. Daguin, C., Jollivet, D., 2005. Development and cross-amplification of nine polymorphic microsatellite loci in the deep-sea hydrothermal vent polychaete Branchipolynoe seepensis. Molecular Ecology Notes 5 (4), 780-783. Denis, F. , Vachoux c., Gauvry L., Leignel V., Hardivillier Y., Salin C., Cosson R.P. et M. Laulier, 2002. Characterization and expression of a Bathymodiolus sp. metallothionein gene. Cahiers de Biologie Marine 43.: 329-332. Desbruyères D., A. Almeida, M. Biscoito, T. Comtet, A. Khripounoff, N. Le Bris, P. M. Sarradin and M. Segonzac (2002) A review of the distribution of hydrothermal vent communities along the Northern Atlantic Ridge: Dispersal vs. environmental controls. Hydrobiologia, 440, 201-216. Dixon, D.R., Dixon, L.R.J., Pascoe, P.L. & Wilson, J.T. (2001). Chromosomal and nuclear characteristics of deep-sea hydrothermal-vent organisms: correlates of increased growth rate. Marine Biology 139, 251- 255. Dixon, D.R., Dixon, L.R.J., Shillito, B. and Gwynn, J.P. 2002. Background and induced levels of DNA damage in Pacific deep-sea vent polychaetes: the case for avoidance. Cah. Biol. Mar. 43, 333-336. Dixon, D.R., Pruski, A.M., Dixon, L.R.J. ad Jha, A.N. 2002. Marine invertebrate eco-genotoxicology: a methodological overview. Mutagenesis, 17, 495-507. Duperron, S., Bergin, C., Zielinski, F., Blazejak, A., Pernthaler, A., McKiness, Z.P., DeChaine, E., Cavanaugh, C.M., Dubilier, N., 2006. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environmental Microbiology 8 (8), 1441-1447. Faure, B., Bierne, N., Tanguy, A., Bonhomme, F., Jollivet, D., 2007. Evidence for a slightly deleterious effect of intron polymorphisms at the EF1[alpha] gene in the deep-sea hydrothermal vent bivalve Bathymodiolus. Gene 406 (1-2), 99-107. Geret F., Riso R., Sarradin P.M., Caprais J.C. and Cosson R.P., 2002. Metal bioaccumulation and storage forms in the shrimp, Rimicaris exoculata, from the Rainbow hydrothermal field (Mid-Atlantic Ridge), preliminary approach to the fluid-organism relationship. Cahiers de Biologie Marine. 43, pp 43-52. Gloter, A., Zbinden, M., Guyot, F., Gaill, F., Colliex, C., 2004. TEM-EELS study of natural ferrihydrite from geological-biological interactions in hydrothermal systems. Earth and Planetary Science Letters 222 (3-4), 947-957. Hardivillier, Y., Denis, F., Demattei, M.-V., Bustamante, P., Laulier, M., Cosson, R., 2006. Metal influence on metallothionein synthesis in the hydrothermal vent mussel Bathymodiolus thermophilus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 143 (3), 321-332. Hardivillier, Y., Leignel, V., Denis, F., Uguen, G., Cosson, R., Laulier, M., 2004. Do organisms living around hydrothermal vent sites contain specific metallothioneins? The case of the genus Bathymodiolus (Bivalvia, Mytilidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 139 (1-3), 111-118. Hourdez, S. and Desbruyères, D. (2003). A new species of scale-worm (Polychaeta: Polynoidae), Levensteiniella iris sp. nov., from the Rainbow and Lucky Strike vent fields (Mid-Atlantic ridge). Cahiers de Biologie Marine 44, 13-21. Komai, T., Segonzac, M., 2005. A revision of the genus Alvinocaris Williams and Chace Crustacea: Decapoda: Caridea: Alvinocarididae, with descriptions of a new genus and a new species of Alvinocaris. Journal of Natural History 39, 1111-1175. Le Bris N., P. M. Sarradin, D. Birot and A. M. Alayse-Danet (2000) A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communities. Marine Chemistry, 72, 1-15. Le Bris N., P. M. Sarradin and S. Pennec (2001) A new deep-sea probe for in situ pH measurement in the environment of hydrothermal vent biological communities. Deep-Sea Research I, 48, 1941-1951 Lopez-Garcia, Phillipe H., Gaill F., Moreira D., 2003, Autochtonous eukayotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid Atlantic Ridge, Proceedings of National Academy of Sciences, 100, 697-702 Plouviez, S., Daguin-Thiebaut, C., Hourdez, S., Jollivet, D., 2008. Juvenile and adult scale worms Barnchipolynoe seepensis in Lucky Strike hydrothermal vent mussels are genetically unrelated. Aquatic Biology 3 (1), 79-87. Postec A, Breton CL, Fardeau ML, Lesongeur F, Pignet P, Querellou J, Ollivier B, Godfroy A (2005) Marinitoga hydrogenitolerans sp. nov., a novel member of the order Thermotogales isolated from a black smoker chimney on the Mid-Atlantic Ridge. International Journal of Systematic and Evolutionary Microbiology 55:1217-1221

Add on to D12 66 Fiche de valorisation de campagne ATOS 2001 Postec A, Urios L, Lesongeur F, Ollivier B, Querellou J, Godfroy A (2005) Continuous Enrichment Culture and Molecular Monitoring to Investigate the Microbial Diversity of Thermophiles Inhabiting Deep-Sea Hydrothermal Ecosystems. Current Microbiology 50:138-144 Postec, A., Lesongeur, F., Pignet, P., Ollivier, B., Querellou, J., Godfroy, A., 2007. Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys. Extremophiles 11 (6), 747-757. Pruski, A.M. and D.R. Dixon (2002). Effects of cadmium on nuclear integrity and DNA repair efficiency in the gill cells of Mytilus edulis L. Aquatic Toxicology, 52, 127-137. Ravaux, J., Toullec, J.-Y., Leger, N., Lopez, P., Gaill, F., Shillito, B. (2007) "First hsp70 from two hydrothermal vent shrimps, Mirocaris fortunata and Rimicaris exoculata : characterization and sequence analysis" Gene, 386, 162-172. Ravaux, J., Toullec, J.Y., Leger, N., Lopez, P., Gaill, F., Shillito, B., 2007. First hsp70 from two hydrothermal vent shrimps, Mirocaris fortunata and Rimicaris exoculata: characterization and sequence analysis. Gene 386 (1-2), 162-172. Sanglier, S., Leize, E. Van Dorsselaer, A. and Zal, F. 2003. Comparative ESI-MS study of ~2.2MDa native hemocyanins from deep-sea and shore crabs: from protein oligomeric state to biotope. Journal of the American Society of Mass Spectrometry, 14: 419-429. Sarradin, P.-M., Le Bris, N., Le Gall, C., Rodier, P., 2005. Fe analysis by the ferrozine method: Adaptation to FIA towards in situ analysis in hydrothermal environment. Talanta 66, 1131-1138. Schmidt, C., Vuillemin, R., Le Gall, C., Gaill, F., Le Bris, N., 2008. Geochemical energy sources for microbial primary production in the environment of hydrothermal vent shrimps. Marine Chemistry 108 (1-2), 18-31. Shillito, B., Jollivet, D., Sarradin, P.-M., Rodier, P., Lallier F.H., Desbruyères, D. & Gaill, F. 2001. Temperature Resistance of Hesiolyra bergi, A Polychaetous Annelid Living on Deep-Sea Vent Smoker Walls. Marine Ecology Progress Series, 216, 141-149. Shillito, B., Le Bris, N., Hourdez, S., Ravaux, J., Cottin, D., Caprais, J.-C., Jollivet, D., Gaill, F., 2006. Temperature resistance studies on the deep-sea vent shrimp Mirocaris fortunata. Journal of Experimental Biology 209 (5), 945-955. Shillito, B., Le Bris, N., Hourdez, S., Ravaux, J., Cottin, D., Caprais, J.-C., Jollivet, D., Gaill, F. (2006) "Temperature Resistance Studies on the Deep-Sea Vent Shrimp Mirocaris fortunata" Journal of Experimental Biology, 209, 945-955. Stöhr, S., Segonzac, M., 2005. Deep-sea ophiuroids (Echinodermata) from reducing and non-reducing environments in the North Atlantic Ocean. Journal of the Marine Biological Association of the United Kingdom 85, 383-402. Tanguy, A., Bierne, N., Saavedra, C., Pina, B., Bachere, E., Kube, M., Bazin, E., Bonhomme, F., Boudry, P., Boulo, V., Boutet, I., Cancela, L., Dossat, C., Favrel, P., Huvet, A., Jarque, S., Jollivet, D., Klages, S., Lapegue, S., Leite, R., Moal, J., Moraga, D., Reinhardt, R., Samain, J.F., Zouros, E., Canario, A., 2008. Increasing genomic information in bivalves through new EST collections in four species: Development of new genetic markers for environmental studies and genome evolution. Gene 408 (1-2), 27-36. Wilson, J.T., D.R. Dixon & L.R.J. Dixon (2002). Numerical chromosomal aberrations in the early life-history stages of the marine tubeworm, Pomatoceros lamarckii (Polychaeta: Serpulidae). Aquatic Toxicology, 59, 163-175. Zbinden M., Martinez I., Guyot F., Cambon-Bonavita M.A. and Gaill F. (2001). Zinc-iron sulphide mineralization in tubes of hydrothermal vent worms. Eur. J. Mineral., 13 : 653-658. Zbinden, M., Le Bris, N., Gaill, F., Compère, P., 2004. Distribution of bacteria and associated minerals in the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemical processes. Marine Ecology - Progress Series 284, 237-251. Zbinden, M., Shillito, B., Le Bris, N., de Villardi de Montlaur, C., Roussel, E., Guyot, F., Gaill, F., Cambon-Bonavita, M.-A., 2008. New insigths on the metabolic diversity among the epibiotic microbial communitiy of the hydrothermal shrimp Rimicaris exoculata. Journal of Experimental Marine Biology and Ecology 359 (2), 131-140.

Rubrique 2 : Non- refereed papers

Biscoito, M., Segonzac, M. & Almeida, A. J. . New zoarcid fish species from deep-sea hydrothermal vents of Atlantic and Pacific Oceans. InterRidge News, 10 (1): 2001, 15-17. Dixon, D.R., J.T. Wilson, L.R.J. Dixon. Toxic vents and DNA damage. InterRidge News Vol. 9(1), 2000, 13-14. Dixon, D.R., P.M. Sarrdin, L.R.J. Dixon, A. Khripounoff, A. Colaço and R. Serrao Santos (2002). Towards unravelling the enigma of vent mussel reproduction on the Mid-Atlantic Ridge, or when ATOS met Cages!. InterRidge News, 11, 14-17. Dixon, D.R., Dando, P.R., Santos, R.S. and Gwynn, J.P. (2001). Retrievable cages open up new era in deep-sea vent research. InterRidge News, 10, 21-23. Sarradin, P. M., Desbruyères, D., Dixon, D., Almeida, A. J., Briand, P., Caprais, J. C., Colaço, A., Company, R., Cosson, R., Cueff, V., Dando, P., Etoubleau, J., Fabri, M. C., Fiala Medioni, A., Gaill, F., Godfroy, A., Gwynn, J., Hourdez, S., Jollivet, D., Khripounoff, A., Lallier, F., Laulier, M., Le Bris, N., Martins, I., Mestre, N., Pruski, A., Rodier, P., Serrão Santos, R., Shillito, B., Zal, F., & Zbinden, M. - ATOS cruise, R/V L'Atalante, ROV Victor, June 22nd - July 21st 2001. InterRidge News, 10 (2): 2001, 18-20. Sarradin, P.M. (2001) Campagne ATOS. Lettre aux Médias, 65, 6. Sarradin, P.M. et les participants à la campagne (2001) Campagne ATOS (N.O. L'Atalante et Victor 6000, 22 juin-21 juillet). La lettre Dorsales, n°8/12, 14-16.

RUBRIQUE 4 : Press and Media LabHorta : Diário de Notícias. Friday, 25 August 2000, p. 20 (report in a national newspaper) (Copy sent to Brussel August 2000). Açoriano Oriental. 13565, 25 August 2000, p. 3 (report in a regional newspaper) (Copy sent to Brussels August 2000). Plymouth Evening Herald – June 20, 2001.Secrets of the deep explored. (Copy included with this report) BBC Radio 4 June 14 2001 – The Leading Edge. Interview with David Dixon on VENTOX. Saber Açores, No. 21, August 2001 p10-11. Oasis de vida no mar junto aos Açores. (Copy included with this report) Saber Açores, No. 21, August 2001 p12-15. Estranhas formas de vida. (Copy included with this report) Visao, No. 442, 30 Agosto a 5 Setembro 2001 p. 86-91. Estranhas formas de vida. (Copy included with this report) RTP Açores. Telejornal 22/7/2001 Entitled “Atalante na Horta” RTP-Açores Telejornal 27/6/2001 Entitled “Missão VENTOX” Açoriano Oriental, nº 13953 20 of June 2001. Universidade defende criação de um laboratório subaquático. page: 1 (news on a regional newspaper) Açoriano Oriental, nº 13953 20 of June 2001. Projecto VENTOX cria bases para laboratório subaquático. Page 5 (news on a regional newspaper)

Add on to D12 67 Fiche de valorisation de campagne ATOS 2001 Infociências (Folha informativa da Faculdade de Ciências da Universidade de Lisboa), {Almeida, A} 96, pp.15-16 (copy included with 2nd Annual Report). National Geographic Portugal, February 2003. Campos Hidrotermain. Golpe de Sorte. (Text Gonçalo Pereira), 6 pages (Report on VENTOX project) (copy included with Final Report). Sciences Ouest, 2001, n°181, 8.. Campagne Océanographique ATOS : les secrets de la vie à 2000m de profondeur. Le Télégramme, 15 juin 2001, n°17412. Milieux extrêmes : l'Ifremer en campagne.. Ouest France, 15 juin 2001. La vie dans les milieux extrêmes de l'Atlantique Nord : Ifremer cherche en eau profonde..

RUBRIQUE 5 : Conference proceedings Biscoito, M. J., Almeida, A. J. & Santos, R. S. 2002 – The Ichthyology of the MAR Hydrothermal vents and the MOMAR Initiative. P. 26 in R. S. Santos, J. Escartin, A. Colaço & A. Adamczewska (Eds). Towards planning of sea-floor observatory programs for the MAR region. (Proceedings of the II MOMAR Workshop). Arquipélago, Suplem. 3: XII+64pp. Sarradin, P.M., K. Olu-Le Roy, H. Ondréas, M. Sibuet, M. Klages, Y. Fouquet, B. Savoye, J.F. Drogou and J.L. Michel. (2002). Evaluation of the first year of scientific use of the french ROV Victor 6000. Underwater Technology 2002, Tokyo, Japan (extended abstract

RUBRIQUE 6 : Conferences Internationales B-Deos meeting in Cardiff (25-27 July 2001) LABHORTA- a land base laboratory for vent studies Colaço, A.; Serrão Santos, R.; and the VENTOX partners – Poster. Biscoito, M., A. J. Almeida, D. Desbruyères & A. Colaço, 2002. Ambientes hidrotermais profundos. O caso do Ponto Triplo dos Açores. Plenary talk at the “7º Encontro Nacional de Ecologia”, Ponta Delgada, Açores, 14-16 November, 2002. Biscoito, M., Segonzac, M., Almeida, A.J., Desbruyères, D., Geistdoerfer, P, Turnipseed, M. and Van Dover, C. Fishes from the hydrothermal vents and cold seeps – an update. 2nd International Symposium on Deep sea Hydrothermal vent Biology (Brest, 8- 12/10/2001). Casse N., Pradier E., Demattéi M-V., Bigot Y. and M. Laulier. Mariner transposons are genetic parasite occuring in the genome of hydrotermal invertebrates. Second International Symposium on Deep-Sea Hydrothermal vent biology, Brest 8-12 October 2001. Charmasson, S., M. Agarande, A. M. Neiva Marques, P. M. Sarradin and D. Desbruyères (2003). Natural radioactivity (U-Th) in biota from hydrothermal vents: first results. 5th Applied isotope Geochemistry conference, Heron Island, Australia. Poster. Chausson F., A. Colaço, F. Dehairs, D. Desbruyères, F. Lallier, P.M. Sarradin, (2000). Some biological aspects of Segonzacia mesatlantica, an hydrothermal vent crab from the Mid Atlantic Ridge. Colloque Galway & Journées Dorsales, Roscoff. Chausson F., Menard L., Lallier F.H. (2003) Acid-base responses to hypercapnia in hydrothermal vent crustaceans. 10th Deep-Sea biology symposium, Coos Bay, Oregon, Aug 25-30 2003. Poster. Colaço, A.; Santos, R.; VENTOX party. -LABHORTA- a land base laboratory for vent studies- II MOMAR workshop- Towards planning of seafloor observatory programs for the MAR region. Horta, 15 -17 June 2002 – Poster. Company, R., Serafim, A. & Bebianno, M.J., 2002. Antioxidant defence mechanisms in hydrothermal vent mussels Bathymodiolus azoricus from Mid-Atlantic Ridge. MOMAR Workshop. Azores. Portugal. 15-17 June 2002-Poster. Company, R., Serafim, A. & Bebianno, M.J., 2002. Antioxidant Defence Mechanisms in Mussels Bathymodiolus azoricus from Mid-Atlantic Ridge Hydrothermal Vent Sites. International Symposium on the Environment & Analytical Chemistry-ISEAC 32. 17-21 June 2002. Plymouth, UK-Poster.Company, R., Serafim, A. & Bebianno, M.J., 2002. Antioxidant enzymes in hydrothermal vent mussels Bathymodiolus azoricus from Menez-Gwen and Lucky Strike. XI Seminário Ibérico de Química Marinha. Faro. Portugal. 2-4 April 2002-Poster. Company, R., Serafim, A., Bebianno, M.J., Cosson, R. & A. Fiala-Médioni . Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus” Abstract accepted to PRIMO 12, Florida, June 2003 Cosson R.P., Chausson F., Bustamante P., Laulier M. and Fiala-Médioni A., 2001. First experimental induction of metallothioneins in Bathymodiolus azoricus and B. thermophilus at the atmospheric pressure. Second International Symposium on Deep-Sea Hydrothermal vent biology, Brest 8-12 October 2001. Daguin, C., Plouviez, S., Hourdez, S., Jollivet, D., 2005. Who’s your mummy? A parentage analysis in the commensal hydrothermal vent polychaete Branchipolynoe seepensis within host mussels with microsatellite markers. 40th European Marine Biology Symposium, Vienna (AUT). Dando, P. R. Growth and maintenance of vent mussels, Bathymodiolus azoricus, in aquaria. 2nd International Symposium on Deep-Sea Hydrothermal Vent Biology, Brest, October 2001. (oral presentation) De Cian, M.C., Andersen, A.C.& Lallier, F>H. Carbonic anydydrase loaclization in the gills of two hydrothermal vent crustaceans, Bythograea thermydron and Rimicaris exoculata. 10th Deep-Sea biology symposium, Coos Bay, Oregon, Aug 25-30 2003. Poster. Denis F., Vachoux C., Gauvry L., Leignel V., Salin C., Cosson R.P. and Laulier M., 2002. Metallothionein in Bathymodiolus sp.: complementary DNA characterization and quantification of expression. Second International Symposium on Deep-Sea Hydrothermal vent biology, Brest 8-12 October 2001. Desbruyères, D. (2002). Biology and ecological zonation of Lucky Strike and Menez Gwen hydrothermal vent fields. Campos Hidrothermais dos Açores. Management Workshop, Horta Faial (Portugal), 18-19 juin 2002 Desbruyères, D. (2002). Hydrothermal vents as functional parts of the deep-sea. Gift of the Earth Ceremony, Horta Faial (Portugal), 20 juin 2002. Desbruyères, D. (2002). MOMAR : The ecosystem dynamics and how to study it. Momar 2 workshop, Horta Faial (Portugal), 15-17 juin 2002. Dixon, D.R. 2001. In vitro Komet method using haemocytes. Industrial Genotoxicology Group Meeting at Institute of Medicine, London, 17 December 2001. Dixon, D.R. and L.R. Dixon. Summer spawning in the MAR vent shrimp Rimicaris exoculata: fact or fallacy? Island Ecosystems Symposium – A Conservation and Molecular Approach, Madeira, Portugal, 5-9 March 2001. Dixon, D.R., Dando, P.R., Santos, R.S, Gwynn, J.P. and the VENTOX Consortium. Retrievable cages open up a new era in deep-sea vent research. 2. Reproductive studies. MOMAR Workshop held in Horta, Açores, Portugal, 15-17 June 2002. Dixon, D.R., Dixon, L.R.J., Shillito, B. and Gwynn, J.P. Background and induced levels of DNA damage in Pacific deep-sea bent polychaetes: the case for avoidance. Second International Symposium on Deep-Sea Hydrothermal vent biology, Brest 8-12 October 2001.

Add on to D12 68 Fiche de valorisation de campagne ATOS 2001 Felícia, H., Serafim, A., Company, R. & Bebianno, M.J., 2002. Metallothionein levels in fishes from Lucky Strike hydrothermal vent site. MOMAR Workshop. Azores. Portugal. 15-17 June 2002-Poster. Godfroy A., Cambon-Bonavita M.A., Geslin C., Leromancer M.,Prieur D. and Quérellou J. Microbial diversity in marine extreme environements. ASLO 2005 Aquatic sciences Meeting Salt Lake City,Utah, USA Godfroy A., Postec A., Lesongeur F., Ollivier B. and Quérellou J.Use of continuous culture to access the cultivable thermophilic microbial diversity from deep-sea hydrothermal vent. Deep Sea Vent and Seep Biology Symposium 2005 , La Jolla, Californie, USA Godfroy A., Postec A., Ollivier B., et Quérellou J. Etude de la biodiversité microbienne obtenue par enrichissement en fermenteur de micro- organismes thermophiles issus d'échantillons hydrothermaux de la Dorsale Médio-Atlantique. Premier Colloque d'Ecologie Microbienne Carry le Rouet, France. 2003 Godfroy A., Postec, A., Lesongeur, F. Ollivier B. and Quérellou J. Use of continuous culture to access the cultivable thermophilic microbial diversity from deep-sea hydrothermal vent. Extremophile 2004, Cambridge Maryland USA Hourdez, S., Jollivet, D., Lallier, F. H., Schaeffer, S. W., Toulmond, A. and Fisher, C. R. (2003). Evolution of hemoglobins in deep-sea hydrothermal vent polynoids. In 13th International Conference on Invertebrate Dioxygen Binding Proteins. Mainz, DE. Jollivet, D., D., Le Guen, T., Comtet & F., Viard. (2001) Bathymetric cline of allozyme frequencies despite high levels of gene flow between azorean mytilid populations. poster, Second International Symposium on Deep-Sea Hydrothermal Vent Biology. 8-12 October, Brest 2001, France. Lallier F.H., Chausson F., Sarradin P.M. Adaptation to hypercapnia in hydrothermal vent crustaceans. Second International Symposium on Deep-Sea Hydrothermal vent biology, Brest 8-12 October 2001 Postec A., Urios L., Ollivier B., Quérellou J. and Godfroy A. Microbial diversity obtained by enrichment culture in bioreactor of thermophilic microorganisms from hydrothermal samples of the Medio?Atlantic Ridge. Symposium d'Ecologie Microbienne « ISME 2004 », Cancun, Mexique. Postec A., Urios L., Ollivier B., Quérellou J. and Godfroy A. Microbial diversity obtained by enrichment culture in bioreactor of thermophilic microorganisms from hydrothermal samples of the Medio?Atlantic Ridge. Colloque « Micro-organismes et environnement », Rennes, France. 2003 Postec A., Urios L., Ollivier B., Quérellou J. and Godfroy A. Microbial diversity obtained by enrichment culture in bioreactor of thermophilic microorganisms from hydrothermal samples from the Mid-Atlantic Ridge Thermophiles 2003 Exeter, Grande Bretagne.2003 Postec A.; Laurent Urios ; Bernard Ollivier ; Joël Querellou and Anne Godfroy .Microbial diversity obtained by enrichment culture in bioreactor of thermophilic microorganisms from hydrothermal samples of the Medio-Atlantic Ridge. Poster, Thermophiles 2003, Exeter , UK September 2003 Sanglier S., Van Dorsselaer A., Zal F., Leize E. (2002) Poster. Comparative ESMS study of native hemocyanins from deep-sea and shore crabs with molecular weights up to 2 341 kDa. EuroConference on Fundamental Studies and Applications, Wilbad Kreuth, Allemagne, 21-26 Juillet. Sanglier S., Van Dorsselaer A., Zal F., Leize E. (2002Poster. Comparative ESMS study of native hemocyanins from deep-sea and shore crabs with molecular weights up to 2 341 kDa. ) 50th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, USA, 2-6 Juin. Sarradin P. M. (2001) New approach to the study of biogeochemical interactions in hydrothermal vents. Second International Symposium on Deep-Sea Hydrothermal Vents Biology, Quartz, Brest, 8-12 octobre, pp. 19. Sarradin, P.M., K. Olu-Le Roy, H. Ondréas, M. Sibuet, M. Klages, Y. Fouquet, B. Savoye, J.F. Drogou and J.L. Michel. (2002). Evaluation of the first year of scientific use of the french ROV Victor 6000. Underwater Technology 2002, Tokyo, Japan (extended abstract) Zal, F., Sanglier, S., Leize, E. and Van Dorsselaer, A. (2003). Comparative ESI-MS Study of ~2.2 MDa Native Haemocyanins from Deep- sea and Shore Crabs : from Oligomerization to the Biotope of the Crabs. In 13th International Conference on Invertebrate Dioxygen Binding Proteins. Mainz, DE.

RUBRIQUE 7 : Conférences Nationales Almeida, A. J., M. Biscoito & P. Briand - First attempt to assess the distribution and abundance of fish at the hydrothermal vent fields and surrounding areas of the Azores Triple Junction (Mid-Atlantic Ridge, 36ºN-37ºN). Oral presentation to RIF2003 – “Deuxièmes rencontres de l’ichthyologie en France”, Paris 25-28 March 2003. Desbruyères, D. (2001) Dynamique des écosystèmes et observation à long terme. La vision d'un écologiste. Atelier "Observation à long terme sur les dorsales océaniques", Roscoff, 29-31 octobre. Desbruyères, D. (2002). Ecologie des milieux abyssaux extrêmes : l'indispensable approche non invasive. Journée Imagerie Optique Sous- Marine, POP, Maison des Technologies, , 28 novembre 2002. Godfroy A., Anne Postec, Bernard Ollivier et Joël Querellou. Etude de la diversité microbienne obtenue par enrichissement en fermenteur de micro-organismes thermophiles issus d’échantillons hydrothermaux de la Dorsale Médio-Atlantique. Communication orale Colloque d’Ecologie Microbienne , Carry le Rouet , France Avril 2003. Guerreiro, V., L. Narciso, A. J. Almeida & M. Biscoito – Lipid profile of deep-sea fishes from the Lucky Strike and Menez Gwen Hydrothermal vent sites (Mid-Atlantic Ridge). Poster presentation to RIF2003 – “Deuxièmes rencontres de l’ichthyologie en France”, Paris 25-28 March 2003. Hardivillier Y., Leignel V., Denis F. and Laulier M.. Cloning of metallothionein gene and characterization of cDNA sequence in hydrothermal mussel, Bathymodiolus sp. XIX ème forum des jeunes oceanographes. Nantes – 4/04/2002.Poster. Le Bris, N., P.-M. Sarradin and R. Vuillemin In situ chemical analysis to characterise the environment of deep-sea hydrothermal vent fauna.. Sensor and Biosensors, Toulouse, France 2001. Le Bris, N., P.M. Sarradin, R. Vuillemin, D. Birot, S. Pennec and B. Leilde. Analyseurs et capteurs pour l'étude des écosystèmes chimiosynthétiques profonds. Atelier Experimentation et Instrumentation, INSU-Ifremer-Meteo-France, 28-30 janv. 2003, Brest, France. Sarradin, P.M. (2002). Observatoire fond de mer pour l'étude des interactions organismes - habitats : le chantier Açores. Séminaire DRO, Ifremer Centre de Brest, 30-31 octobre 2002. Sarradin, P.M. (2002). WP4 : ATOS Cruise. VENTOX Meeting, Ifremer Centre de Brest, 18-19 novembre 2002. Teixeira, S. C., F. Dehairs, A. J. Almeida & M. Biscoito – Evaluation of heavy metals spatio-temporal variations in otoliths and vertebrae of fishes from the Azorean hydrothermal vent areas: Lucky Strike and Menez Gwen (Mid-Atlantic Ridge). Oral presentation to RIF2003 – “Deuxièmes rencontres de l’ichthyologie en France”, Paris 25-28 March 2003.

Add on to D12 69 Fiche de valorisation de campagne ATOS 2001 Zal, Franck, Bruce Shillito, Pierre-Marie Sarradin, Nadine Le Bris, Jean-Claude Caprais & François H. Lallier (2000) Évolution du système IPOCAMP : Contrôle des paramètres chimiques de l'enceinte (O2, CO2, CH4, H2S, NO2 et NO3) pour une expérimentation in situ simulée. Journées DORSALES 2000, 20-22 Sep, Roscoff (France) – Poster. RUBRIQUE 8 : reports Desbruyères, D., Khripounoff, A., Le Bris, N. , Sarradin P.M. (2002). Rapport annuel VENTOX. Plouzané, Ifremer. Sarradin P. M. (2000) Demande de campagne ATOS. (demande de campagne). Sarradin P. M. (2000) Demande d'autorisation de travaux de recherche scientifique dans la zone économique exclusive sous juridiction du Portugal (rapport). Sarradin P. M. (2001) Demande de soutien de campagne à la mer (soutien de campagne ATOS, VENTOX). Sarradin, P.M. et participants campagne ATOS (2001) Campagne ATOS (texte pour le Comité d'Administration). Sarradin, P. M. (2002). Rapport de campagne ATOS. Plouzané, Ifremer: 294 p. (rapport de campagne) Sarradin, P-M., Fabri, M-C. & Briand, P. 2002. Rapport de campagne ATOS. (N/O Atalante – Victor 6000, 22 juin – 21 juillet, 2001 5°PCRD VENTOX (EVK3-CT1999-00003). Brest: IFREMER, DRO/EP Avril 2002 – DRO/EP-02/31, 304pp. Rubrique 12 : documents vidéo, films Biscoito, M. & A. J. Almeida, 2003 - Fishes of the Hydrothermal Vents of the Azores Triple Junction (Mid-Atlantic Ridge). . 2nd edition. CD-ROM. Rubrique 14 : DEA Duperron, S. Diversité des bactéries associéees à différentes substrats au niveau de sources hydrothermales sous marines. DEA Biodiversité, Université Pierre et Marie Curie Menard, L., 2002. Les crustacés hydrothermaux : des adaptations originales à l’hypercapnie ? DEA report, DEA Biologie Intégrée des Invertébrés, Université Pierre et Marie Curie, 20 pp. Plouviez, S., 2005. Etude de l'apparentement juvénile/femelle mature et de la dispersion chez le polychète hydrothermal Branchipolynoe seepensis du point triple des Azores à l'aide de marqueurs microsatellites. M1, Univ. 2.

Chapitre d'ouvrage Godfroy A, Postec A, Raven N (sous presse) Growth of hyperthermophilic microorganisms for physiological and nutritional studies. In: A. RF, A. O (eds) Methods in Microbiology, Extremophiles. Academic Press., Oxford, England

Add on to D12 70 Fiche de valorisation de campagne MoMARETO 2006

Monitoring the Mid Atlantic Ridge: Ecology, Technology Observation MoMARETO cruise 2006 Fiche de valorisation janvier 2009

Nom de la campagne : MoMARETO Programme : EXOCET/D FP6-GOCE-CT-2003- 505342 Navire : NO Pourquoi pas? Engins lourds : Victor Dates de la campagne : Août – Septembre 2006 Zone : Atlantique, Açores Chef de projet : J. Sarrazin Organisme : Ifremer DEEP LEP Chef de mission 1 : P.M. Sarradin Organisme : Ifremer DEEP LEP Chef de mission 2 : J. Sarrazin Organisme : Ifremer DEEP LEP

Fiche remplie par : P.M. Sarradin et J. Sarrazin Date de rédaction de la fiche : Janvier 08, révision janvier 09 Adresse : Ifremer DEEP LEP, BP 70 F-29280 PLOUZANE Email : [email protected] Tel : 02 98 22 46 72 Fax : 02 98 22 47 57 [email protected] 02 98 22 43 29

La première partie du document et le tableau de synthèse rassemblent la valorisation « directe » de la campagne MoMARETO. La fiche de valorisation contractuelle du projet EXOCET/D (2004-2007) est en fin de document. Les références communes sont marquées par un *.

Résultats majeurs obtenus : La campagne Momareto s'est déroulée du 7 août au 6 septembre 2006 au large des Açores sur le navire océanographique Pourquoi Pas?. La campagne Momareto a permis l'embarquement de 55 scientifiques, ingénieurs et techniciens de plusieurs nationalités et de quatre journalistes. Deux plongées Victor ont été réalisées avec le nouveau module de mesures en route et 21 plongées ont été faites avec le module de prélèvement de base. Quatre plongées ont été effectuées sur le site Menez Gwen, 3 plongées sur le site Rainbow et 16 plongées sur le site Lucky Strike. Cette campagne, pilotée par l'Ifremer (chefs de mission : PM Sarradin et J Sarrazin, DEEP/LEP) était divisée en deux legs.

Le premier leg (7-17 août), financé en partie par l'Europe (étape de démonstration du projet européen EXOCET/D), avait comme objectif principal de valider une quinzaine de prototypes dédiés à l'étude des écosystèmes marins profonds, développés dans du projet EXOCET/D. L'utilisation au cours des deux premières plongées du module de mesure en route de Victor, équipé du sondeur multifaisceaux et d'un sonar pêche a permis i) l'obtention d'une carte micro-bathymétrique de très haute résolution du site hydrothermal Lucky Strike avec un zoom sur l'édifice Tour Eiffel, ii) de valider l'utilité du sondeur pêche (collaboration C. Scalabrin) pour la cartographie à petite échelle des émissions hydrothermales et de iii) vérifier l'interférence soupçonnée entre le SMF et le sonar pêche. Deux caméras de stéréovision (IRIS - Ifremer/SM- et CAMEREO -AWI-), permettant la reconstruction 3D de petites structures, ont été testées. L'utilisation du sonar Tritech "Super seeking dual frequency profiler" pour cartographier la distribution de la faune et des substrats sur les édifices hydrothermaux a pu être validée techniquement au cours du premier leg. La partie "imagerie vidéo" (Ifremer/SM) du module d'observation biologique TEMPO a été testée avec succès lors d'un mouillage autonome. L'analyseur chimique miniaturisé CHEMINI (Fer et Sulfure -Ifremer/TSI), le préleveur d'eau PEPITO (Ifremer/TSI) ainsi qu'un capteur de méthane (AWI) et un débitmètre (Cardiff University) ont été testé à plusieurs reprises avec succès dans le milieu hydrothermal. Le déploiement sur plusieurs jours d'une CTD associée à un profileur de courants (Université de Brême) à proximité de l'édifice hydrothermal Tour Eiffel a permis l'acquisition de données de courant à petite échelle autour de la structure. Enfin, les trois outils dédiés au prélèvement et à l'échantillonnage de la faune (enceinte sous pression Periscop -UPMC-, respiromètres sous pression DESEARES -Station biologique de Roscoff- et colonisateur microbien AISICS -Ifremer/TSI) ont été testés avec succès. Mis à part la mise en évidence d’ajustements et d'améliorations possibles sur les instruments testés, ce premier leg a été un grand succès. Il a également montré l'importance de la phase

Add on to D12 71 Fiche de valorisation de campagne MoMARETO 2006 de test/validation technologique, initiée à Toulon en avril 2006, avant le passage à l’utilisation scientifique. Le site web de la campagne Momareto a été lancé, avec l'aide d'un webmaster terrestre, au cours de ce premier leg.

Le deuxième leg (18 août – 5 septembre) avait pour objectifs principaux de i) rechercher les liens entre la distribution spatio-temporelle des assemblages de moules et les facteurs environnementaux sur le champ hydrothermal Lucky Strike, ii) d'étudier la réponse et l’adaptation des organismes hydrothermaux aux caractéristiques et aux variations à court terme des facteurs du milieu et iii) de communiquer les avancées de cette campagne en temps réel avec le grand public. Une partie de l'instrumentation testée au 1er leg a été utilisée avec succès pour l'échantillonnage et l'étude de la faune ainsi que pour la caractérisation du milieu. Les différentes équipes scientifiques impliquées ont pu mener à bien leurs expériences et les objectifs globaux sont atteints. Le module d'observation biologique à long terme TEMPO a été déployé avec succès en fin de campagne sur un assemblage de moules. Il permettra le suivi de la dynamique de cette faune et de son habitat pendant un an. Tempo constitue la première phase dans l'établissement d'un observatoire sur le champ hydrothermal Lucky Strike dans le cadre du projet MoMAR. Des sondes de température et des modules de colonisation ont également été déployés pour compléter le suivi temporel.

Au niveau communication, la campagne affiche un réel succès avec plus de 18 articles dans la presse, 6 émissions radio et au moins trois émissions TV. Le site web a connu la deuxième plus grande affluence des sites Ifremer avec 10% du trafic. Il a attiré au moins 10 000 internautes distincts (hors Ifremer) et a permis une réelle synergie avec les gens du bord. Enfin, une grande première avec la "Nuit des abysses", une plongée en direct, rediffusée au centre Ifremer de Brest devant 250 personnes.

Nombre 1 Publications d’articles originaux dans des revues avec comité de lecture 10 référencées SCI 4 soumises 2 Publications dans d’autres revues scientifiques 2 3 Publications sous forme de rapports techniques 2 4 Articles dans des revues / journaux grand public 22 5 Publications de résumés de colloques 9 6 Communications dans des colloques internationaux 22 7 Communications dans des colloques nationaux 16 8 Rapports de contrats (CEE, FAO, Convention, Collectivités …) 4 9 Applications (essais thérapeutiques ou cliniques, AMM …) 10 Brevets – enveloppes Soleau 2 11 Publications d’atlas (cartes, photos) 12 Documents vidéo-films 2 13 Publications électroniques sur le réseau Internet 2 14 Etudiants ayant utilisés les données de la campagne 7 15 Thèses et post doc ayant utilisés les données de la campagne 6 + 2 16 Validation des données En cours 17 Transmission au SISMER Oui : .... 18 Transmission à d’autres banques de données Biocean Oui : .... 19 Transmission à d’autres équipes Oui : .... 20 Considérez-vous l’exploitation en cours

Add on to D12 72 Fiche de valorisation de campagne MoMARETO 2006

Rubrique 1: Publications dans des revues scientifiques avec comité de lecture Bettencourt Raul, Paul Dando Valentina Costa, Domitília Rosa, Virginie Riou, Ana Colaço, Jozée Sarrazin, Pierre- Marie Sarradin, and Ricardo Serrão Santos. Changes in gill tissues of the vent mussel Bathymodiolus azoricus held for 6 months in aquaria at atmospheric pressure. (2008). Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology. Volume 150, Issue 1, Pages 1-7 Byrne Nathalie, Marc Strous, Valentin Crépeau, Boran Kartal, Jean-Louis Birrien, Markus Schmid, Françoise Lesongeur, Stefan Schouten, Andrea Jaeschke, Mike Jetten, Daniel Prieur and Anne Godfroy. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents, ISME Journal advance online publication, July 31, 2008; doi:10.1038/ismej.2008.72 De Busserolles F, Sarrazin J, Gauthier O , Gélinas Y, Fabri MC, Sarradin PM, Desbruyères D, Are spatial dietary variations of hydrothermal fauna linked to local environmental conditions? 2009, Deep Sea Research part II, accepted with revisions. Halary Sébastien, Riou Virginie, Gaill Françoise, Boudier Thomas, Duperron Sébastien. 3D FISH for the quantification of methane- and sulphur-oxidizing endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus, ISME J., 2 (3), 284-292, 2008. Ondréas H., M. Cannat, Y. Fouquet, A. Normand, P.M Sarradin and J. Sarrazin. Recent volcanic events and the distribution of hydrothermal venting at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst., doi:10.1029/2008GC002171, in press, 2009. Riou Virginie, Halary Sébastien, Duperron Sébastien, Bouillon Steven, Elskens Marc, Bettencourt Raul, Santos Ricardo Serrão, Dehairs Frank, Colaço Ana. Influence of CH4 and H2S availability on symbiont distribution, carbon assimilation and transfer in the dual symbiotic vent mussel Bathymodiolus azoricus. Biogeosciences, 5, 1681-1691, 2008. Sarradin Pierre-Marie, Matthieu Waeles, Solène Bernagout, Christian Le Gall, Jozée Sarrazin, Ricardo Riso. Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37°N). (2009) Science of the Total Environment 407 (2) 869 SHILLITO B., G. HAMEL, C. DUCHI, D. COTTIN, J. SARRAZIN, P.-M. SARRADIN, J. RAVAUX, and F. GAILL. Live capture of macrofauna from 2300m depth, using a newly-designed pressure recovery device. (2008). Deep-Sea Research I 55 881– 889. Thurnherr, A.M., Reverdin, G., Bouruet-Aubertot, P., St. Laurent, L.C., Vangriesheim, A., Ballu, V., 2008. Hydrography and flow in the Lucky Strike segment of the Mid-Atlantic Ridge. Journal of Marine Research 66, 347. (Cette publication utilise des profils CTD acquis pour le projet Graviluck durant MoMARETO) Vuillemin R., D. Le Roux, P. Dorval, K. Bucas, J.P. Sudreau, M. Hamon, C. Le Gall, P.M. Sarradin. CHEMINI: a new in situ CHEmical MINIaturized analyzer. 2009, Deep Sea Research part I. Instruments and methods, sous presse.

Soumises Bonnivard Eric, Olivier Catrice, Juliette Ravaux, Spencer Brown, Dominique Higuet. Survey of genome size in 28 hydrothermal vent species covering 10 families. Submitted to Genome, December 2008. Cuvelier, D., Sarrazin, J., Colaço, A., Copley, J., Desbruyères, D., Tyler, P., Serrão Santos, R. Distribution and patchiness of hydrothermal faunal assemblages on Eiffel Tower edifice: a study based on video image analyses. Submitted to DSR, December 2008. Piednoël Mathieu, Eric Bonnivard. DIRS1-like retrotransposons are widely distributed among Decapoda and are particularly present in hydrothermal vent organisms. Submitted to BMC Evolutionary Biology, December 2008. Sarrazin J., Rodier P., Tivey M.K., Singh H., Schultz A., Sarradin P.M. A dual sensor device to estimate fluid flow velocity at diffuse hydrothermal vents. Submitted to DSR I Instruments and methods, January 2009.

Rubrique 2 : Publications dans d’autres revues scientifiques Sarradin, P.-M., Sarrazin, and the EXOCET/D participants, 2007. EXtreme ecosystem studies in the deep OCEan: Technological Developments. InterRidge News 16, 17-21.Sarrazin, J., Sarradin, P.M. and the MoMareto cruise participants, 2006, MoMARETO: a cruise dedicated to the spatio-temporal dynamics and the adaptations of hydrothermal vent fauna on the Mid-Atlantic Ridge. InterRidge News, v15, 24-33. Sarrazin, J., Sarradin, P.M. and the MoMareto cruise participants, 2006, MoMARETO: a cruise dedicated to the spatio-temporal dynamics and the adaptations of hydrothermal vent fauna on the Mid-Atlantic Ridge. InterRidge News, v15, 24-33. Vuillemin Renaud, Dominique Le Roux, Philippe Dorval, Karenn Bucas, Agathe Laës-Huon, Michel Hamon, Jean Pierre Sudreau, Pierre Marie Sarradin. CHEMINI CHEmical MINIaturized Analyzer : Une nouvelle génération d’analyseurs chimiques in situ pour le milieu marin. Publication acceptée aux “Techniques de l’ingénieur”, 2008.

Add on to D12 73 Fiche de valorisation de campagne MoMARETO 2006 Rubrique 3: Publications sous forme de rapports techniques Sarrazin, J et Sarradin, PM. (2008) Rapport de campagne Momareto. DEEP/LEP 08/10, 380 pages. Ivanenko, S., Sarrazin, J. et Morineaux, M. (2008). Etude de la diversité et de la microdistribution des copépodes (Crustacea) dans les écosystèmes profonds associés à la chimiosynthèse. Rapport interne suite à subvention accueil de chercheurs étrangers Ifremer. DEEP/LEP 08/09, 36 pages.

RUBRIQUE 4 : Presse et média Cette rubrique est commune à MoMARETO et EXOCET/D. Conférence de presse Sarrazin, J., Sarradin, PM (2006). Conférence de Presse de la campagne MoMARETO à l’Institut océanographique. Paris, le 29 juin 2006.

Communiqués de presse. GRAVILUCK et MOMARETO, deux campagnes océanographiques sur la dorsale médio-Atlantique. Paris, le 29 juin (dossier de presse). Suivre la campagne océanographique MOMARETO ? Direction... la toile !. Paris le 2 août. Technologie : premier "direct" des grands fonds réussi. Paris le 1er septembre.

Dépêches AFP. Deux campagnes pour étudier les écosystèmes des geysers sous-marins. Paris le 29 juin. A la découverte des écosystèmes des geysers sous-marins, par Frédéric Garlan. Paris le 29 juin.

Presse. 2006 Une mission part observer la formation de la croûte terrestre au fond de l'océan. Christiane Galus, Le Monde, 9 août. Les Ecosystèmes sous-marins au peigne fin. Caroline de Malet, Le Figaro, 22-23 juillet Plongée visuelle dans les abysses. Libération, 4 septembre. Plongée au coeur des abysses. Bruno D. Cot, L'Express, 21-27 septembre. Voyage au centre de la mer. Vahé Ter Minassian, L'Express, 3-9 août. Plongée dans les abysses. Marine Cygler, Ushuaïa, 6 novembre. En direct des grands fonds. Fabien Grufier, Le Nouvel Observateur, 7-13 septembre. Momar, le premier observatoire sous-marin européen. Science et Avenir, septembre. Ifremer : de nouveaux outils pour conquérir les grands fonds marins. Caroline Martinat, Var-matin, 8 août. La campagne d'Ifremer en direct sur Internet. Ouest France, 21 août. A la rencontre du peuple secret des abysses. Sébastien Panou, Ouest France, 1er septembre. Ifremer plonge sur les oasis des abysses. Sébastien Panou, Ouest France, 1er septembre. L'exploration c'est leur vie. Le Monde des ados, juillet. Des robots à l'assaut des fonds marins. L. Salamon, Mon Quotidien, 23 août. Des chercheurs a-cce-ssibles ! Nathalie Blanc, Sciences Ouest, septembre. En direct avec les chercheurs du Pourquoi-Pas ?. Les internautes plongés dans les abysses. Sciences Ouest, septembre. Abstracts for the international issue. Sciences Ouest, septembre. Momar : Quelques lieux sous les mers. Mathieu Ravau, Le Journal du CNRS, 8 septembre. Sous l'eau. Sciences Frontières, août-septembre. Thalassa. Une saison dans les îles : les Açores, depuis la route du rhum. Laurent Thévenin, Télérama, 25 octobre. A la découverte des écosystèmes des geysers sous-marins. Affiches Parisiennes et Départementales, 25-26 juillet. 2008 En route pour les abysses. VIP, automne 2008. "Really deep-sea fishing", BBC Focus Magazine, October 2008, page 20.

Télévision. Le Nautile est un sous-marin. L'Ifremer va aller scruter la croûte océanique au large des Açores. Itw de Jean-Paul Justiniano, pilote du Nautile. France 2, journal de 20h00, le 18 août. L'Ifremer a transmis des images en direct depuis le fond de l'océan. Itw de Jacques Binot responsable de la flotte Ifremer et de Pierre Cochonat, responsable des grands fonds. TF1, journal de 20h00, le 5 septembre. Après un mois passé dans l'Océan Atlantique, la campagne océanographique Momareto s'est achevée le 6 septembre dernier. (reportage à bord du Pourquoi Pas ?). LCP-AN / Public Sénar, Le Journal des Sciences, le 28 septembre.

Add on to D12 74 Fiche de valorisation de campagne MoMARETO 2006 J. Sarrazin et PM Sarradin (2006). Thalassa. Interview de J. Sarrazin et de PM Sarradin. Reportage de 9 minutes consacré à la campagne Momareto, 3 novembre 2006.

Radio. L'Ifremer va mener deux campagnes dans le Sud des Açores pour y étudier la faune et la flore des fonds marins. Reportage. Itw de J. Sarrazin, chef de mission. RF1 Actualités, le 1er juillet. C'est arrivé demain. Itw de P.M. Sarradin et J. Sarrazin, chercheurs à l'Ifremer. Europe 1, le 13 août. Tout s'explique. Itw de M. Héral, directeur scientifique de l'Ifremer et de J. Sarrazin en direct du Pourquoi Pas ? France Inter, le 22 août. Reportage Itw de P.M. Sarradin chef de l'expédition Momareto, de J. Sarrazin, co-chef de mission et de D. Desbruyères, directeur de la mission. RFI, le 21 septembre. Grand reportage. Deux expéditions de l'Ifremer se sont déroulées sur le Pourquoi Pas ? RFI, le 21 septembre. Reportage sur la mission Momareto de l'Ifremer en direct du Grand Pavois à . Itw de D. Desbruyères, directeur de la mission et de J. Sarrazin, chef de la mission. RFI Soir, le 21 septembre. Des chercheurs de l'Ifremer ont réussi à retransmettre en direct des images vidéo du fond des mers. NRJ Brest, journal régional de 12h30, le 6 septembre.

Web. Science de la terre. Un mois d'août au fond des mers (http://sciences.nouvelobs.com) Campagnes océanographiques jumelées (http://scienceetviejunior.fr) Observer la vie animale sous 800 à 2 300 m d'eau pourquoi pas ? (http://espace-sciences.org) Brancher les abysses sur le haut débit : pourquoi pas ? (http://espace-sciences.org) Campagne GRAVILUCK (http://ynet.co.il) L'inconcevable vie des abysses (Radio-Canada.ca) Exocetd/ifremer.fr MoMARETO/ifremer.fr Site internet de la BBC : http://news.bbc.co.uk/1/hi/sci/tech/7525552.stm, "Live fish caught at record depth" by Anna- Marie Lever, July 2008

Rubrique 5: Publication de résumés de colloques *Brandou V., A. G. Allais, M. Perrier, E. Malis, P. Rives, J. Sarrazin, P. M. Sarradin. 3D Reconstruction of Natural Underwater Scenes Using the Stereovision System IRIS. OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Proceedings #061215-051 *Sarradin P.-M., J. Sarrazin, A.G. Allais, D. Almeida, V. Brandou, A. Boetius, E. Buffier, E. Coiras, A. Colaço, A. Cormack, S. Dentrecolas, D. Desbruyères, P. Dorval, H. du Buf, J. Dupont, A. Godfroy, M. Gouillou, J. Gronemann, G. Hamel, M. Hamon, U. Hoge, D. Lane, C. Le Gall, D. Leroux, J. Legrand, P. Léon, J.P. Lévèque, M. Masson, K. Olu, A. Pascoal, E. Sauter, L. Sanfilippo, E. Savino, L. Sebastião, R. Serrão Santos, B. Shillito, P. Siméoni, A. Schultz, J.P. Sudreau, P. Taylor, R. Vuillemin, C. Waldmann, F. Wenzhöfer, F. Zal. (2007). EXtreme ecosystem studies in the deep OCEan : Technological Developments. European Geophysical Union, April 2007, Vienna, Austria. *Sarradin P.-M., J. Sarrazin, A.G. Allais, D. Almeida, V. Brandou, A. Boetius, E. Buffier, E. Coiras, A. Colaço, A. Cormack, S. Dentrecolas, D. Desbruyères, P. Dorval, H. du Buf, J. Dupont, A. Godfroy, M. Gouillou, J. Gronemann, G. Hamel, M. Hamon, U. Hoge, D. Lane, C. Le Gall, D. Leroux, J. Legrand, P. Léon, J.P. Lévèque, M. Masson, K. Olu, A. Pascoal, E. Sauter, L. Sanfilippo, E. Savino, L. Sebastião, R. Serrão Santos, B. Shillito, P. Siméoni, A. Schultz, J.P. Sudreau, P. Taylor, R. Vuillemin, C. Waldmann, F. Wenzhöfer, F. Zal. EXtreme ecosystem studies in the deep OCEan : Technological Developments. OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Proceedings #061215-044 *Sarrazin J., J. Blandin, L. Delauney, S. Dentrecolas, P. Dorval, J. Dupont, J. Legrand, D. Leroux, P. Léon, J.P. Lévèque, P. Rodier, R. Vuillemin, P.M. Sarradin. (2007). TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal Vents. MARTECH07, Conference proceedings, Instrumentation viewpoint, 6, p. 23. *Sarrazin J., J. Blandin, L. Delauney, S. Dentrecolas, P. Dorval, J. Dupont, J. Legrand, C. Le Gall, D. Le Roux, M. Hamon, J.P. Sudreau, P. Léon, J.P. Lévèque, P. Rodier, R. Vuillemin, P.M. Sarradin. (2007) TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal vents. Abstract et poster présenté au congrès Martech, Barcelone, novembre 2007. *Sarrazin J., J. Blandin, L. Delauney, S. Dentrecolas, P. Dorval, J. Dupont, J. Legrand, D. Leroux, P. Léon, J.P. Lévèque, P. Rodier, R. Vuillemin, P.M. Sarradin. TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal Vents. OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Proceedings #061215-042

Add on to D12 75 Fiche de valorisation de campagne MoMARETO 2006 *Sarrazin J., P.M. Sarradin, E. Buffier, A. Christophe, G. Clodic, D. Desbruyères, Y. Fouquet, M. Gouillou, M. Jannez, Y. Le Fur, J. Le Rest, F. Lecornu, O. Lefort, S. Lux, B. Millet, P. Guillemet. A real-time dive on active hydrothermal vents. OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Proceedings #061215-068 *Simeoni, P., Sarrazin, J., Nouzé, H., Sarradin, PM, Ondreas, H., Scalabrin, C., & Sinquin, JM. (2007). Victor 6000: New High Resolution Tools for Deep Sea Research. «Module de Mesures en Route». OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Proceedings #061212-006 *Vuillemin R., D. Le Roux, P. Dorval, M. Hamon, J. P. Sudreau, C. Le Gall and P.M. Sarradin (2007). CHEMINI : CHEmical MINIaturised analyser : A new generation of in situ chemical analysers for marine applications. MARTECH07, Conference proceedings, Instrumentation viewpoint, 6, p.9.

Rubrique 6: Communications dans des colloques internationaux

Communications orales *Brandou V., A. G. Allais, M. Perrier, E. Malis, P. Rives, J. Sarrazin, P. M. Sarradin. 3D Reconstruction of Natural Underwater Scenes Using the Stereovision System IRIS. OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Oral presentation. Byrne Nathalie, Marc Strous, Valentin Crépeau, Boran Kartal, Jean-Louis Birrien, Markus Schmid, Françoise Lesongeur, Stefan Schouten, Andrea Jaeschke, Mike Jetten, Daniel Prieur and Anne Godfroy. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. Extremophiles 2008, Cape Town South Africa Colaço Ana, Pierre Marie Sarradin. MoMAR-D: ESONET demonstration mission, All regions workshop- 5,6,7 september, Barcelona Spain. Cuvelier D., Sarrazin J., Colaço A., Copley J., Desbruyères D., Tyler P., Serrão Santos R. Distribution of faunal assemblages on the Eiffel Tower hydrothermal structure (Lucky Strike) based on image analyses. MarBEF General Assembly Gdansk Poster presentation (May 2007) Cuvelier D., Sarrazin J., Colaço A., Copley J., Desbruyères D., Tyler P., Serrão Santos R. Distribution of faunal assemblages on the Eiffel Tower hydrothermal structure (Lucky Strike) based on image analyses. Rocks&N&beasts ? Interdisciplinary conference on vent systems - Leeds (June 2007) Oral Presentation Halary S, Riou V, Frébourg G, Boudier T, Gaill F, Duperron S. Investigating symbiont densities and localization in hydrothermal vent and cold seep mytilids using fluorescence hybridization techniques and image analysis. Geophysical Research Abstracts, Vol. 9, 03840, 2007 © European Geosciences Union 2007 Legendre, P. 2007. Momareto: exploration of hydrothermal vents on the Mid-Atlantic Ridge. Symposium on Quantitative Ecology, Academia Sinica, Taipei, Taiwan. August 3, 2007. Oral Martins I., Colaço A., Lesongeur F., Godfroy A., Sarradin P-M., Cosson R.P. & Serrao Santos R. Metal exposure and physiological condition of mussel Bathymodiolus azoricus from Eiffel Tower hydrothermal vent site. PRIMO 14 Meeting (Pollutants Responses In Marine Organisms), Florianopolis, Brazil, May 2007. Riou Virginie, Dehairs Frank, Santos Ricardo Serrão, Colaço Ana, Bouillon Steven. Identification of PLFA biomarkers for two endosymbiotic bacteria from a mid-Atlantic ridge deep sea hydrothermal vent mussel using stable isotope tracers. ASLO Aquatic Sciences Meeting 2009, Nice, France. Abstract ID:4409. Oral presentation. Riou Virginie, Colaço Ana, Bouillon Steven, Chevalier Emilie, Mangion Perrine, Korntheuer Michael, Connelly Doug, Khripounoff Alexis, Dehairs Frank, Santos Ricardo Serrão. Assimilation of carbon and nitrogen from dissolved and particulate material in the Mid-Atlantic Ridge deep sea hydrothermal mytilid Bathymodiolus azoricus: use of stable isotopes. EGU General Assembly 2008. Geophysical Research Abstracts, Vol. 10, 2008, EGU2008-A- 06444. Oral presentation. Riou Virginie. Nutritional plasticity of Bathymodiolus azoricus : use of stable isotope enrichment techniques. MoMARnet 3rd annual meeting, 2007, Lisbon, Portugal. Oral presentation. *Sarradin P.-M., J. Sarrazin, A.G. Allais, D. Almeida, V. Brandou, A. Boetius, E. Buffier, E. Coiras, A. Colaço, A. Cormack, S. Dentrecolas, D. Desbruyères, P. Dorval, H. du Buf, J. Dupont, A. Godfroy, M. Gouillou, J. Gronemann, G. Hamel, M. Hamon, U. Hoge, D. Lane, C. Le Gall, D. Leroux, J. Legrand, P. Léon, J.P. Lévèque, M. Masson, K. Olu, A. Pascoal, E. Sauter, L. Sanfilippo, E. Savino, L. Sebastião, R. Serrão Santos, B. Shillito, P. Siméoni, A. Schultz, J.P. Sudreau, P. Taylor, R. Vuillemin, C. Waldmann, F. Wenzhöfer, F. Zal. EXtreme ecosystem studies in the deep OCEan : Technological Developments. OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Oral presentation. Sarradin P.M., The French MoMAR project. InterRidge Theoretical Institute, September 2007, Woods Hole USA. Sarradin Pierre-Marie, Jozée Sarrazin, Yves Fouquet, Daniel Desbruyères, FEED BACKS : 3 multidisciplinary cruises on the Pourquoi pas ? TSM 2007, Décembre 2007, La Londe les Maures, Fr. *Sarrazin J., J. Blandin, L. Delauney, S. Dentrecolas, P. Dorval, J. Dupont, J. Legrand, D. Leroux, P. Léon, J.P. Lévèque, P. Rodier, R. Vuillemin, P.M. Sarradin. TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal Vents. OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Oral presentation.

Add on to D12 76 Fiche de valorisation de campagne MoMARETO 2006 *Sarrazin J., J. Blandin, L. Delauney, S. Dentrecolas, P. Dorval, J. Dupont, J. Legrand, D. Leroux, P. Léon, J.P. Lévèque, P. Rodier, R. Vuillemin, P.M. Sarradin. TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal Vents. MARTECH07,Conference proceedings, Instrumentation viewpoint, 6, p. 23. *Sarrazin J., P.M. Sarradin, E. Buffier, A. Christophe, G. Clodic, D. Desbruyères, Y. Fouquet, M. Gouillou, M. Jannez, Y. Le Fur, J. Le Rest, F. Lecornu, O. Lefort, S. Lux, B. Millet, P. Guillemet. A real-time dive on active hydrothermal vents. OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. Oral presentation. Sarrazin, J. Momareto : a cruise to study the mysteries of deep-sea hydrothermal vents. 8ème congrès des étudiants du GEOTOP, Pohénégamook, Québec, Canada. 8-10 février 2008. (oral). *Simeoni, P., Sarrazin, J., Nouzé, H., Sarradin, PM, Ondreas, H., Scalabrin, C., & Sinquin, JM. (2007). Victor 6000: New High Resolution Tools for Deep Sea Research. «Module de Mesures en Route». OCEANS07 IEEE Aberdeen, June 2007, Aberdeen Scotland. *Vuillemin R., D. Le Roux, P. Dorval, M. Hamon, J. P. Sudreau, C. Le Gall and P.M. Sarradin. CHEMINI : CHEmical MINIaturised analyser : A new generation of in situ chemical analysers for marine applications. MARTECH07,Conference proceedings, Instrumentation viewpoint, 6, p.9.

Posters Bruneaux M., Leize E., Lallier F.H., Zal F., Short term adaptive response and phenotypic plasticity of crustacean hemocyanins : study of Carcinus maenas and Segonzacia mesatlantica, poster, Society for Experimental Biology annual main meeting, 3-14th April 2007, Glasgow Bruneaux M., Pasquier J., Terrier P., Leize E., Lallier F.H., Zal F., Respiratory adaptations of a deep-sea hydrothermal crustacean, the crab Segonzacia mesatlantica, poster, Society for Experimental Biology annual main meeting, 6-10th July 2008, Marseille Byrne, N., F. Lesongeur, D. Prieur, and A. Godfroy. (2007) Diversity of thermophilic microbial populations in deep sea hydrothermal vent chimney: cultural approach in bioreactor. Thermophiles, Bergen (Norvège). Cuvelier D., Sarrazin J., Colaço A., Copley J., Desbruyères D., Tyler P., Serrão Santos R. Distribution of faunal assemblages on the Eiffel Tower hydrothermal structure (Lucky Strike) based on image analyses. InterRidge Theoretical Institute on Biogeochemical interactions at Deep-sea vents. Woods Hole (September 2007) Poster Presentation Dutertre M., Rosa P. & Cosson R.P. Is there a relationship between Bathymodiolus azoricus gill size and its environmental conditions? Journées du GDR ECCHIS, Roscoff, France, Avril 2007 (P). Halary Sébastien, Riou Virginie, Gaill Françoise, Boudier Thomas, Duperron Sébastien. 3D FISH for the quantification of methane- and sulphur-oxidising endosymbionts in bacteriocytes of the hydrothermal vent mussel Bathymodiolus azoricus. EGU General Assembly 2008. Geophysical Research Abstracts, Vol. 10, EGU2008-A-09210, 2008. Poster. Piednoël Mathieu, Dominique Higuet, Eric Bonnivard. DIRS-like retrotransposons are common among hydrothermal shrimps. ICTE International Congress on transposable Elements, April 20-23, 2008, Saint Malo, France. Riou V, Halary S, Martins I, Korntheuer M, Costa V, Laranjo M, Pires L, Leal C, Duperron S, Colaço A, Bouillon S, Serrão Santos R, Dehairs F. Nutrition study of Bathymodiolus azoricus from Menez Gwen: development of stable isotope enrichment techniques to follow the assimilation pathways by symbiosis versus filter-feeding. Geophysical Research Abstracts, Vol. 9, 04445, 2007 © European Geosciences Union 2007 Riou Virginie, Colaço Ana, Bouillon Steven, Mangion Perrine, Chevalier Emilie, Korntheuer Michael, Connelly Doug, Khripounoff Alexis, Santos Ricardo Serrão, Dehairs Frank. Assimilation of particulate and dissolved organic matter by the deep sea vent mytilid Bathymodiolus azoricus. ESF-COST event « Water and Life », 2008, Taormina, Italy. Poster. Riou Virginie, Halary Sébastien, Colaço Ana, Bouillon Steven, Duperron Sébastien, Bettencourt Raul, Santos Ricardo Serrão, Dehairs Frank. Chemotrophic carbon fixation and transfer in the dual endosymbiotic mytilid Bathymodiolus azoricus from the Mid-Atlantic Ridge. EGU General Assembly 2008. Geophysical Research Abstracts, Vol. 10, EGU2008-A-06507. Poster. *Vuillemin R., D. Le Roux, P. Dorval, M. Hamon, J. P. Sudreau, C. Le Gall and P.M. Sarradin. CHEMINI : CHEmical MINIaturised analyser : A new generation of in situ chemical analysers for marine applications. European Geophysical Union, April 2007, Vienna, Austria.

Rubrique 7: Communications dans des colloques nationaux

Communications orales Legendre, P. 2006. Momareto : exploration des sources hydrothermales de la dorsale médio-atlantique. Séminaire, Laboratoire de biologie marine, Université des Antilles et de la Guyane, Pointe-à-Pitre. 24 octobre 2006.

Add on to D12 77 Fiche de valorisation de campagne MoMARETO 2006 Legendre, P. 2006. Momareto : exploration des sources hydrothermales de la dorsale médio-atlantique. Séminaire, Département de chimie-biologie, Université du Québec à Trois-Rivières, 16 novembre 2006. Legendre, P. 2006. Momareto : exploration des sources hydrothermales de la dorsale médio-atlantique. Séminaire, Département de biologie, Université Laval, Québec, 24 novembre 2006. Legendre, P. 2007. Momareto : exploration des sources hydrothermales de la dorsale médio-atlantique. Conférence dans le cadre du cours Bio 1803 Écologie et environnement, Université de Montréal, 22 mars 2007. Legendre, P. 2007. Momareto : exploration des sources hydrothermales de la dorsale médio-atlantique. Séminaire d'écologie aquatique, Département de sciences biologiques, Université de Montréal. 1er octobre 2007. Legendre, P. 2007. Momareto : exploration des sources hydrothermales de la dorsale médio-atlantique. Séminaire, Master 2 Biodiversité tropicale, Université des Antilles et de la Guyane, Pointe-à-Pitre. 22 octobre 2007. Legendre, P. 2007. Momareto : exploration des sources hydrothermales de la dorsale médio-atlantique. Conférence dans le cadre du cours Bio 1803s Écologie et environnement, Université de Montréal, 14 novembre 2007. Legendre, P. 2008. MoMARETO: exploration of hydrothermal vents on the Mid-Atlantic Ridge. Public lecture, School of Environmental Systems Engineering and Institute of Advanced Studies, University of Western Australia, Perth, Australia, March 10, 2008. Legendre, P. 2008. MoMARETO: exploration of hydrothermal vents on the Mid-Atlantic Ridge. UWA Albany Skywest Lecture, University of Western Australia Albany Centre, Albany, Western Australia, March 17, 2008. Anne Godfroy, Nathalie Byrne, Anne Postec et Françoise Lesongeur. Cultures de communautés microbiennes thermophiles des écosystèmes hydrothermaux en bioréacteur. Workshop "Méthodes de culture et bactéries non cultivables". Association Francophone d’Ecologie Microbienne Banyuls juin 2008 Cuvelier, D.; Sarrazin J.; Colaço A.; Copley J. ; Desbruyères, D. ; Tyler, P.; Serrão Santos, R. (2008 ). Distribution et variation des assemblages de faune sur l’édifice hydrothermal Tour Eiffel – Extraction des données biologiques basée sur les images de MoMARETO 2006. Journées Ecchis (Biologie des ecosystèmes chimiosynthetiques profonds), Roscoff, France, 7-8 January 2008

Enseignement Legendre, P. 2007. “Momareto : Exploration des sources hydrothermales de la dorsale médio-atlantique”. Conférence dans le cadre du cours Écologie et environnement, Bio 1803, à l’Université de Montréal. 22 mars 2007. Legendre, P. 2008. “Momareto : Exploration des sources hydrothermales de la dorsale médio-atlantique”. Conférence dans le cadre du cours Écologie et environnement, Bio 1803, à l’Université de Montréal. 12 novembre 2008.

Posters Bruneaux M., Terrier P., Legendre P., Pasquier J., Lallier F.H., Zal F., Leize E., Analyse statistique multivariable de données obtenues en ESI-MS : l’exemple de la plasticité phénotypique de l’hémocyanine de Crustacé chez les crabes Carcinus maenas et Segonzacia mesatlantica, poster, 25èmes Journées Françaises de Spectrométrie de Masse, 8-10th September 2008, Grenoble Byrne N., V. Crepeau, J-L. Birrien, M. Strous, M. Schmid, B. Kartal, F. Lesongeur, D. Prieur, A. Godfroy. (2007) Recherche de bactéries Anammox dans les ecosystèmes hydrothermaux profonds de la dorsale médio atlantique. 3éme Congrès d’Ecologie Microbienne de l’association Francophone d’Ecologie Microbienne Montpellier Byrne, N., F. Lesongeur, D. Prieur, A. Godfroy. (2007) Diversité métabolique des micro-organismes des édifices hydrothermaux actifs: cultures d’enrichissement en bioréacteur. 3éme Congrès d’Ecologie Microbienne de l’association Francophone d’Ecologie Microbienne Montpellier Terrier P., Bruneaux M., Zal F., Potier N., Leize-Wagner E., Analyse par spectrométrie de masse supramoléculaire des pigments respiratoires d’invertébrés marins: apport du suivi de leur dénaturation, poster, 24ème Journées Françaises de Spectrométrie de Masse, 16-20th September 2007, Pau

Rubrique 8: Rapports de contrats (CEE, FAO, Convention, Collectivités …) Marie Curie Actions RTN Periodic Activity Report for MOMARNET from 01/09/2005 to 31/08/2006 (Monitoring deep seafloor hydrothermal environments on the Mid-Atlantic Ridge No.: 505026) for the EUROPEAN COMMISSION, RESEARCH DG HUMAN RESOURCES AND MOBILITY. Dr. Mathilde Cannat, INSTITUT DE PHYSIQUE DU GLOBE DE PARIS. Marie Curie Actions RTN Mid-Term Activity Report for MOMARNET from 01/09/2004 to 31/08/2006. *Sarradin P.M., EXOCET/D periodic management report, DEEP/LEP 07-26, 2007. *Sarradin P.M., EXOCET/D periodic activity report, DEEP/LEP 07-17, 2007.

Rubrique 10: Brevets - Enveloppes Soleau

Add on to D12 78 Fiche de valorisation de campagne MoMARETO 2006 *D. Le Roux, R. Vuillemin, 09 septembre 2004. Réalisation d’un circuit hydraulique gravé en PMMA. Enveloppe Soleau 206598 170904 registered at the INPI *Zal, F., Enveloppe Soleau n°210573 déposée le 29 octobre 2004 « Conception et réalisation d'un respiromètre haute pression pour l'étude d'organismes marins abyssaux : système DESEARE « Deep-Sea Respirometer »»

Rubrique 12: Documents vidéo-films Reportage sur la chaîne de télévision locale portugaise RTP Açores dans le documentaire “Mar à vista”. Filmé par José Serra durant la campagne MOMARETO. MoMARETO : morceaux choisis. M. Gouillou, J. Sarrazin et P.M. Sarradin. Ifremer.

Rubrique 13: Publications électroniques sur le réseau Internet *Tous les résultats du projet européen EXOCET/D sont publiés sur le site Exocetd/ifremer.fr MoMARETO/ifremer.fr

Rubrique 14: Stagiaires ayant utilisé les données de la campagne

Master 2 de Busserolles, Fanny. Master 2, Sciences de la Mer et du Littoral, mention Sciences Biologiques Marines. Comparaison de différents microhabitats colonisés par Bathymodiolus azoricus sur le site hydrothermal Tour Eiffel (Lucky Strike, dorsale médio-Atlantique). (Supervisé par Jozée Sarrazin) Rapport de Master 2, IUEM/UBO, Brest. Juin 2007. *Bernagout Solène. Spéciation du cuivre dissous sur le site hydrothermal Tour Eiffel, Lucky Strike (MAR, 37°N) Master 2 Sciences Chimiques de l’Environnement Marin. DEEP/LEP 07/10, 2007. Brest, Juin 2007. Supervisé par P.M. Sarradin et R. Riso. Crépeau Valentin M2 UBO Recherche de micro-orgaismes Anammox dans les écosystèmes hydrothermaux océaniques profonds. (Supervisé par A. Godfroy et N. Byrne) juin 2007.

Master 1 Leroy Mathilde M1 UBO Isolement de microorganismes ferroreducteur ddes édifices hydrothermaux actifs.(Supervisé par A. Godfroy et J. Holden University of Massachusetts, Amherst, USA) 2008. Serre Martin M1 Contribution à l'étude de la diversité dans les tapis microbiens associées aux assemblages de moules sur le site hydrothermal Lucky Strike. Approches moléculaires (taxonomique) et culturales de la diversité (supervisé par A. Godfroy), 2007. Floc’h, Estelle. Master 1 de l'Université de LaRochelle. Extraction de données biologiques à partir de l’imagerie vidéo : jusqu’où peut-on aller ? (supervisé par J. Sarrazin et PM Sarradin) Janvier-Février 2008.

DUT Cornec Clément, IUT (Brest). Contribution à l’étude des variations temporelles de la diversité microbienne dans un édifice hydrothermal actif. (Supervisé par N. Byrne et F. Lesongeur) 2008.

Rubrique 15: Thèse et post-doctorat ayant utilisé les données de la campagne

Thèses Brandou, Vincent. Stéréovision locale et reconstruction 3D/4D. Soutenue le 9 décembre 2008. Bruneaux Matthieu, Equipe Ecophysiologie CNRS/UPMC, UMR7144, « Adaptations respiratoires à court terme et plasticité phénotypique des hémocyanines de crustacés », soutenance décembre 2008 Byrne Nathalie. Diversité métabolique des communautés microbiennes des édifices hydrothermaux actifs. (Supervisé par A. Godfroy et D. Prieur) soutenue Décembre 2008. Crepeau Valentin. Les micro-organismes des tapis microbiens des écosystèmes hydrothermaux sous-marins profonds. Interactions avec le biotope. (supervisé par A. Godfroy) soutenance prévue 2010 Cuvelier, Daphne. Dynamique temporelle du champ hydrothermal Lucky Strike dans le cadre du réseau européen MARBEF. (Co-supervision Ifremer –J. Sarrazin et D. Desbruyères, SOC et Université des Açores. 2005-2008. Halary, Sébastien. Thèse réalisée au laboratoire d’Adaptation aux Milieux Extrêmes de Université Pierre et Marie Curie à Paris. Martins, Inès, IMAR/DOP, Ecotoxicology response of mussel Bathymodiolus azoricus within the fauna of Lucky Strike hydrothermal vent: microenvironment biotic and abiotic influence”.

Add on to D12 79 Fiche de valorisation de campagne MoMARETO 2006 Piednoël, Mathieu. Génétique comparée des éléments transposables des crustacés décapodes des sources hydrothermales. (supervisé par E. Bonnivard) soutenance prévue 2010 Riou, Virginie. Thèse financée par le Marie Curie Research Training Network MoMARnet et réalisée à l’Université des Açores, et à la Vrije Universiteit Brussel.

Post-doctorat Barnay, Anne-Sophie. Post-doctorat Ifremer, Janvier-Août 2007. Développement d’une approche statistique et d’une stratégie d’échantillonnage pour l’étude des communautés chimiosynthétiques des écosystèmes marins profonds. Au cours de son séjour Anne-Sophie a surtout traité les données de température acquises lors de la campagne Momareto à l’aide d’une méthode statistique innovante, les Coordonnées Principales des Matrices de Voisinage, données qui devraient être publiées au cours de 2008. Supervision J. Sarrazin, PM Sarradin Gauthier, Olivier. Post-doctorat financé par l’ANR DEEP OASES sur le développement d’une approche statistique et d’une stratégie d’échantillonnage pour l’étude des communautés chimiosynthétiques des écosystèmes marins profonds. Analyses et optimisation d’indices de diversité de faune. (2008) En cours. Supervision J. Sarrazin

Rubrique 16: Conférences grand-public *J. Sarrazin et P.M. Sarradin (2006) MoMARETO, une campagne pour étudier les mystères des sources hydrothermales. Océanopolis, Brest, 03/11/2006, Festival du film d’aventure océanographique. *J. Sarrazin (2007) MoMARETO, une campagne pour étudier les mystères des sources hydrothermales. Centre Ifremer de Nantes, 23/01/2007, Séminaire des nouveaux embauchés. *J. Sarrazin (2007) MoMARETO, une campagne pour étudier les mystères des sources hydrothermales. Conférence grand public, 07/02/2007, Cœur des Sciences, Université du Québec à Montréal, Québec, Canada. *J. Sarrazin (2007) MoMARETO, une campagne pour étudier les mystères des sources hydrothermales. Conférence grand public, 12/02/2007, Université de Sherbrooke, Québec, Canada. *J. Sarrazin et PM Sarradin (2007) MoMARETO, une campagne pour étudier les mystères des sources hydrothermales. Conférence grand public, 20/02/2007, Espace des Sciences, Rennes. *J. Sarrazin et PM Sarradin (2007) Conférence grand public "Quoi de neuf sous la mer ?". 22/11/2007, Centre Ifremer de Nantes.

Add on to D12 80

Campagne SudAçores 1998- Etat du traitement de la campagne au 15 janvier 2004

Publications dans revues à comité de lecture : Cannat, M., A. Briais, C. Deplus, J. Escartin, J. Georgen, J. Lin, S. Mercouriev, C. Meyzen, M. Muller, G. Pouliquen and A. Rabain, 1999. Mid-Atlantic Ridge - Azores hotspot interactions: Along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago. Earth Planet Sci. Lett., 173, 257-269. Rabain, A., M. Cannat, J. Escartín, G. Pouliquen, C. Deplus and C. Rommevaux-Jestin, 2001, Focused volcanism and growth of a slow-spreading segment (Mid-Atlantic Ridge, 35°N), Earth Planet. Sci. Lett., 185, 211-224. Escartín, J., M. Cannat, G. Pouliquen, A. Rabain, and J. Lin, 2001. Crustal thickness of the V- shaped ridges south of the Azores: Interaction of the Mid-Atlantic Ridge (36°-39°N) and the Azores hot spot, J. Geophys. Res., 106, 21719-21735

Publications dans revues sans comité de lecture : Cannat, M., A. Briais, C. Deplus, J. Escartin, J. Georgen, J. Lin, S. Mercouriev, C. Meyzen, M. Muller, G. Pouliquen and A. Rabain, 1998. SudAçore cruise : Variations in magma supply and the past segmentation of the MAR in the Lucky Strike- FAMOUS and Oceanographer FZ regions. InterRidge News, 7-2, 3-33. Cannat, M., A. Briais, C. Deplus, J. Escartin, J. Georgen, J. Lin, S. Mercouriev, C. Meyzen, M. Muller, G. Pouliquen and A. Rabain, 1998. La campagne SudAçores : Magmatisme et évolution de la segmentation de la dorsale Médio-Atlantique au Sud de la ZF Oceanographer et dans la région Lucky Strike-FAMOUS. La Lettre Dorsales, 5/1-2, 16-18.

Communications à Congrès : Muller, M., Escartin, J., Cannat, M., Briais A., Deplus, C., Georgen, J., Lin, J., Merkouriev, S., Meyzin, C., Pouliquen, G., Rabain, A., and P. da Silva, 1998. Enhanced Mantle Melting Between 5.5 - 8 Ma Beneath the Mid-Atlantic Ridge at 37°N, Inferred From the Gravity Anomalies of two off-axis Volcanic Plateaus. (abstract) Fall AGU, San Francisco, EOS, 79, 856-857. Deplus, C., Escartin, J., Briais A., Cannat, M., Georgen, J., Lin, J., Merkouriev, S., Meyzin, C., Muller, M., Pouliquen, G., Rabain, A., and P. da Silva, 1998. Linking variations in magma supply and segment growth: Temporal evolution of segment OH-1 (MAR at 35°N) during the past 12 myrs. (abstract) Fall AGU, San Francisco, EOS, 79, 856. Pouliquen, G., Escartin, J., Cannat, M., Briais A., Deplus, C., Georgen, J., Lin, J., Merkouriev, S., Meyzin, C., Muller, M., Rabain, A., and P. da Silva, 1998. Reconstruction of a rifted volcanic plateau in the FAMOUS-Lucky Strike region of the Mid-Atlantic Ridge. (abstract) Fall AGU, San Francisco, EOS, 79, 856. Cannat, M., Briais A., Deplus, C., Escartin, J., Georgen, J., Lin, J., Merkouriev, S., Meyzin, C., Muller, M., Pouliquen, G., Rabain, A., and P. da Silva, 1998. Mid-Atlantic Ridge-Azores hot spot interactions: A rifted volcanic plateau off-axis from the FAMOUS-Lucky Strike region. (abstract) Fall AGU, San Francisco, EOS, 79, 837. Escartin, J., Cannat, M., Muller, M., Pouliquen, G., and the SudAçores Scientific Party, 1999. Structure and evolution of a rifted volcanic plateau near the Azores hotspot (MAR 37°N). (EGS Symposia, Den Haag).Geophys. Res. Abstracts , 1, 191. Cannat, M., Escartin, J., Pouliquen, G., Lin, J., and C. Rommeveaux, 1999. Ridge-hot spot interactions: along axis migration of a mantle melting anomaly south of the Azores. (EGS Symposia, Den Haag).Geophys. Res. Abstracts , 1, 191. Rabain, A., Cannat, M., Deplus, C., Escartin, J. and Pouliquen G., 1999. Focused volcanism in the OH1 segment of the Mid-Atlantic Ridge (35°N): A study of seamounts distribution and sizes in the off-axis bathymetric record. EOS Trans AGU, vol.80, 46, 913. Briais, A., Cannat, M., and the SudAçores Scientific Party, 1999. Analysis of the volcanic plateau south of the Azores from reflectivity data. Results of the SudAçores cruise. EOS Trans AGU, vol.80, 46, 913. Escartin, J., Cannat, M., Lin, J., and Pouliquen, G., 1999. Migration of a mantle melt anomaly along the Mid Atlantic Ridge south of the Azores hotspot. EOS Trans AGU, vol.80, 46, 957. Rabain, A., M. Cannat, J. Escartin, G. Pouliquen, Mid-Atlantic Ridge-Azores Hotspot Interaction: Evolution of Ridge Segmentation Controlled by Propagation of a Melting Anomaly, EOS, Trans. AGU, 81, December 2000 (AGU Fall'00, San Francisco, USA). J Escartin, M. Cannat, G. Pouliquen, J. Lin, G. Ito, Temporal variability in melt production of the Azores hotspot - Mid Atlantic Ridge system, Ridge Workshop on "Physical and

Add on to D12 81

Chemical Effects of Mantle Plume - Spreading Ridge Interaction, Troutdale, Oregon, June 2000. J. Escartín, A. Rabain, M. Cannat, G. Pouliquen, J. Lin , C. Rommevaux & Sudaçores Sci. Party, Evolution of magmatism and growth of segment OH1 during the last ~10 Ma, Ridge 2000 Workshop, ?, ?, 2000. J Escartin, M. Cannat, G. Pouliquen and J. Lin, Structure crustale du plateau volcanique Jussieu: Evolution temporaire des apport magmatiques du point chaud des Açores le long de la dorsale Médio-Atlantique, RST 2000, p. 126, Paris, France, April 2000. Cannat, J. Escartin, G. Pouliquen, A. Rabain, J. Lin, C. Deplus, A. Briais, C. Rommevaux- Jestin, Formation du plateau volcanique Jussieu à l'axe de la dorsale Médio Atlantique (36°- 39°N). Influence du point chaud des Açores, RST 2000, p. 99, Paris, France, April 2000. G. Pouliquen, J. Escartin, M. Cannat, P. Patriat, C. Rommevaux, Contraintes sur la mise en place d'un Plateau océanique rifté le long de la dorsale Médio Atlantique à l'aide des anomalies magnétiques, RST 2000, p. 215, Paris, France, April 2000. A. Rabain, M. Cannat, J. Escartin, C. Deplus, G. Pouliquen, C. Rommevaux, Activité volcanique et croissance d'un segment de la dorsale Médio-Atlantique, 35°N, RST 2000, p. 216-217, Paris, France, April 2000. J Escartin, M. Cannat, G. Pouliquen and J. Lin, Migration of a Mantle Melt Anomaly Along the Mid Atlantic Ridge South of the Azores Hotspot, EGS Meeting, Nice, France, April 2000. J Escartin, M. Cannat, G. Pouliquen and J. Lin, Structure crustale du Plateau volcanique Jussieu: evolution temporaire des apports magmatiques du point chaud des Açores le long de la dorsale Médio Atlantique, RST 2000, Paris, France. Rabain, A. and Cannat, M., 2001. Eruptive fluxes in magma-rich ridge environments : Constraints from seamount size and shape on the Mid-Atlantic Ridge (abstract). EUG XI, p 799.

DEA : Aline Rabain, 1999. Morphologies volcaniques sur la dorsale Médio-Atlantique entre 34° et 38°N. DEA de Géophysique Interne de Institut de Physique du Globe de Paris. Labo d’accueil : ESA 7058-UPMC. Dir. : M. Cannat. THESES : Gaud Pouliquen. 2001. Thèse de l’Université de Paris VII commencée en octobre 97. Labo d’accueil : UMR de Géomagnétisme-IPGP. Dir. : Ph. Patriat. Cette thèse a utilisé les données magnétiques de la campagne SudAçores.

Validation des données : La campagne a permis d’acquérir des données de magnétisme, de gravimétrie, de bathymétrie et de réflectivité. Toutes ces données ont été validées (élimination des points aberrants) à bord. Par l’équipe SIMRAD et par l’équipe scientifique (pour mag et gravi). Ces données ont été transmises au SISMER sous format ngdc, .mul, .nav et .imo.

EXPLOITATION en cours DES DONNEES : L’exploitation de base de la campagne est terminée depuis 3 ans. Les résultats, et surtout l’intérèt renouvellé pour la zone d’étude, qui comprend les sites hydrothermaux du projet MOMAR, justifient la poursuite d’un travail au delà de cette exploitation de base. Deux articles utilisant des données de la campagne SudAçores sont en préparation , l’un sur le contexte tectonique et gravimétrique du chantier MOMAR, l’autre sur la structure sismique des zones à croûte épaissie (plateaux volcaniques), à partir des données de sismique légère.

Add on to D12 82

Fiche “ Valorisation des résultats des campagnes océanographiques ”

Nom de la campagne : SWIR 61_65

Programme : dorsale ultralente Sud Ouest Indienne (InterRidge) Navire : Marion Dufresne Engins lourds : non Dates de la campagne : 4/10/03-31/10/03 Zone : Océan Indien

Chef de projet : Mathilde Cannat et Daniel Sauter Organisme : CNRS Chef de mission 1 : Mathilde Cannat Organisme : CNRS-IPGP Chef de mission 2 : Organisme :

Fiche remplie par : Mathilde Cannat Date de rédaction de la fiche : 5/1/07 Adresse : Equipe de Géosciences Marines. Institut de Physique du Globe de Paris CNRS UMR 7154 4 place Jussieu, Tour 14, 5ème étage, 75252 Paris Cedex 05, France Email : [email protected] Tel : (33) 01 44275192 Fax : (33) 01 44 27 99 69

Résultats majeurs obtenus

The Southwest Indian Ridge (SWIR) is among the world’s slowest spreading ridges (1.4 to 1.5 cm/yr). Ultraslow-spreading ridges are known to expose large expanses of mantle-derived peridotites in the seafloor, and could offer similarities, in terms of magmatic and tectonic processes, with the early stages of oceanization at so-called “non-volcanic” rifted margins.

Our study focuses on the most melt-poor (seismic crustal thickness about 3.5 km ; Muller et al., 1999) portion of the SWIR, near the Rodriguez triple junction. We report on a large set of new off-axis data, covering about twice the area of Iceland, and extending to maximum crustal ages about 28 myrs. This is the first extensive off-axis data set for a melt-poor ultra-slow spreading ridge. It is therefore the first opportunity to study the temporal evolution of spreading processes in this environnement. Due to very low sedimentation rates, details of basement morphology are apparent even in the oldest parts of our study area. We have been able to identify 3 types of seafloor, two of which show no evidence for a volcanic upper crustal layer. The following paragraphs give a brief description of these two types of a-volcanic seafloor. In our talk, we will adress two principal questions : 1- how do these a-volcanic terranes form, and 2- are they truly amagmatic regions of the axis ?

One type of a-volcanic seafloor present in our study area has been described previously as « corrugated surfaces » in many other regions of slow to intermediate spreading oceans. Corrugated surfaces in our study area are remarkably abundant: we counted 39 such surfaces, about as many as have been identified to date throughout the World’s oceans. These 39 corrugated surfaces range in dimensions from 4 to 73 km in the along-axis direction (i.e. along-axis extension of inferred large offset normal fault at the time of their formation), and from 4 to 30 km in the spreading direction (i.e. cumulated offset along these faults over their period of activity). A few of these surfaces are juxtaposed in a pattern suggesting that they formed as part of a long-lasting episode of large offset axial normal faulting. The most spectacular of such episodes appears to have affected a ridge length of more than 100 km, and to have lasted 6 myrs.

The other type of a-volcanic seafloor identified in our study area has no previously described equivalent, although it does correspond to the off-axis expression of the so-called « amagmatic ridge segments » that have been described at the SWIR and Gakkel ultra-slow ridges (Dick et al., 2003; Michael et al., 2003; Sauter et al., 2004). It occurs in the form of broad, spreading-perpendicular or oblique ridges, with a smooth, locally rounded topography. We called this type « smooth a-

Add on to D12 83

volcanic seafloor ». It lacks volcanic features and exposes ultramafics even when on axis. This is very different from observations made at the Mid-Atlantic Ridge where basalts are always present on axis, but where peridotites or gabbros are locally exposed on rift valley walls. Smooth a-volcanic seafloor represents about 40% of our mapped area, and appears to have been emplaced simulataneously on both flanks of the ridge, in marked contrast with corrugated surfaces.

Réfs : Dick, H.J.B., J. Lin, and H. Schouten, An ultraslow-spreading class of ocean ridge, Nature, 426, 405- 412, 2003. Michael, P.J., C. Langmuir, H.J.B. Dick, J.E. Snow, S.L. Goldstein, D.W. Graham, K. Lehnert, G.J. Kurras, W. Jokat, R. Mühe, and H.N. Edmonds, Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean, Nature, 423, 956-961, 2003. Muller, M.R., T.A. Minshull, and R.S. White, Segmentation and melt supply at the Southwest Indian Ridge, Geology, 27 (10), 867-870, 1999. Sauter, D., V. Mendel, C. Rommevaux-Jestin, L.M. Parson, H. Fujimoto, C. Mével, M. Cannat, and K. Tamaki, Focused magmatism versus amagmatic spreading along the ultra-slow spreading Southwest Indian Ridge: Evidence from TOBI side scan sonar imagery., Geochemistry Geophysics Geosystems, 5 (10), 2004GC000738, 2004.

Tableau récapitulatif

Nombre

1 Publications d’articles originaux dans des revues avec comité de lecture 5 référencées SCI 2 Publications dans d’autres revues scientifiques non

3 Publications sous forme de rapports techniques Rapport de campagne IPEV 4 Articles dans des revues / journaux grand public non

5 Publications de résumés de colloques

6 Communications dans des colloques internationaux 13 dont communications orales dont posters 7 Communications dans des colloques nationaux 0 dont communications orales dont posters 8 Nouvelles espèces (animales, végétales, microorganismes) découvertes et non décrites

9 Rapports de contrats (Union européenne, FAO, Convention, Collectivités …) non

10 Applications (essais thérapeutiques ou cliniques, AMM …) non

11 Brevets non

12 Publications d’atlas (cartes, photos) non

13 Documents vidéo-films non

14 Publications électroniques sur le réseau Internet non

15 DEA ou MASTER ayant utilisé les données de la campagne 1

16 Thèses ayant utilisé les données de la campagne non

17 Validation des données en cours : ...oui terminée : ....

Add on to D12 84

18 Transmission au SISMER Non : ..pas encore.. Oui : ....

19 Transmission à d’autres banques de données Non : .non... Oui : ....

20 Transmission à d’autres équipes Non : .... Oui : ....

21 Considérez-vous l’exploitation en cours : ..oui.. terminée : .non...

Articles Cannat, M., D. Sauter, V. Mendel, E. Ruellan, K. Okino, J. Escartin, V. Combier, and M. Baala, Modes of seafloor generation at a melt-poor ultra-slow-spreading ridge, Geology, 34 (7), 605-608, 2006. Patriat, P., Sloan, H., and Sauter, D., 2008, From slow to ultraslow: A previously undetected event at the Southwest Indian Ridge at ca. 24 Ma: Geology, v. 36, p. 207-210. Cannat, M., Sauter, D., Bezos, A., Meyzen, C., Humler, E., and Le Rigoleur, M., 2008, Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge: Geochemistry Geophysics Geosystems, v. 9. Sauter, D., Cannat, M., and Mendel, V., 2008, Magnetization of 0-26.5 Ma seafloor at the ultraslow spreading Southwest Indian Ridge, 61 degrees-67 degrees E: Geochemistry Geophysics Geosystems, v. 9. Cannat, M., Manatschal, G., Sauter, D., and Peron-Pinvidic, G., in press, Assessing the conditions of continental breakup at magma-poor rifted margins : what can we learn from slow-spreading mid-ocean ridges ? Comptes Rendus Acad. Sci. Paris.

Conférences : Cannat, M., Lavier, L., Sauter, D., and J. Escartin. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges. AGU 2008 San Francisco Cannat, M., Manatschal, G., Sauter, D., and Peron-Pinvidic, G., Assessing the conditions of continental breakup at magma-poor rifted margins : what can we learn from slow-spreading mid-ocean ridges ? Invited presentation. AGU 2008 San Francisco. Cannat, M., D. Sauter, G. Manatschal and G. Peron-Pinvidic. Slow spreading mid-ocean ridges and the onset of oceanization at rifted continental margins. « Ocean Continent Transitions » Meeting of the Académie des Sciences, , 19-21 sept 2007, Paris. INVITED. Cannat, M., Sauter, D., Lavier, L., Escartin, J., Manatschal, G. and G. Peron-Pivindic. Modes of normal faulting and mantle exhumation at slow-spreading mid-ocean ridges. To what extent could they apply to ocean continent transitions ? 2007. Eos Trans. AGU,xx(xx), Fall Meet. Suppl., Abstract xxxx. INVITED. Cannat, M., Sauter, D., Manatschal, G., and G. Peron-Pivindic, 2007. Ultra-slow spreading ridges and oceanization at slowly rifted margins. Geophysical Research Abstracts, Vol. 9, A-10395. INVITED. Cannat, M., Sauter, D., Mendel, V., Escartin, J., 2006 Large offset normal faults, ridge obliquity, and the distribution of volcanism at a melt-poor ultra-slow spreading ridge Eos Trans. AGU,87(52), Fall Meet. Suppl., Abstract V11G-02 INVITED. Sauter, D., Cannat, M., V. Mendel, and P. Patriat. 2005. Volcanic versus A-volcanic Accretion at a Melt-Poor Ultraslow- Spreading Ridge; New Insights from Magnetization of 0-30 Ma Seafloor at the Easternmost Southwest Indian Ridge. Eos Trans. AGU, 86(52), Fall Meet. Suppl., T32A-02. Cannat, M., Sauter, D., Escartin, J., and V. Mendel. 2005. Oceanic detachment faults at the ultra-slow spreading Southwest Indian Ridge. Eos Trans. AGU, 86(52), Fall Meet. Suppl., T32A-01 INVITED Cannat, M., Sauter, D., Escartin, J., and V. Mendel. 2005 . Seafloor generation at a melt-poor ultra-slow-spreading ridge. Eos Trans. AGU, 86(52), Fall Meet. Suppl., T41E-1349 INVITED. Cannat, M., Sauter, J. Escartin, D., Mendel, V., Ruellan, E., Okino, K. 2005. A-volcanic seafloor generation at a melt-poor ultraslow-spreading ridge: Southwest Indian Ridge 61-67°E. Geophysical Res. Abstracts, Vienna, Geophysical Research Abstracts, EGU-A-09159. Cannat, M., Sauter, D., Mendel, V., Ruellan, E., Okino, K., Humler, E, and C. Mével, 2004. Spreading geometry and melt supply at the ultraslow-spreading Southwest Indian Ridge. EOS Trans. AGU, vol 85 (47), Fall Meeting Suppl. Cannat, M., Sauter, D., Mendel, V., Ruellan, E., Okino, K., Escartin, J., Combier, V., and M. Baala, 2004. Tectonique extensive et morphologie du plancher océanique d’une dorsale ultra-lente : un cas extrème de dénudation du manteau ? RST Strasbourg, RSTGV-A-00594. Cannat, M., Sauter, D., Mendel, V., Ruellan, E., Okino, K., Humler, E., Combier, V., and M. Baala, 2004. A >26 Myrs record of melt supply variations and axial tectonics in a magma poor region of the very slow spreading Southwest Indian Ridge (Abstract). Goldschmidt Conference Abstract Volume, pp A-694, Copenhagen.

Add on to D12 85 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV Fiche “ Valorisation des résultats des campagnes océanographiques ” (à envoyer par courriel à [email protected] )

Nom de la campagne : SISMOMAR

Projet / Programme de rattachement : MoMAR

Navire : Atalante Engins lourds : compresseurs et canons de la sismique lourde. Flute sismique multitraces 4.5 km Dates de la campagne : 31 mai - 3 juillet 2005 Zone(s) : Atlantique nord, SO des iles Acores Nombre de jours sur zone/en transit : 26 / 5 Chef de mission principal (Nom, prénom et organisme) : CRAWFORD Wayne, CNRS-IPGP Nombre de chercheurs et d’enseignants-chercheurs (en mer / à terre) : 4 / +4 Nombre d’ingénieurs et de techniciens (en mer / à terre) : 5 / +2 Nombre d’étudiants (en mer / à terre) : 5 / +0

Fiche remplie par : Wayne CRAWFORD Date de rédaction ou d’actualisation de la fiche : 13 jan 2009 Adresse : DGMWR-IRD, Private Mail Bag 9001, Port Vila, Vanuatu Email : [email protected] Tel : +678 22250 Fax : +678 23276

Résultats majeurs obtenus 1 à 3 pages destinées à informer un large public sur les résultats obtenus

1 – Contexte scientifique et programmatique de la campagne

The Lucky strike segment hosts a central volcano with an active high- temperature hydrothermal system at its summit.

2 – Rappel des objectifs The goal of the cruise was to determine the three-dimensional structure of the entire crust beneath the center of the Lucky Strike segment, and to put this in the context of segment-scale tectonism and magmatism. SISMOMAR was a seismic reflection and refraction study of crustal structure beneath the Lucky Strike segment of the Mid-Atlantic ridge. The experiment was composed of a 4x18 km 3D multichannel seismic reflection experiment over the top of the Lucky Strike volcano, a 20x20 km 3D seismic tomography experiment covering the volcano and surrounding axial valley and two long seismic tomography and reflection lines along and across the rise axis (Figure 1). We also collected bathymetric, magnetic and gravimetric data The reflection data was collected using a 4.5 km long streamer Figure 1 towed behind the boat and the refraction : SISMOMAR experiment. Map colors indicate depth: purple is ~4 km and red ~1 km. The map is about 120 km wide The 3D reflection experiment lines were tightly spaced data was recorded using 25 ocean within the yellow box, the 3D refraction experiment shots are indicated by the black lines bottom seismometers (OBS) deployed at and the 2D refraction lines are shown by the red lines. Blue circles show OBS deployments. 42 sites, SISMOMAR is one of the

Add on to D12 86 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV largest seismic experiments on the Mid-Atlantic Ridge to date: only the "MARBE" experiment is comparable in terms of coverage and number of OBSs (Canales et al., 2000a; Hooft et al., 2000; Magde et al., 2000; Hosford et al., 2001). The OBS positions also provided a good configuration to measure local seismicity and we deployee 2 broadband OBSs to measure the seafloor "compliance" (flexure under ocean waves), which is sensitive to fluid-filled zones within the underlying crust.

3 – Principaux résultats obtenus (avec quelques illustrations)

The major results of the experiment include: − The detection of an Axial Magma Chamber reflector beneath the Lucky Strike central volcano, with a major faults penetrating near to its eastern edge [Singh et al., 2006, Nature; Combier, 2007]. − A crustal-scale velocity model that reveals a low velocity zone with a very interesting shape beneath the AMC reflector [Seher, 2008]. − Constraints on layer 2A thickness and velocities. Notably, the nature of the upper crust changes radically across the axial valley bounding walls, whereas it is quite constant along the rise axis. − Detection of several dozen earthquakes during the time that the airguns were not shooting, including 3 earthquakes in 6 days that were very close to the axial magma chamber region.

Add on to D12 87 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV

Tableau récapitulatif

Nombre

1 Publications d’articles originaux dans des revues avec comité de lecture référencées Année n : dans JCR (Journal Citation Reports ) Année n+1 : 1 Année n+2 : 0 Année n+3 : 0 2 Publications dans d’autres revues ou ouvrages scientifiques faisant référence dans le 0 domaine 3 Publications électroniques sur le réseau Internet 0

4 Publications sous forme de rapports techniques 1

5 Articles dans des revues ou journaux « grand public » 1

6 Communications dans des colloques internationaux 10

7 Communications dans des colloques nationaux 0

8 Nouvelles espèces (animales, végétales, microorganismes) décrites 0

9 Rapports de contrats (Union européenne, FAO, Convention, Collectivités …) 0

10 Applications (essais thérapeutiques ou cliniques, AMM …) 0

11 Brevets 0

12 Publications d’atlas (cartes, photos) 0

13 Documents vidéo-films 0

14 DEA ou MASTER 2 ayant utilisé les données de la campagne 2

15 Thèses ayant utilisé les données de la campagne 3

16 Traitement des échantillons et des données Voir References Si en cours, préciser et donner les échéances 17 Transmission au SISMER des données acquises avec les moyens communs du navire Non/Oui (NB : cette transmission est systématique dans le cadre des navires gérés par Genavir) Transmission au SISMER de données autres que celles acquises avec les moyens Non/Oui communs du navire 18 Transmission à d’autres banques de données Non/Oui

19 Transmission à d’autres équipes Non/Oui

20 Considérez-vous la publication des résultats terminée en cours/terminée Si en cours préciser et donner les échéances

Fournir pour chacune des rubriques en classant année par année : Rubriques 1 à 7 incluses : liste des publications et colloques avec les noms d’auteurs suivant la présentation en vigueur pour les revues scientifiques. Rubriques 8 à 13 : Liste des références des rapports, des applications, des brevets, atlas ou documents vidéo Rubriques 14 et 15 : Nom et Prénom des étudiants, Laboratoire d’accueil. Sujet du DEA ou MASTER 2 ou de la thèse, Date de soutenance Rubriques 17 à 19 incluses : données transmises à des banques de données ou à des équipes auxquelles. Rubrique 20 : Si la publication des résultats n’est pas terminée, pouvez-vous donner un échéancier ?

Add on to D12 88 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV

Références

R1 - Références des publications d’articles originaux dans des revues avec comité de lecture référencées dans JCR et résumés des principales publications 1. Singh, S.C., W.C. Crawford, H. Carton, T. Seher, V. Combier, M. Cannat, J.P. Canales, D. Dusunur, J. Escartin, and J.M. Miranda, Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field, Nature, 442 (31), 1029-1032, 2006.

R2 – Références des publications parues dans d’autres revues ou des ouvrages scientifiques faisant référence dans la discipline

R4 – Références des rapports techniques 1. SISMOMAR Cruise Report (31 May - 4 July 2006), W.C. Crawford, O. Aouji, L. Beguery, J-P Canales, M. Cannat, V. Combier, C. Corela, D. Dusunur, T. Gabsi, A. Pouillet-Erguy, T. Seher

R5 – Références des articles parus dans des revues ou des journaux « grand public » 1. Petit article dans "Pour la Science", 2006

R6 – Références des communications dans des colloques internationaux 1. Crawford, W., S. Singh, M. Cannat, and O.A. T. Seher, L. Beguery, J. P. Canales, H. Carton, V. Combier, C. Corela, J. Duarte, D. Dusunur, T. Gabsi, M. J. Miranda, A. Pouillet-Erguy and J. Escartin, Preliminary results from the SISMOMAR seismic study of the Lucky Strike segment, 37N Mid-Atlantic Ridge, in AGU Fall Meeting, AGU, San Francisco, 2005. 2. Dusunur, D., J. Escartin, W. Crawford, T. Seher, S. Singh, M. Cannat, M. Miranda, C. Corela, J. Ducarte, L. Beguery, O. Aoudji, P. Canales, V. Combier, H. Carton, and T. Gabsi, Microseismicity of Lucky Strike segment, Mid-Atlantic Ridge, in AGU Fall Meeting, AGU, San Francisco, 2005. 3. Seher, T., W. Crawford, S. Singh, J.P. Canales, V. Combier, M. Cannat, H. Carton, D. Dusunur, J. Escartin, M. Miranda, and A. Pouillet-Erguy, Three dimensional slowness images of the upper crust beneath the Lucky Strike hydrothermal vent sites, in AGU Fall Meeting, AGU, San Francisco, 2005. 4. Singh, S., W. Crawford, H. Carton, T. Seher, J.P. Canales, V. Combier, D. Dusunur, M. Cannat, J. Escartin, J.M. Miranda, and A. Pouillet-Erguy, Discovery of axial magma chamber reflections beneath the Lucky Strike hydrothermal vents and volcano and its relationship with median valley faults, in AGU Fall Meeting, AGU, San Francisco, 2005. 5. Combier V., T. Seher, S. Singh et al., Three-dimensional geometry of magma chamber roof and faults from 3D seismic reflection data at the Lucky Strike volcano, Mid-Atlantic Ridge, EGU General Assembly, Abstract 2007-A- 03062, 2007. 6. Crawford W., T. Seher, S. Singh et al., Near-constant layer 2A thickness along the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge, EGU General Assembly, Abstract 2007-A-06913, 2007. 7. Seher T., W. Crawford, S. Singh et al., Seismic velocity structure of the upper oceanic crust beneath the Lucky Strike hydrothermal vent field (37.3°N Mid-Atlantic Ridge), EGU General Assembly, Abstract 2007-A-02386, 2007. 8. Combier V., T. Seher, S. Singh et al., Three-dimensional geometry of magma chamber roof and faults from 3D seismic reflection data at the Lucky Strike Volcano, Mid-Atlantic Ridge, Eos, Transactions, Am. Geophys. Union, 88 (52), Fall Meet. Suppl., Abstract T23B-1408, 2007. 9. Crawford W., T. Seher, S. Singh and V. Combier, Layer 2A thickness variations and upper crustal emplacement on the Lucky Strike segment (37N), Mid-Atlantic Ridge, Eos, Transactions, Am. Geophys. Union, 88 (52), Fall Meet. Suppl., Abstract T33B-1364, 2007. 10. Seher T., W. Crawford and S. Singh, Crustal thickness variations due to deep faulting and the velocity structure of the Lucky Strike segment (37N Mid-Atlantic Ridge), Eos, Transactions, Am. Geophys. Union, 88 (52), Fall Meet. Suppl., Abstract S23A-1119, 2007.

R14 – DEA ou MASTER 2 ayant utilisé les données de la campagne (Nom et Prénom de l’étudiant, Laboratoire d’accueil. Sujet du DEA ou MASTER ou de la thèse, Date de soutenance)

1. POUILLET-ERGUY, Allandé, IPGP - Geosciences Marines, Etude du signal "infragravimatrique depuis le plqncher oceanique profond - Preparation de la mission SISMOMAR, juillet 2005. 2. ARNULF, Adrien, IPGP - Geosciences Marines, Imagerie sismique de la chambre magmatique et des failles à l'aplomb du volcan Lucky Strike, avec migration profondeur 2D avant sommation, juin 2008

R15 – Thèses ayant utilisé les données de la campagne (Nom et Prénom de l‘étudiant, Laboratoire d’accueil. Sujet du DEA ou MASTER ou de la thèse, Date de soutenance)

Add on to D12 89 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV 1. COMBIER Violaine, IPGP - Geosciences Marines, Mid-ocean ridge processes: Insights from 3D reflection seismics at the 9°N OSC on the East Pacific Rise, and the Lucky Strike volcano on the Mid-Atlantic Ridge, octobre 2007. 2. DUSUNUR Doga, IPGP - Geosciences Marines, Thermal Structure of Mid-Ocean Ridges (Lucky Strike, Mid-Atlantic Ridge) and Magma Chambers, , juin 2008. 3. SEHER Tim, IPGP - Geosciences Marines, Seismic Structure of the Lucky Strike Segment at the Mid-Atlantic Ridge, septembre 2008.

R16 – Traitements des échantillons et des données en cours (types et échéances)

R1, R18 et R19 – Liste des données transmises (Préciser les destinataires, SISMER, autres banques, équipes scientifique …)

R20 – Liste des résultats restant à publier - échéance Crawford W. C., S. C. Singh, T. Seher et al., Crustal structure, magma chamber and faulting beneath the Lucky Strike hydrothermal vent field, in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, AGU, submitted. Papiers decrivant les travaux utilisés en theses (4-5), a soumettre en 2009. Papier generale de resume, a soumettre en 2010.

Add on to D12 90 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

Fiche “ Valorisation des résultats des campagnes océanographiques ”

Nom de la campagne : GRAVILUCK

Programme : MoMAR Navire : N/O Atalante Engins lourds : NAUTILE Dates de la campagne : 7 au 31 août 2006 Zone : Atlantique nord

Chef de mission principal : Valérie Ballu Organisme : CNRS/IPGP Chef de mission 2 : Organisme : Chef de mission 3 : Organisme :

Fiche remplie par : Valérie Ballu Date de rédaction de la fiche : 12 janvier 2006 Adresse : IPGP, Case 89, 4 place Jussieu, 75252 PARIS Cedex 05 Email : [email protected] Tel : 01 44 27 73 39 Fax : 01 44 27 73 40

Résultats majeurs obtenus

Le segment Lucky Strike de la dorsale Médio-Atlantique a été choisi comme cible pour l’installation d’observations à long terme dans le cadre du chantier MoMAR. Il s’agit d’un chantier pluri-disciplinaire ; la campagne Graviluck a permis d’acquérir des données dans plusieurs domaines allant de la géophysique, la géologie, l’océanographie physique à la microbiologie.

L’objectif principal de la campagne était géodésique. Lors de la campagne Graviluck, nous avons, pour la première fois sur une dorsale lente, initié une expérience visant à mesurer les mouvements verticaux liés à l’activité magmatique et tectonique qui affectent le volcan central de Lucky Strike et le mur Est de la vallée axiale. Pour cela, nous avons installé deux stations d’enregistrement en continu de la pression en fond de mer et installé/ mesuré un réseau de repères géodésiques au fond. En tout, 12 repères ont été installés et 9 d’entre eux ont été mesurés. La précision obtenue sur les différences de pression (donc de hauteur) entre deux repères géodésiques est de l’ordre du centimètre. Lors des plongées du Nautile, nous avons également acquis des données de magnétisme et de gravimétrie fond de mer qui devraient nous aider à mieux contraindre la structure de la croûte océanique.

Réseau géodésique : Les traits et nombres colorés indiquent le trajet effectué durant les différentes plongées de mesure du réseau. Le nombre inscrit en petit dans les sphères orange correspond au nombre de mesures sur le repère.

Add on to D12 91 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

Repère_J Repère_F Repère_C Repère_L Repère_D Installé 15/08/06 Installé 15/08/06 Installé 11/08/06 Installé 13/08/06 Installé 12/08/06 PL1616-8 PL1616-8 PL1612-4 PL1614-6 PL1613-5 Prof. : -1708m Prof : -1740m Prof : -1742m Prof : -1693m Prof : -2069m

Repère_K Repère_B Repère_A Repère_G Repère_i Installé Installé Installé Installé Installé 15/08/06 14/08/06 16/08/06 13/08/06 12/08/06 PL1616-8 PL1615-7 PL1617-9 PL1614-6 PL1613-5 Prof : -1707m Prof : -1734m Prof : -1699m Prof : -1744m Prof : -1645m

Couple de Δh en metres, calculés à partir des ΔP repères (1mBar ~ 1cm) 95% interval de confiance I - D 430.374 +/- 0.005 D - G -330.016 +/- 0.036 G - L -50.681 +/- 0.008 L - C 50.996 +/- 0.006 C - B -8.290 +/- 0.006 B - F 0.196 +/- 0.008 F - K -35.295 +/- 0.011 K - J 0.755 +/- 0.013 Résultats obtenus après minimization moindre carrés des données acquises sur les boucles au cours des 8 plongées de mesure.

Parallèlement au programme de recherche principal axé sur la géophysique et mené avec le submersible Nautile, un programme d’océanographie physique et de géologie ont été menés principalement de nuit, depuis la surface. Les données d’océanographie acquises montrent que les hauts topographiques connectant les nombreux bassins à l’axe de la dorsale et dans les canyons sur des flancs de la dorsale sont des lieux permettant des échanges turbulents très energétiques. Cela montre que la topographie des fonds sous-marins joue un rôle important dans la circulation océanique globale et apporte une partie de l’énergie nécessaire à la remontée des eaux profondes vers la surface par mélange turbulent

Des données géologiques photographiques de grande qualité ainsi que des échantillons de roche ont été acquises principalement avec une caméra tractée (Towcam). Ces données ont permis entre autres de définir la zone où l’activité volcanique est la plus récente.

Tableau récapitulatif

Nombre

1 Publications d’articles originaux dans des revues avec comité de lecture référencées SCI 3

Add on to D12 92 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD 2 Publications dans d’autres revues scientifiques

3 Publications sous forme de rapports techniques

4 Articles dans des revues / journaux grand public 5

5 Publications de résumés de colloques

6 Communications dans des colloques internationaux 4 dont communications orales 2 dont posters 2 7 Communications dans des colloques nationaux dont communications orales dont posters 8 Nouvelles espèces (animales, végétales, microorganismes) découvertes et décrites

9 Rapports de contrats (Union européenne, FAO, Convention, Collectivités …)

10 Applications (essais thérapeutiques ou cliniques, AMM …)

11 Brevets

12 Publications d’atlas (cartes, photos)

13 Documents vidéo-films

14 Publications électroniques sur le réseau Internet Journal de bord sur le site Web de l’INSU 15 DEA ou MASTER ayant utilisé les données de la campagne

16 Thèses ayant utilisé les données de la campagne

17 Validation des données en cours : .... terminée : ....

18 Transmission au SISMER Non : .... Oui : ....

19 Transmission à d’autres banques de données Non : .... Oui : ....

20 Transmission à d’autres équipes Non : .... Oui : ....

21 Considérez-vous l’exploitation en cours : X.. terminée : ....

Fournir en annexe pour chacune des rubriques :

Rubriques 1 à 8 incluses : Une liste des publications et colloques avec les noms d’auteurs suivant la présentation en vigueur pour les revues scientifiques. A présenter selon la classification du tableau ci-dessus. Rubriques 9 à 14 : Liste des références des rapports, des applications, des brevets, atlas ou documents vidéo Rubriques 15 et 16 : Pour chaque étudiant Nom et Prénom, Laboratoire d’accueil. Sujet du DEA ou MASTER ou de la thèse, Date de soutenance Rubriques 17 à 20 incluses : Le type des données validées et/ou transmises, Les banques de données (SISMER, JGOFS, CDIAC …) les équipes auxquelles elles ont été transmises. Rubrique 21 : Si l’exploitation est toujours en cours, pouvez-vous donner un échéancier ?

Rubriques 1 à 8 incluses : Articles dans revues à comité de lecture St Laurent, L.C., and Thurnherr, A.M., 2007, Intense mixing of lower thermocline water on the crest of the Mid- Atlantic Ridge: Nature, v. 448, p. 680-683. Ballu, V., Ammann, J., Pot, O., de Viron, O., Sasagawa, G., Reverdin, G., Bouin, M.N., Cannat, M., Deplus, C., Deroussi, S., Maia, M., and Diament, M., 2008, A seafloor experiment to monitor vertical deformation at the Lucky Strike volcano, Mid-Atlantic Ridge: Journal of Geodesy. Thurnherr, A.M., Reverdin, G., Bouruet-Aubertot, P., Laurent, L.C.S., Vangriesheim, A., and Ballu, V., 2008, Hydrography and flow in the Lucky Strike segment of the Mid-Atlantic Ridge: Journal of Marine Research, v. 66, p. 347-372.

Add on to D12 93 PROPOSITION DE CAMPAGNE A LA MER IFREMER - IPEV – IRD

Communications dans des journaux / radios grand public : Le Monde : article de C. Galus le 9 aout 2006, rubrique Environnement et Science Le Figaro : ½ page Articles dans 2 quotidiens portugais des Azores Emission de vulgarisation scientifique Microméga sur RFI (7 minutes sur la campagne Graviluck)

Colloques internationaux : Ballu, V., M. Cannat and the Graviluck scientific party, MoMAR observatory: A Geophysical, Geological and Oceanographical Approach to the Monitoring of the Lucky Strike Segment (GRAVILUCK Cruise), Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract OS31B-1635, 2006. St Laurent, L., A. Thurnherr, G. Reverdin, P. Bouruet-Aubertot, V. Ballu, Overflow turbulence on the Mid-Atlantic Ridge, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract OS13B-1563, 2006. Thurnherr, A., L. St Laurent, G. Reverdin, P. Bouruet-Aubertot, V. Ballu, Overflows on the Mid-Atlantic Ridge, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract OS24B-05, 2006. Escartin, J., A. Soule, A. Bezos, M. Cannat, D. Fornari, V. Ballu, S. Humphris and the Graviluck Science party, Patterns of volcanism and tectonism at a slow-spreading segment of the Mid-Atlantic Ridge (Lucky Strike, 37N): preliminary results from near-bottom geological and geophysical surveys, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract B33D-05, 2006.

Séminaires / conférences :

Reverdin, G., conférence grand public sur les données Graviluck et les ondes internes dans l’océan, 2006. Thurhnerr, A. séminaire au Lamont Doherty Earth Observatory, Phénomènes de mélanges turbulents, 2006. Thurnherr, A., séminaire au Département de mathématiques appliquées à Columbia University, Phénomènes de mélanges turbulents, 2007. Ballu, V. Séminaire Géosciences Marines sur la campagne Graviluck, IPGP, 2006 Rommevaux, C. "Expérimentation en géomicrobiologie lors de la campagne d’exploration marine GRAVILUCK: une fenêtre ouverte sur la biologie des grands fonds…" IPGP, Octobre 20 2006

DEA ou master utilisant les données de la campagne :

Stage de M1 : Nolween Lesparre débute en février 2007. Encadrants : V. Ballu et M. Cannat Sujet : analyse et interprétations des données de gravimétrie structurale acquises lors de la campagne.

Projet de fin d’étude INSA Strasbourg : débute en février 2007. Encadrants MN Bouin et V. Ballu Delphine Guillon. Sujet : méthodologie de traitement GPS pour le calcul précis de la hauteur de la surface de la mer.

Stage M2 en 2007 : Encadrants : G. Reverdin et P. Bouruet-Aubertot Synthèse des données Graviluck sur les ondes internes et en particulier les ondes internes liées à la composante M2 de la marée.

Rubriques 9 à 14: Le journal de bord de la campagne a été mis sur le site de l’INSU.

Add on to D12 94 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV Fiche “ Valorisation des résultats des campagnes océanographiques ” (à envoyer par courriel à [email protected] )

Nom de la série de campagnes: BBMOMAR

Projet ou programme de rattachement : MoMAR

Année du début de la série : 2007

Nom de la campagne : BBMOMAR-1 Navire : N/O Suroit Engins lourds : Dates de la campagne : 2007 Zone(s) : Nombre de jours sur zone/en transit : Chef de mission principal (Nom, prénom et organisme) : CRAWFORD Wayne, IPGP-CNRS Nombre de chercheurs et d’enseignants-chercheurs (en mer / à terre) : 3 / +1 Nombre d’ingénieurs et de techniciens (en mer / à terre) : 7 / 0 Nombre d’étudiants (en mer / à terre) : 1 / 0

Nom de la campagne : BBMOMAR-2 Navire : N/O Suroit Engins lourds : Dates de la campagne : 8 - 17 aout 2008 Zone(s) : Atlantique Nord Nombre de jours sur zone/en transit : Chef de mission principal (Nom, prénom et organisme) : BEGUERY Laurent, CNRS Nombre de chercheurs et d’enseignants-chercheurs (en mer / à terre) : 1 / +2 Nombre d’ingénieurs et de techniciens (en mer / à terre) : 4 / 0 Nombre d’étudiants (en mer / à terre) : 4 / 0

Nom de la campagne : Navire : Engins lourds : Dates de la campagne : Zone(s) : Nombre de jours sur zone/en transit : Chef de mission principal (Nom, prénom et organisme) : Nombre de chercheurs et d’enseignants-chercheurs (en mer / à terre) : Nombre d’ingénieurs et de techniciens (en mer / à terre) : Nombre d’étudiants (en mer / à terre) :

Rappel des campagnes précédentes (depuis le début de la série) Nom de la campagne Navire Dates Chef de mission

Fiche remplie par : CRAWFORD Wayne Date de rédaction ou d’actualisation de la fiche : 15 janv 2009 Adresse : PO Box 336, Port Vila, VANUATU Email : [email protected] Tel : +678 7771453 Fax : +678 23276

Add on to D12 95 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV

Résultats majeurs obtenus 1 à 3 pages destinées à informer un large public sur les résultats obtenus

1 – Contexte scientifique et programmatique de la campagne

Le réseau global de sismomètres et magnétomètres sont utilisées pour déterminer la structure intérieure de la terre, pour détecter des événements physiques de la terre, et pour localiser étudier des séismes de magnitude 4.5+ à travers la terre entière. La couverture et résolution de ce réseau sont, pourtant, limitées par la distribution inégale des stations. En effet, presque toutes les stations sont à terre, laissant des grands trous dans les données dans plusieurs endroits océaniques. Des stations fond de mer ont été tentes, avec des instruments bien installés (enterrés) pour minimiser le bruit et connecté à terre par un câble sous-marin. Ces installations sont, pourtant, très chères et ont toujours des problèmes techniques assez importants. Par exemple, la station H2O, la plus célèbre et le mieux installé des stations sous-marines, installé en octobre 1999 sur un câble sous-marin entre Hawaii et Californie, n'a fonctionné que trois ans et demi avant de se casser. La réparation, coûtant plusieurs millions de dollars américains, n'a pas encore été financée. Nous avons proposé de faire des déploiements beaucoup plus légers des capteurs sismologiques et magnétiques larges bandes. La partie sismologique, qui consiste en trois déploiements consécutifs d'un an d'un sismomètre large bande, pour une période totale de trois ans, entre été 2007 et été 2010, s'inscrit dans le cadre du projet Européen NERIES. Le lieu choisi est le volcan de Lucky Strike, sur la dorsale Medio Atlantique juste au sud des îles Acores. Le choix du site permet à ces instruments de compléter des données acquis a ce site dans le cadre du programme MoMAR, qui coordonne des études multidisciplinaires (géophysique, biologie, océanographique, chimique, etc) pour étudier la dorsale Medio Atlantique près des Acores, et dont le volcan Lucky Strike est un site clé.

2 – Rappel des objectifs

L'objectif principal de l'expérience est d'acquérir des donnes larges bandes sismologiques pendant 3 ans, de les rendre disponible a la communauté scientifique Européen, et étudier le niveau du bruit et de signal sur ces stations. D'autres objectifs ont été de: − Acquérir des données larges bandes magnétiques pour évaluer leur utilité dans un réseau global. − Utiliser les données sismologiques et magnétiques pour contraindre la structure du manteau sous le site Lucky Strike (une zone avec une alimentation magmatique a long terme). − Étudier l'amplitude et variabilité des ondes infragravimetrique de la surface des océans au-dessus de le site − Évaluer si la méthode de tomographie par bruit ambiant a basses fréquences pourrait être utilisé dans les océans. Dans la première année, nous avons déployé une deuxième sismomètre fond de mer entre le site Lucky Strike et une sismomètre large bande sur l'île de Sao Miguel, Acores. Nous avons aussi déployé des courantomètres à cote des sismomètres: un courantomètre doppler qui échantillonnait une fois/seconde pendant 4 jours et un courantomètre mécanique qui enregistrait tous les 30 seconds pendant 8 mois. Lors des missions BBMOMAR, nous avons aussi déployé 4 sismomètres courts-periods pour une étude de sismicité du volcan Lucky Strike. Ces déploiements faisaient partie d'une autre expérience du programme MoMAR (MoMARDREAM et BathyLuck, chef de projet Javier Escartin), mais c'était plus efficace de profiter des ingénieurs OBS déjà à bord pour notre expérience. Aussi nous avons pu profiter de notre sismomètre large bande servait pour en faire la 5e sismomètre de ce réseau.

3 – Principaux résultats obtenus (avec quelques illustrations)

Nous avons récupéré les sismomètres en 2008 après un an de déploiement. Tous ont marché et ont enregistré le bruit du fond locale ainsi que les tremblements de terre locaux et distants. Nous ne sommes pas encore au point de fournir des illustrations des résultats.

Add on to D12 96 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV

Tableau récapitulatif

Nombre

1 Publications d’articles originaux dans des revues avec comité de lecture référencées Année n : 0 dans JCR (Journal Citation Reports ) Année n+1 : Année n+2 : Année n+3 : Année n+4 : Année n+5 : Année n+6 : Année n+7 : … 2 Publications dans d’autres revues ou ouvrages scientifiques faisant référence dans le 0 domaine 3 Publications électroniques sur le réseau Internet 0

4 Publications sous forme de rapports techniques 2

5 Articles dans des revues ou journaux « grand public » 0

6 Communications dans des colloques internationaux 0

7 Communications dans des colloques nationaux 0

8 Nouvelles espèces (animales, végétales, microorganismes) décrites 0

9 Rapports de contrats (Union européenne, FAO, Convention, Collectivités …) 0

10 Applications (essais thérapeutiques ou cliniques, AMM …) 0

11 Brevets 0

12 Publications d’atlas (cartes, photos) 0

13 Documents vidéo-films 0

14 DEA ou MASTER 2 ayant utilisé les données de la campagne 0

15 Thèses ayant utilisé les données de la campagne 0

16 Traitement des échantillons et des données en cours/terminé Si en cours, préciser et donner les échéances 17 Transmission au SISMER des données acquises avec les moyens communs du navire Non/Oui (NB : cette transmission est systématique dans le cadre des navires gérés par Genavir) Transmission au SISMER de données autres que celles acquises avec les moyens Non/Oui communs du navire 18 Transmission à d’autres banques de données Non/Oui

19 Transmission à d’autres équipes Non/Oui

20 Considérez-vous la publication des résultats terminée en cours/terminée Si en cours préciser et donner les échéances

Fournir pour chacune des rubriques en classant année par année : Rubriques 1 à 7 incluses : liste des publications et colloques avec les noms d’auteurs suivant la présentation en vigueur pour les revues scientifiques. Rubriques 8 à 13 : Liste des références des rapports, des applications, des brevets, atlas ou documents vidéo Rubriques 14 et 15 : Nom et Prénom des étudiants, Laboratoire d’accueil. Sujet du DEA ou MASTER 2 ou de la thèse, Date de soutenance Rubriques 17 à 19 incluses : données transmises à des banques de données ou à des équipes auxquelles. Rubrique 20 : Si la publication des résultats n’est pas terminée, pouvez-vous donner un échéancier ?

Add on to D12 97 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV

Références

R4 – Références des rapports techniques Rapport de mission BBMOMAR1, editeur W CRAWFORD Rapport de mission BBMOMAR2, editeur L BEGUERY

R20 – Liste des résultats restant à publier - échéance

Touts, inconnu

Add on to D12 98 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV Fiche “ Valorisation des résultats des campagnes océanographiques ” (à envoyer par courriel à [email protected] )

Nom de la série de campagnes: MOMAR’08 Leg 1

Projet ou programme de rattachement : MoMAR

Année du début de la série : 2007

Nom de la campagne : MOMAR’08 Leg 1 Navire : Atalante Engins lourds : Victor Dates de la campagne : 10-24 August 2008 Zone(s) : Atlantique Nord Nombre de jours sur zone/en transit : 13/2 Chef de mission principal (Nom, prénom et organisme) : ESCARTIN Javier, IPGP Nombre de chercheurs et d’enseignants-chercheurs (en mer / à terre) : 1 / +1 Nombre d’ingénieurs et de techniciens (en mer / à terre) : 3 / +0 Nombre d’étudiants (en mer / à terre) : 0 / 0

Fiche remplie par : ESCARTIN Javier Date de rédaction ou d’actualisation de la fiche : 15 janv 2009 Adresse : Geosciences Marines, Case 89 IPGP, 4 Place Jussieu, 75252 Paris Cedex 05, France Email : [email protected] Tel : 01 4427 4601 Fax : 01 4427 9969

Add on to D12 99 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV

Résultats majeurs obtenus 1 à 3 pages destinées à informer un large public sur les résultats obtenus

1 – Contexte scientifique et programmatique de la campagne

The monitoring of hydrothermal systems over long periods of times is necessary to understand the processes that take place, their feed backs, and their controls. Hydrothermal systems are responsible for a sizeable portion of the heat loss of the Earth, and are involved in important material and chemical exchanges between the deep earth and the surface. We focus our research on the Lucky Strke hydrothermal vent field, one of the biggest systems found to date and located along the slow-spreading mid- atlantic ridge. Here numerous vents are spread over an area of 1 km x 1 km, and include both high-temperature vents and zones of diffuse flow. We have initiated the instrumentation on the site to recover coincidental and complete time series, including pressure (tides), seismicity, temperature of fluids, and current meters. This effort is combine with hig-resolution mapping of the area and photo surveys to identify past and future changes in the distribution of hydrothermal outflows. This instrumental and monitoring effor is complemented with numerical modeling. All research is coordinated within the MoMAR program.

2 – Rappel des objectifs

The main goal is to obtain coincidental data from pressure gauges, seismometers, température sensors, and current meters. This is complemented by high-resolution geophysical mapping (near-bottom multibeam bathymetry), imagery (electronic still imagery and video), and sampling for geological, geochemical, and geomicrobiological studies of the Lucky Strike site. Monitoring was initiated in 2007 with the installation of seismometer, and continued in 2008 with the installation of both seismometers and pressure gauges. Technical problems prevented the deployment of temperaure sensors at the time. The full implementation of the project is thus planned for 2009, with recovery of instrumentation and data in 2010.

3 – Principaux résultats obtenus (avec quelques illustrations)

Instrumentation : We will recover the instruments installed in 2008 in the summer of 2009. Coincidental time series of seismicity, pressure, and température (partial deployment) will only be initiated in the Fall of 2009. Mapping : We have created a georeferenced photomosaic of the hydrothermal system from OTUS imagery acquired with VICTOR. This mosaic extends over an area of ~700x700 m and covers the main active vent areas. Image processing and georeferencing has been carried out with techniques developed in collaborations with the University of Girona (see Escartin et al., 2008). Multibeam bathymetry acquired with VICTOR is being processed at the present time, and results available for the 2009 Bathyluck’09 Cruise. Below we present a Small portion of this mosaic, covering an area of 60 m vertically and 45 m horizontally, where the hydrothermal slab (fractured) and several zones of hydrothermal venting are visible, and correspond to areas covered with white bacterial mats. This cruise also included a film crew for a TV documentary. Escartín, J., García, R., Delaunoy, O., Ferrer, J., Gracias, N., Elibol, A., Cufi, X., Neumann, L., Fornari, D.J., Humphris, S.E., and Renard, J., 2008, Globally-aligned photo mosaic of the Lucky Strike hydrothermal Vent Field (Mid-Atlantic Ridge, 37°18.5’N): release of geo-referenced data, mosaic construction and viewing software: Geochemistry, Geophysics, Geosystems, v. 9, p. Q12009, doi:10.1029/2008GC002204. Add on to D12 100 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV

Add on to D12 101 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV

Tableau récapitulatif

Nombre

1 Publications d’articles originaux dans des revues avec comité de lecture référencées Année n : 0 dans JCR (Journal Citation Reports ) Année n+1 : Année n+2 : Année n+3 : Année n+4 : Année n+5 : Année n+6 : Année n+7 : … 2 Publications dans d’autres revues ou ouvrages scientifiques faisant référence dans le 0 domaine 3 Publications électroniques sur le réseau Internet 0

4 Publications sous forme de rapports techniques 1

5 Articles dans des revues ou journaux « grand public » 0

6 Communications dans des colloques internationaux 0

7 Communications dans des colloques nationaux 0

8 Nouvelles espèces (animales, végétales, microorganismes) décrites 0

9 Rapports de contrats (Union européenne, FAO, Convention, Collectivités …) 0

10 Applications (essais thérapeutiques ou cliniques, AMM …) 0

11 Brevets 0

12 Publications d’atlas (cartes, photos) 0

13 Documents vidéo-films 0

14 DEA ou MASTER 2 ayant utilisé les données de la campagne 0

15 Thèses ayant utilisé les données de la campagne 0

16 Traitement des échantillons et des données en cours/terminé Si en cours, préciser et donner les échéances During 2009 17 Transmission au SISMER des données acquises avec les moyens communs du navire Non/Oui (NB : cette transmission est systématique dans le cadre des navires gérés par Genavir) Transmission au SISMER de données autres que celles acquises avec les moyens Non/Oui communs du navire 18 Transmission à d’autres banques de données Non/Oui

19 Transmission à d’autres équipes Non/Oui

20 Considérez-vous la publication des résultats terminée en cours/terminé Si en cours préciser et donner les échéances Submission of first results for publication before the end of 2009

Fournir pour chacune des rubriques en classant année par année : Rubriques 1 à 7 incluses : liste des publications et colloques avec les noms d’auteurs suivant la présentation en vigueur pour les revues scientifiques. Rubriques 8 à 13 : Liste des références des rapports, des applications, des brevets, atlas ou documents vidéo Add on to D12 102 Valorisation des campagnes à la mer Navires Ifremer - IRD - IPEV Rubriques 14 et 15 : Nom et Prénom des étudiants, Laboratoire d’accueil. Sujet du DEA ou MASTER 2 ou de la thèse, Date de soutenance Rubriques 17 à 19 incluses : données transmises à des banques de données ou à des équipes auxquelles. Rubrique 20 : Si la publication des résultats n’est pas terminée, pouvez-vous donner un échéancier ?

Références

R4 – Références des rapports techniques Rapport de mission MoMAR08 Leg1, editeur J. Escartin

R20 – Liste des résultats restant à publier - échéance

Mosaics and hydrothermal outflow variability – December 2009 Tectonic interprétation of high résolution Bathymetry – Summer 2010 Temperature, seismicity and pressure time series, corrélations and interprétation – December 2010 Add on to D12 103

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE)

Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems

Sub Priority: III – Global Change and Ecosystems

LOOME Demonstration Mission Deliverables D1 to D7

Due date of deliverable: February 2009 Actual submission date: April 2009

Start date of the Demonstration mission:Feb 2008 Duration: 36 months

Organisation name of lead contractor for this deliverable: MPI-MM Lead authors for this deliverable: Dirk de Beer

Revision [16 April 2009]

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services)

Add on to D12 104 Add on to D12 105

CONTENTS

EXECUTIVE SUMMARY ...... 5 1 INTRODUCTION...... 6 2 MAIN REPORT ...... 9 3 DELIVERABLE LIST ...... 9 4 CONCLUSIONS ...... 13 5 REFERENCES...... 14 APPENDICES ...... 15

Add on to D12 106 Add on to D12 107

EXECUTIVE SUMMARY

We will study the Hakon Mosby Mud Volcano during a period of 1 year. LOOME aims to record the series of events leading to an eruption, the events during an eruption and the relaxation after the eruption. We have instruments 'listening' down deep into the volcano by using acoustics, measuring subsurface pressure and T dynamics, measuring surface chemistry and T dynamics across the most active site and events in the water column by using sonar and CTD. The observatory is autonomous, and all instruments are independant from each other, although integration by wake-up calls and data storage of several instruments is done. Add on to D12 108

1 INTRODUCTION Methane is globally the largest reservoir of organic carbon. It is a powerful greenhouse gas and therefore the global budgeting of sources and sinks is of great importance. Searches for marine sources of methane are focused on deep-sea seepage through mud volcanoes and gas hydrate bearing sediments. It is thought that in these areas most methane transported towards the oxic biosphere is removed by anaerobic methane oxidation coupled to sulfate reduction (1-3, 6, 7). The efficiency of methane transport and oxidation in the seafloor are, however, still poorly constrained due to lack of understanding of the controlling factors. In spite of its effectiveness, anaerobic methane oxidation is very sluggish compared to other microbiologically catalyzed sediment processes and may allow the broad coexistence of sulfate and methane at turnover times of months to years (4). Special conditions, for example by high pore water flow or gas ebullition by excessive methane accumulation, enable the methane to escape up through the sulfate barrier (5). The Haakon Mosby consists of several more or less concentric habitats. The HMMV is ca 1200 m in diameter, and has max 10 m height. During several visits a concentric structure of habitats and geological structures was indentified. An outer ring of ca 300 m wide is supported by gas hydrates, and covered with Pogonophora worms. This is the most irregular surface. Here and there, gray mats occur, where hydrates have eroded. Further towards the center large Beggiatoa mats occur. The center is smooth and consists of gray mud. In the center the highest flow velocities occur, that gradually decrease outwards, and are probably close to zero in the hydrate zone.

Microbathymetric map from 2003. The actual west and east boundaries are indicated by arrows. The volcano is surrounded by a slight depression. The hilly area is the hydrate perifiy. The central area has few features.

. Add on to D12 109

The higher flow velocities in the center are reflected in the higher surface temperatures, and more specifically, in steeper near surface temperature gradients. A detailed study using temperature probes, showed that the steepest gradients, and thus the highest upoflow velocities, are present in an area of ca 40 m in diameter near the north side of the central area. From knowledge on transport phenomena we can understand the distribution of biota on the volcano (de Beer, Niemann). The high flow velocity in the center does not allow sulfate to penetrate into the Beggiatoa mats

Microbathymetric map from 2006, with a 10 times higher resolution. The hot center is indicated with a red circle. The X indicates the position of the graviticorer with attached temperature probes.

Add on to D12 110

From September 2005 till July 2006 a ca. 10 m long lance with 8 T-sensors was measuring continuously from a depth of ca 3 - 13 m. The temperature profiles were rather uneventfull until December 2005, when a drastic temperature decrease occurred from ca 27-29C to 20C in 1 day. Subsequently the temperature decreased gradually further to ca 17-19 C, with 3 further irregularities. In april a second event caused and increase of 4 C.

These spectacular phenomena show that the center of the HMMV is active and has irregular eruptions. In the same period, short T-sticks were inserted in the north of the central area. Of the 5 inserted 2 were never found back, which were placed in the hot spot. The 3 found back were placed outside the hot spot. Upon close inspection of the photos made by the ROV, the area that we suspect to be very active has some distinct surface features: small cracks, and frequent small pockmarks of 2 cm diameter. All these observations allow a rather precise localization of the hot spot.

Close comparative inspection of the maps from 2003 and 2006 indicate significant reallocation of surface features, i.e. mudflow roughly originating from the most active center.

We to observe the series of events, to better understand the phenomena, make an estimate of the magnitude of the event, and the effects on the seafloor. We planned a detailed investigation of the surface dynamics, to follow the sequence of events before, during and after an eruption. For this, we must measure various parameters in this area at the surface during long term observations along a transect crossing the hot spot. The parameters would be measured over transects across the active zone. The following parameters will be measured:

1) chemical (redox, O2, pH, at 6 locations, each unit with the 3 sensor types are connected with separate cable). Deep porewater is free of oxygen, has a low redox potential and a pH <7.0. Increased upflow will be visible at the surface as all parameters will go down in value. 2) T (several T-sticks, and a T-string) The temperature will increase, maybe simultaneously with chemical parameters, but it could be that temperature reacts faster. Add on to D12 111

3) geo-acoustics We expect that mud movements will give an early warning, and preceed eruptions. 4) sonar to detect gas plume, methane sensor for dissolved methane 5) CTD

2 MAIN REPORT

The remaining partners are the KDM (Marum, IFM-GEOMAR, MPI), Ifremer, and UiT. We have purchased all instruments, tested them, are working still on the integration of sonar, T-sensors and COSTOFF. The platform is almost ready, the organization of the deployment cruise is ongoing.

3 DELIVERABLE LIST d1 the geophones are deployed since oct 2008 During the R/V Jan Mayen cruise (20610 to 24-10-08) a multi-component Ocean Bottom Seismometer (OBS),was deployed to record seismic recordable events from October 2008 to July 2009. The multi-component Ocean Bottom Seismometer (OBS) was deployed in approx. 1257 m water depth at the northern area inside the HMMV. The OBS system used during this survey of the HMMV is a KUM design and was purchased by the Department of Geology of the University of Tromsø . It is an autonomous sea floor recording platform, designed to record both, compressional and shear waves reflected and refracted through the sediments. It consists of a titanium frame with buoyancy made of syntactic foam, a KUMQUAT acoustic release system2, and a digital data recorder3 in a separate pressure case1. A hydrophone and a 3-component geophone1 are used to record the seismic wavefield. The Tromsø OBS has a 4.5 Hz geophone attached. While the hydrophone is fixed to the frame of the OBS, the geophone is detached from it. This design insures that the geophone is mechanically decoupled from the frame, to avoid noise generated by the frame being recorded by the geophone. The whole system is rated for a water depth of up to 6000 m. The OBS is attached to a ground weight via the acoustic release system, to make it sink to the sea floor after deployment. When the seismic experiment is completed, the OBS is released from its ground weight by sending an acoustic code and it rises to the sea surface by its buoyancy.

Add on to D12 112

The Ocean Bottom Seismometer (OBS) system (UiT including geophone, buoyancy, recorder, acoustic releaser, sender and flash light, and weight.

The Marine Longtime Seismocorder (MLS) manufactured by Send GmbH is optimised for acquisition of seismic signals in marine long term applications. Up to four input channels may be processed. Each channel is digitised using a sigma-delta A/D converter producing a 16-bit signed digital data. After application of a digital decimation low-pass filter and data compression, the samples are saved on PCMCIA storage cards together with timing information. Up to 12 storage cards may be used, which leads to presently up to 12 GB of memory. The data logger contains a time oscillator with accuracy better than 10-7. The time oscillator is synchronised at the beginning and end of each experiment via the DCF77 code from a GPS receiver, thus enabling to measure any time drift of the oscillator. A sample rate between 1Hz and 200 Hz can be selected which leads to a recording time of at least 87 days at a sampling rate of 200 Hz with 12 GB of memory using four channels, data compression not taken into account. The MLS recorder has a power consumption of 230-250 mW during recording. The OBS system was prepared and programmed prior to deployment. A sampling frequency of 50 Hz was chosen for the measurement leading to a recording time of 289 days using 10 GB of PCMCIA storage capacity. A lithium battery pack was used to ensure a sufficient power supply during the measure period of about 10 months. The first channel records the hydrophone data, while channel two, three and four are connected to horizontal and vertical components of the geophone. The location was selected based on previous investigations (see figure 2) and on the results from previously collected temperature profiles.

d2 the long term chemical sensors are tested. We did no longer include the sulfide sensors, due to the budget cuts and removed the colonizer and sulfide experiment.

Add on to D12 113

d3 the surface T-sensors are bought and tested. The P and T lances are deployed since Oct 2008 The aim is to monitor the mud temperature at HMMV. The mud temperature at a mud volcano is anomalously high as a result of the freshness of a mud eruption or more frequently as a consequence of warm fluids rising through the mud volcano feeder conduit from depth. Monitoring the mud temperature therefore provides important information on time changes in the activity of the volcano. A 10m lance specifically designed to measure temperature in the soft erupted mud of the Håkon Mosby mud volcano was deployed as part of the Jan Mayen LOOME cruise. The lance comprises a core barrel on which thermometers have been attached on outriggers at regular intervals of l.40 m (Figure). Thermometers are self-recording NKE-manufactured thermistor temperature sensors accurately calibrated in the Ifremer laboratory prior to the cruise. Measurements have an accuracy of a few millidegrees. A corer head of 400 kg drives the lance into the mud. A total of seven thermometers are mounted along the lance itself (figure ) and one at the top of the corer head.

T-lance equipped with thermometers mounted on outriggers along the external wall of the pipe at intervals of 1.40 m. Picture taken on-board the RV Jan Mayen prior to deployment.

Long term pore fluid pressure observation are also running. The goal is to monitor pore fluid pressure at HMMV. The piezometer (P-lance) is designed to measure the differential fluid pressure between the mud and the bottom sea water (Figure 6). Monitoring the pore fluid pressure at HMMV aims to detect fluid events affecting the mud volcano. By fluid event, it is meant a rapid change of the pore fluid pressure in the mud of the volcano that may indicate a major mud and/or fluid movement, including a mud eruption or mud flow activity, or a fluid outburst. The Ifremer P-lance deployed during the LOOME cruise at the centre of the Håkon Mosby mud volcano measures the differential pressure at 5 depths below the seafloor, namely 0.5, 3.5, 5.0, 6.5 and 8 m below the seafloor. Each sensor has its own data logger, thus making measurements at each sensor electronically decoupled from measurements at other sensors. A low resolution thermal sensor is included inside the lance at each depth of pressure measurement. The temperature data is also sampled Add on to D12 114

by the logger of the pressure data at this depth. The total weight of the P-lance is 750 kg. Pore fluid differential pressures and temperatures at the five depths of measurements are sampled every 4 mn. Pressure sensor specifications: Range of measurement (differential pressure) 0-350 KPa Maximum in situ fluid pressure at measurement site 60 MPa Resolution ± 0,2 KPa Cumulated repeatability, hysteresis, non-linearity ± 0,18 KPa Temperature sensor: Range of measurement 0-35°C Resolution 0.01°C

Picture captions from top left to bottom right: 1. P-lance being assembled in its rotating frame prior to deployment. 2. P-lance head in its rotating frame. 3. P-lance soon to be deployed. 4. P-lance being deployed from the RV Jan Mayen.

d4 the scanning sonar is ready The echosounder provides an echogram that contains information about the acoustical values, which are given in colour scales. The colour allows to visualize the echo strength. Distinct changes in echo strength allow to detect plumes in the water column though the size of individual bubbles is unknown. A quantification of plumes and their gas content may be feasible in the future but not at present. However, the plume detection in the water column already helps to infer gas releases and target areas at the seabed. Add on to D12 115

Gas plume above the HMMV in October 2008 as seen in the 18kHz “plumefinder”echolot. Note that the plume has no horizontal deviations indicating weak currents during thetime of the recording. d5 the platform is designed and almost ready d6 the deployment and recovery is planned d7 underwater communication is ready. Due to the cuts we could no longer connect all instruments. We included an contactless communication device between Costoff and ROV.

Contact-Less Serial Interface

4 CONCLUSIONS The construction and deployment are well on track. The recovery still needs to be organized.

Add on to D12 116

5 REFERENCES

1. Boetius, A., K. Ravenschlag, C. Schubert, D. Rickert, F. Widdel, A. Gieseke, R. Amann, B. B. Jørgensen, U. Witte, and O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623- 626. 2. de Beer, D., E. Sauter, H. Niemann, N. Kaul, J. P. Foucher, U. Witte, M. Schlüter, and A. Boetius. 2006. In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano. Limnol. Oceanogr. 51:1315-1331. 3. Elvert, M., E. C. Hopmans, T. Treude, A. Boetius, and E. Suess. 2005. Spatial variations of methanotrophic consortia at cold methane seeps: imnplications from a high-resolution molecular and isotopic approach. Geobiology 3:195-209. 4. Jørgensen, B. B., A. Weber, and J. Zopfi. 2001. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Res. 48:2097-2120. 5. Martens, C. S., and J. V. Klump. 1980. Biogeochemical cycling in an organic-rich coastal marine basin. I. Methane sediment-water exchange processes. Geoch.Cosmoc.Acta 44:471-490. 6. Michaelis, W., R. Seifert, K. Nauhaus, T. Treude, V. Thiel, M. Blumenberg, K. Knittel, A. Gieseke, K. Peterknecht, T. Pape, A. Boetius, R. Amann, B. B. Jørgensen, F. Widdel, J. Peckmann, N. V. Pimenov, and M. B. Gulin. 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013-1015. 7. Treude, T., M. Krüger, A. Boetius, and B. B. Jørgensen. 2005. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckenfoerde Bay (German Baltic). Limnol. Oceanogr. 50:1771-1786.

Add on to D12 117

APPENDICES Add on to D12 118 1

Cruise Report LOOME – PART1 ESONET DEMONSTRATION MISSION 20-10-08 to 24-10-08 Tromsø – Longyearbyen R/V Jan Mayen

1 Add on to D12 119 2

1Institutt for Geologi, Dramsveien 201 Universitetet i Tromsø, Norway

2 IFREMER, Brest France

1Juergen Mienert (chief scientist),

1Joerg Petersen, 1Steinar Iversen, 1Martin Hansen, 2Jean-Paul Foucher, 2Ronan Apprioual, 2Francois Harmegnies,

2 Add on to D12 120 3

Table of contents

INTRODUCTION AND OBJECTIVES 4 WORKING AREA 6

TECHNOLOGY 9 Long term seismic observation Long term temperature observation Long term pore fluid pressure observation

NARRATIVE OF THE CRUISE 13

PRELIMINARY RESULTS 14 - HMMV plume indications using 18kHz

OPERATIONS 16 ACKNOWLEDGEMENT & REFERENCES 17

LIST OF PARTICIPANTS

STATION LIST

3 Add on to D12 121 4

INTRODUCTION AND OBJECTIVES

The Håkon Mosby Mud Volcano (HMMV) is one of the most active cold seep systems documented, and intensively investigated during the last decade. Since 2001 the HMMV has been investigated by a collaboration of Norwegian, French and German scientists, and has been visited at least once per year since 2001. The research was aimed to describe physical phenomena, the chemistry of the seep, and the habitat distribution for microorganisms, and meio- and macrofauna. The 3 disciplines were highly integrated to obtain a coherent concept of the volcano. Data on topography dynamics, fluid and gas flow, hydrate distribution, temperature distributions, geochemical analyses, microbial rate measurements and microbial community descriptions, together with habitat descriptions using meiofauna and video mapping have lead to a coherent view of the system.

Yearly cruises by particularly Norwegian, French and German teams have greatly contributed to understanding the heterogeneity and diversity of its associated live habitat, and to fluid transport phenomena within the cold seep. During these visits the seep gave the impression of a quiet and continuous process. However, we have strong evidence from micro bathymetric images, and from a unique continuous temperature record spanning 9 months that irregular outbursts of mud volcanism occur in the central area. During such outburst large amounts of mud must get suspended, driven by a large outflow of methane. This will have at least local consequences for the sediment structure and live in the eruption area, and a large amount of methane is released into the seawater, possibly reaching even the atmosphere.

During LOOME deployments, we carry out detailed investigations of the dynamics within the sediment surface, to follow the sequence of eruption events. Measureing the effects of the eruption on the geology, topography, meiofauna and microbiology of the seafloor allow to evaluate natural environmental impacts. For this, we must measure various physical, chemical and biological parameters in the HMMV at the surface during long term observations at the hot spot, and determine essential parameters in the water phase.

The RV Jan Mayen cruise is the 1st part of the LOOME ESONET demonstration mission at the Nordic margin. We plan to make long-term observations, and measure a range of parameters that are important to understand the phenomena occurring before, during and after an eruption, which most likely will occur again at this hot spot. The complete observatory will be equipped with dedicated instruments that can measure autonomously and reliably for at least 12 months. The observatory will integrate a carefully selected number of sensing devices to optimally record eruptive phenomena. Technical descriptions of the units that are more detailed can be made available. The units are partially purchased by the partners, custom made for this project, or are in possession of the partners.

4 Add on to D12 122 5

The 1st part of the observations includes:

1) a multicomponent ocean bottom seismometer, with 3 channels for seismometers and 1 for a hydrophone, to detect mud and fluid eruption events, and its precursory phenomena, like mud movement at depth (Figure 4). The Department of Geology at UiT owns the unit. 2) a Piezometer to measure the pore pressure in the sub seabed (Figure Ifremer owns the unit. 3) a temperature Lance in the sub seabed (Figure 6). Ifremer owns the unit.

During the 1st part, the instruments 1), 2) and 3) operate autonomously over a period of ~ 1 year.

During the 2nd part that will take place on the RV Polarstern cruise in July 2009,

1) a string of 24 temperature sensors which will be laid out over the hot spot, and measure temperature every 15 minutes. The IfM-Geomar will purchase this unit. 2) an array of sensors that will measure DO, pH and OPR at 6 positions at the sediments surface, with an interval of 15 minutes. The MPI will purchase this unit. As the rising fluids will be warm, anoxic, acidic and have a low OPR, we expect that the latter 2 units will record the actual eruption at the surface. 3) Acoustic sensors to record the plume, being and ADCP that scans vertically over a distance of 100 m and a scanning sonar that can scan over a horizontal distance of ca 50 m. Marum owns these units. 4) a digital camera. The AWI owns this unit. 5) a methane sensor is considered 6) an acoustic flare sensor is considered.

In addition a redeployment of the 3 instruments from the 1st part of LOOME is planned.

During the 2nd part, the acoustic sensors and the camera must most actively record during the eruption with high frequency. As such intensive operation is not possible during a year, we consider the use of the seismometer to give early warnings, as a wake-up call for these instruments.

The data generated by all instruments will be regularly down-loaded in 3 data-cylinders, via optical fibres. Each of these data cylinders can be released by a passing ship, and data can become available at regular intervals during the year of deployment.

5 Add on to D12 123 6

To assess the effect of the eruption, before and after events, geochemical and biological analyses of the sediments in and near the hot spot will be made. Also colonization experiments will be conducted, by deploying pieces of wood, near which continuously pH and sulphide will be measured, by an additional set of sensors. Furthermore, the change in topography will be followed by recording a bathymetric map before and after the observation period.

WORKING AREA

The HMMV is at approx. 1250 m water depth, has a diameter of approx. 1200 m, and has a height of max 10 m at the outer rim. The volcano connects to the deep geosphere at over 3000 mbsf, from where warm methane-rich fluids slowly are pressed upwards towards the cold seafloor. If the opening of the HMMV is cool enough to allow methane hydrates to form, a ring with an outer diameter of 1200 m and a wall thickness of 200-300 m forms. This hydrate-rich ring is lighter than the surrounding sediments, thus lifts the volcano edge to 10 m above the seafloor. It erodes patch-wise and intermittently at the surface, while growing at the base and inside supplied by methane from of cooling and rising fluids. The sediments in a ring of ca 100-200 m outside the HMMV are slightly depressed.

Figure 1: Location map of the Barents Sea margin, Continent-Ocean Boundary (COB) and HMMV site (after Hjelstuen et al., 1999).

6 Add on to D12 124 7

Figure 2: Bathymetry map of the HMMV from 2003 (courtesy, J.-P- Foucher, Ifremer). The position of the previous temperature lance is indicated by a star. The three instruments of LOOME 1st part are all located in the northern part of the HMMV caldera (red circle).

At the surface, the Haakon Mosby consists of several more or less concentric domains. By using the microbathymetry of a sonar system on the French ROV Victor, 2 highly detailed maps were produced, one in 2003 (figure 2) and one in 2006. The existence of an outer ring of approx. 300 m width is supported by gas hydrate sampling, and colonized aeas of symbiontic Pogonophora worms. This is the most irregular surface. Patches of gray mats occur (figure 3), where hydrates have eroded. Further to the centre large areas are covered by Beggiatoa mats. The centre is smooth and consists of gray mud. Using high resolution video mapping, large parts of the surface were mapped for ecological habitats.

Figure 3: Methane plume in the water column (right) and a seep seen on the seabed (left).

7 Add on to D12 125 8

The water column above the HMMV is enriched in methane, and fishery sonar images suggest the presence of a methane plume extending from the seafloor to ca 600 m below the sea surface (Fig. 3, right). Occasionally, at the seafloor methane bubbling was observed (Fig. 3, left). Such seepage will very strongly contribute to the methane release. However, mysteriously, these seeps are very rarely found, often disappear, whereas the tentative methane plume is a constant phenomenon. Possibly, the source for the plume is more diffuse.

By combining temperature measurements, geochemical and microbiological studies, a close relation between geochemistry and habitat developments was observed. Assuming this relation is controlled by mass transfer phenomena, upflow velocities could be inferred from modelling. The highest flow velocities occur inside the HMMV but gradually decrease outwards, and are probably close to zero in the hydrate zone. The higher flow velocities in the centre are reflected in the higher surface temperatures, and more precisely, in steeper near- surface temperature gradients. The distribution of biological habitats and upflow velocities are closely related. In the centre, the upflow velocities are too high (3-6 m/year) to allow sulphate to penetrate the sediments. Thus no AOM (anaerobic methane oxidation)can occur, and thus no sulphide is formed, which is the basis of the rich deep-sea chemoautotrophic ecosystems. Only aerobic methane oxidation was observed, a low-yield metabolic process. Much of the methane rising up in the central area escapes into the water column possibly contributing to the plume. Further outwards the flow velocities decrease (0.3-1 m/year), allowing sulphate to penetrate into the sediment and methane is oxidised efficiently by AOM under production of sulphide. The sulphide is oxidized anaerobically and aerobically by Beggiatoa, leading to a rich biological community. On the outer hydrate zone the upward flow is largely blocked by the hydrates and here the Pogonophora worms mine deep into the sediments, pumping sulphate to the hydrates, thus stimulating AOM at over 50 cm depth. The worms, gardeners of AOM, obtain energy by aerobically oxidising the formed sulphide.

Recently, a significantly different 4th domain was recognized. A detailed study using temperature probes, showed very local extremely steep T-gradients, and thus extremely high upflow velocities, in an area of ca 40 m in diameter near the northern side of the central area. The upflow velocities may exceed 40 m/year, which is above the stability threshold. At such velocities, channelling of the sediments will occur, as indeed is observed near this area. The seafloor presents a rather regularly distributed pattern of small 1-2 cm diameter pockmarks, 10-15 cm apart. Secondly, eruptions may occur. During a 9 month long deployment of a temperature lance, equipped with 8 temperature sensors over a length of 15 m, dramatic temperature fluctuations occurred. The lance was deployed just next to the hot spot as found by short temperature probes (sticks). The first 3 months of the deployment, only a gradual decrease in temperature at the deepest point was seen. Then a drastic change in the temperatures occurred. Within 36 hours, the temperature increased suddenly, and then the temperature along the whole lance decreased rapidly, leaving an inverted T-profile, with lower temperatures near the sediment surface. Such a drastic change and inversion of the sediment structure over a depth of 15 m is caused by a major eruption. This eruption will have lead to a major loss of methane, exposure of previously deeper buried sediment layers and horizontal transfer of mud. It is this phenomenon that we aim to document in detail, and its consequences for benthic life and chemistry. In the same period, short T-sticks were inserted in the north of the central area. Of the 5 inserted 2 were never found back, which were placed in the hot spot. The 3 found back were placed outside the hot spot. Upon close inspection of the photos made by the ROV, the area that we suspect to be very active has some distinct surface features: small cracks, and frequent small pockmarks of 2 cm diameter. All these observations allow a rather precise localization of the hot spot. These observations strongly

8 Add on to D12 126 9 point to the hot spot as a site of regular eruptions, which is a key area for long term multidisciplinary observations.

TECHNOLOGY

Long term seismic observation During this cruise a multi-component Ocean Bottom Seismometer (OBS), was deployed to record seismic recordable events from October 2008 to July 2009. The multi-component Ocean Bottom Seismometer (OBS) was deployed in approx. 1257 m water depth at the northern area inside the HMMV. The OBS system used during this survey of the HMMV is a KUM design and was purchased by the Department of Geology of the University of Tromsø (Figure 4). It is an autonomous sea floor recording platform, designed to record both, compressional and shear waves reflected and refracted through the sediments. It consists of a titanium frame with buoyancy made of syntactic foam1, a KUMQUAT acoustic release system2, and a digital data recorder3 in a separate pressure case1. A hydrophone and a 3-component geophone1 are used to record the seismic wavefield. The Tromsø OBS has a 4.5 Hz geophone attached. While the hydrophone is fixed to the frame of the OBS, the geophone is detached from it. This design insures that the geophone is mechanically decoupled from the frame, to avoid noise generated by the frame being recorded by the geophone. The whole system is rated for a water depth of up to 6000 m. The OBS is attached to a ground weight via the acoustic release system, to make it sink to the sea floor after deployment. When the seismic experiment is completed, the OBS is released from its ground weight by sending an acoustic code and it rises to the sea surface by its buoyancy.

Geophone

Acoustic release

Sender and Flash Light Buoyancy

Recorder

Figure 4: The Ocean Bottom Seismometer (OBS) system (UiT including geophone, buoyancy, recorder, acoustic releaser, sender and flash light, and weight.

1 www.kum-kiel.de, 2www.oceano-instruments.fr, 3www.send.de

9 Add on to D12 127 10

The Marine Longtime Seismocorder (MLS) manufactured by Send GmbH is optimised for acquisition of seismic signals in marine long term applications. Up to four input channels may be processed. Each channel is digitised using a sigma-delta A/D converter producing a 16-bit signed digital data. After application of a digital decimation low-pass filter and data compression, the samples are saved on PCMCIA storage cards together with timing information. Up to 12 storage cards may be used, which leads to presently up to 12 GB of memory. The data logger contains a time oscillator with accuracy better than 10-7. The time oscillator is synchronised at the beginning and end of each experiment via the DCF77 code from a GPS receiver, thus enabling to measure any time drift of the oscillator. A sample rate between 1Hz and 200 Hz can be selected which leads to a recording time of at least 87 days at a sampling rate of 200 Hz with 12 GB of memory using four channels, data compression not taken into account. The MLS recorder has a power consumption of 230-250 mW during recording.

The OBS system was prepared and programmed prior to deployment. A sampling frequency of 50 Hz was chosen for the measurement leading to a recording time of 289 days using 10 GB of PCMCIA storage capacity. A lithium battery pack was used to ensure a sufficient power supply during the measure period of about 10 months. The first channel records the hydrophone data, while channel two, three and four are connected to horizontal and vertical components of the geophone. The location was selected based on previous investigations (see figure 2) and on the results from previously collected temperature profiles.

Long term temperature observation The aim is to monitor the mud temperature at HMMV. The mud temperature at a mud volcano is anomalously high as a result of the freshness of a mud eruption or more frequently as a consequence of warm fluids rising through the mud volcano feeder conduit from depth. Monitoring the mud temperature therefore provides important information on time changes in the activity of the volcano.

A 10m lance specifically designed to measure temperature in the soft erupted mud of the Håkon Mosby mud volcano was deployed as part of the Jan Mayen LOOME cruise (Figure 5). The lance comprises a core barrel on which thermometers have been attached on outriggers at regular intervals of l.40 m (Figure 5). Thermometers are self-recording NKE-manufactured thermistor temperature sensors accurately calibrated in the Ifremer laboratory prior to the cruise. Measurements have an accuracy of a few milli- degrees. A corer head of 400 kg drives the lance into the mud. A total of seven thermometers are mounted along the lance itself (figure 5) and one at the top of the corer head.

10 Add on to D12 128 11

Figure 5: T-lance equipped with thermometers mounted on outriggers along the external wall of the pipe at intervals of 1.40 m. Picture taken on-board the RV Jan Mayen prior to deployment.

Long term pore fluid pressure observation The goal is to monitor pore fluid pressure at HMMV. The piezometer (P-lance) is designed to measure the differential fluid pressure between the mud and the bottom sea water (Figure 6). Monitoring the pore fluid pressure at HMMV aims to detect fluid events affecting the mud volcano. By fluid event, it is meant a rapid change of the pore fluid pressure in the mud of the volcano that may indicate a major mud and/or fluid movement, including a mud eruption or mud flow activity, or a fluid outburst.

The Ifremer P-lance deployed during the LOOME cruise at the centre of the Håkon Mosby mud volcano measures the differential pressure at 5 depths below the seafloor, namely 0.5, 3.5, 5.0, 6.5 and 8 m below the seafloor. Each sensor has its own data logger, thus making measurements at each sensor electronically decoupled from measurements at other sensors. A low- resolution thermal sensor is included inside the lance at each depth of pressure measurement. The temperature data is also sampled by the logger of the pressure data at this depth. The total weight of the P-lance is 750 kg. Pore fluid differential pressures and temperatures at the five depths of measurements are sampled every 4 mn.

Pressure sensor specifications: Range of measurement (differential pressure) 0-350 KPa Maximum in situ fluid pressure at measurement site 60 MPa Resolution ± 0,2 KPa Cumulated repeatability, hysteresis, non-linearity ± 0,18 KPa Temperature sensor: Range of measurement 0-35°C Resolution 0.01°C

11 Add on to D12 129 12

Figure 6: Picture captions from top left to bottom right: 1. P-lance being assembled in its rotating frame prior to deployment. 2. P-lance head in its rotating frame. 3. P-lance soon to be deployed. 4. P-lance being deployed from the RV Jan Mayen.

Kongsberg SIMRAD 18kHz “plumefinder” The echosounder provides an echogram that contains information about the acoustical values, which are given in colour scales. The colour allows to visualize the echo strength. Distinct changes in echo strength allow to detect plumes in the water column though the size of individual bubbles is unknown. A quantification of plumes and their gas content may be feasible in the future but not at present. However, the plume detection in the water column already helps to infer gas releases and target areas at the seabed.

Narrative of the cruise (20.10 - 24.10.08)

Times in this report are given in local time (local time -2 hrs = UTC), ship logs are given in UTC time. The weather varied between Bft 4 and 5. The Multibeam (MB) Kongsberg SIMRAD EM300, Echolot 18 kHz, and GPS Navigation are working parallel during the cruise. The piezometer, temperature probe and the multi-component ocean bottom seismometer have been deployed at one location at the HMMV with an uncertainty of approx. +- 50 m.

12 Add on to D12 130 13

Monday, 20.10.

08:30 Scientific crew embarks in Tromsø, Equipment from Ifremer, KUM GmbH and Marum was loaded on board Jan Mayen. The set up of equipment on the afterdeck and geophysical laboratory preparation started. 18:00 R/V Jan Mayen left Tromsø and she starts her journey, sailing in relatively stable northern pressure condition to the target area, the Haakon Mosby Mud Volcano on the Barents-Sea continental margin. Transit time from Tromsø to the HMMV is estimated to be 20 hrs. Multibeam is running on Transit. 20:00 Mounting the Pore pressure probe, and preparing the cable connections for the temperature probe recording. Multi-component Ocean Bottom Seismometers (OBS) is assembled and GPS triggering tested.

Tuesday, 21.10

08:30 Assembling the Pore pressure probe on the piston corer frame and the temperature probe and the OBS on the afterdeck 12:45 Arriving at HMMV observatory station 14 43’ 35’’ E, 72 00’ 18’’ N (14 43.583 E, 72 00.300 N), 1257 m water depths 13:40 STNr 450 : CTD station and acoustic releaser test of pore pressure Lance and OBS, Mailfunctioning of Pore pressure Lance release but second test worked. 17:00 STNr 451: Deployment of pore pressure probe. Located between 72 00.299 N, 14 43.587 E and 72 00.310, 14 43.659, Acoustic release does not give signal EXECUTED, but wire load shows equipment must be in the seabed. 18:00 Wire on board shows release did work and Pore pressure instrument deployment worked. 18:30 Assembling of Temperature Lance for deployment at the same position. 19:30 Start deployment T-Lance 20:00 STNr 452: T-Lance on the bottom between 72 00.308 N, 14 43.571 E and 72 00.317 N, 14 43.568 22:15 STNr 453: OBS released from the surface at 72 00.314 N, 14 43.523 E, range measurements give a water depth of 1290 m. Range measurements increases due to increasing distance of the OBS from the ship that is westward drifting. 23:30 Leaving the HMMV

Wednesday, 22.10. STEAMING TO LONGYEARBYEN Thursday, 23.10. STEAMING TO LONGYEARBYEN17:00 ARRIVING AT LONGYEARBYEN, SVALBARD

13 Add on to D12 131 14

PRELIMINARY RESULTS

The Plume of the HMMV Acoustic imaging of gas plumes at the HMMV (see Figures 4 and 5) allows to trace gas in the water column. The 18 kHz echo sounder indentified a gas plume that exists in the northern part of the HMMV over a period of several years from 1998 to 2008 (Figure 7 shows the plume of July 2005). The plume of 2005 is bowed because appreciable bottom water currents are likely to influence its shape. In addition, a plume was separated from the major plume, and was drifting within the water mass. The plume of 2008 is different, it has a cigar like shape that can be followed easily from the seabed at 1257 m to a height of 400 m above the seabed (figure 8). The plume width of approx. 300 m indicates a large but focussed outflow from the seabed. The area where it penetrates the seabed shows no particular sign of disruption but this may depend on the acoustic resolution.

Figure 7. Gas plumes above the HMMV in July 2005 as seen in the 18kHz fishfinder echolot. Note the bow of the plume and the floating separated plume due to the currents.

Figure 8. Gas plume above the HMMV in October 2008 as seen in the 18kHz “plumefinder” echolot. Note that the plume has no horizontal deviations indicating weak currents during the time of the recording.

14 Add on to D12 132 15

OPERATIONS

Station Protocol of HMMV OBS long term station:

15 Add on to D12 133 16

Acknowledgements

We are grateful to the captain and his crew for their support during this 1st part of the ESONET LOOME seafloor observatory deployment. The research was funded by the European Union project ESONET (…………).

List of Participant

Scientific Crew: Institutes

Juergen MIENERT, Professor, University of Tromsø, Norway Chief scientist [email protected]

Steinar IVERSEN, engineer, University of Tromsø, Norway [email protected]

Joerg PETERSEN, PhD, University of Tromsø, Norway [email protected]

Martin HANSEN, engineer, Kum GmbH Kiel, Germany

Jean-Paul FOUCHER, PhD, IFREMER, France [email protected]

Ronan APPRIOUAL, engineer, IFREMER, France [email protected]

Francois HARMEGNIES, engineer, IFREMER, France [email protected]

References

Kongsberg Simrad, 2002. EM300 Multibeam echo sounder - Operator manual. Pp. 385. Kongsberg Maritime, 2004. EM300 Multistråle Ekkolodd, For Universitetet I tromsø. Quotation HOR-04024.

16 Add on to D12 134 17

Depth Date Station type UTC-time StNR. Latitude Longitude (uncorr.) 21.10 CTD 11:40 450 72 o 00.592 N 14 o 42.936 E 1256 21.10 Pressure Probe 19:55 451 72o 00.299’ N 14o 43.587’ E 1256 21.10 Temperature Lance (with beacon) 21:40 452 72o 00.308’ N 14o 43.571’ E 1256 21.10 Ocean Bottom Seismometer 22:19 453 72o 00.314’ N 14o 43.523’ E 1263 21.10. Plume 23:00 72o 00.268’N 14o 43.712’E 1256-850

Table 1. Station list of observatory locations with an uncertainty of +- 50m. Note that only the temperature lance has a beacon for ROV detection.

17 Add on to D12 135 18

18 Add on to D12 136 19

Figure 6: Plot of CTD stations from years 2008 (stnr 0450) and 2005 (stnr 035 – 036)

19 Add on to D12 137 15

OPERATIONS

Station Protocol of HMMV OBS long term station:

15 Add on to D12 138 17

Depth Date Station type UTC-time StNR. Latitude Longitude (uncorr.) 21.10 CTD 11:40 450 72 o 00.592 N 14 o 42.936 E 1256 21.10 Pressure Probe 19:55 451 72o 00.299’ N 14o 43.587’ E 1256 21.10 Temperature Lance (with beacon) 21:40 452 72o 00.308’ N 14o 43.571’ E 1256 21.10 Ocean Bottom Seismometer 22:19 453 72o 00.314’ N 14o 43.523’ E 1263 21.10. Plume 23:00 72o 00.268’N 14o 43.712’E 1256-850

Table 1. Station list of observatory locations with an uncertainty of +- 50m. Note that only the temperature lance has a beacon for ROV detection.

17 Add on to D12 139 18

18 Add on to D12 140 19

Figure 6: Plot of CTD stations from years 2008 (stnr 0450) and 2005 (stnr 035 – 036)

19 Add on to D12 141

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE)

Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems

Sub Priority: III – Global Change and Ecosystems

ESONET WP4 – DEMONSTRATION MISSIONS

LIDO – Listening to Deep Ocean

Deliverables D1.1 – D1.2 – D1.4 – D1.5 – D4.1 – D4.2 – D5.1

Due date of deliverable: Actual submission date: April 2009

Start date of project: March 2007 Duration: 48 months

Organisation name of lead contractor for this deliverable: TECNOMARE Lead authors for this deliverable:

Revision [April 2009]

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

Add on to D12 142

Add on to D12 143

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE) Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems Sub Priority: III – Global Change and Ecosystems

ESONET WP4- DEMONSTRATION MISSIONS

LIDO – LIstening to Deep Ocean

DELIVERABLE D 1.1 Procedures for sea operations: recovery and deployment of SN-1 and Onde stations (East Sicily)

Due date of deliverable: October 2008 Actual submission date: April 2009

Start date of LIDO DM: September 2008 Duration: 24 months

Organisation name of lead contractor for this deliverable: INFN Lead authors for this deliverable: Giorgio Riccobene

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

1

Add on to D12 144

Add on to D12 145

CONTENTS

EXECUTIVE SUMMARY 1

1 INTRODUCTION 1

2 RECOVERY OPERATIONS OF NEMO-OnDE and SN1 3

3 GENERAL PLAN FOR LIDO EAST SICILY DEPLOYMENT 6

REFERENCES 7

2

Add on to D12 146

Add on to D12 147

EXECUTIVE SUMMARY The present report refers to the enhancement to be applied to the NEMO-SN1 observatory in order to perform the LIDO pilot experiment. This experiment involves two ESONET key- sites and has the aim to establish a first nucleus of regional observatory network in the Eastern Sicily site (NEMO-SN1) and the Iberian Margin site (GEOSTAR). This deliverable is one of the reference documents for the new installation (deployment and cable connection) of the observatory in the Eastern Sicily ESONET key-site. The report deals with: - the detailed description of the recovery operations of the cabled observatory NEMO-SN1 performed off-shore Eastern Sicily in April 2008; - A general sea-operation plan and schedule for the new deployment offshore East Sicily

1 INTRODUCTION

The NEMO-SN1 observatory was established in the frame of a MoU between INGV and INFN as a result of the synergy of activities devoted to the geophysical monitoring of one of the most risky Mediterranean areas for earthquakes and tsunamis (INGV) and a pilot experiment for the realisation and operation of a prototype of submarine neutrino telescope (INFN). The observatory includes a submarine module for the characterization of the ambient noise (NEMO-OnDE station), a prototype of neutrino telescope, and the SN1 geophysical and oceanographic observatory. Both the SN1 [1] and the NEMO-OnDE [2] stations had been deployed in late January 2005 in the East-Sicily Esonet Site (hereafter Test Site) at a depth of about 2200 m and operated utill spring 2008.

The site infrastructure consists of a shore laboratory, a 28 km long electro-optical (hereafter e.o.) cable connecting the shore lab to the deep sea lab. The shore laboratory hosts the land termination of the cable, the on-shore data acquisition system and power supplies for underwater instrumentation. The underwater cable is an umbilical underwater e.o. cable, armored with an external steel wired layer, containing 10 optical single-mode 2 fibers (standard ITU-TG-652) and 6 electrical conductors (4 mm area). At about 20 km E from the shore, the cable splits into two branches, each roughly 5 km long, that reach two different locations namely Test Site North (latitude 37’30°810 N, longitude 015’06°819 E depth 2100 m), and Test Site South (latitude 37’30°008 N, longitude 015’23°034 E, depth 2050 m). The Test Site North (TSN) cable branch has 2 conductors and 4 fibres directly connected to shore, the Test Site South (TSS) branch has 4 conductors and 6 fibers. In late January 2005, two underwater frames were installed on TSN and on TSS. Each frame built in grade 2 titanium, is equipped with a pair of e.o. connectors. The e.o. connectors are capable to be handled by underwater robots ROV (Remotely Operated Vehicles) to allow plugging and unplugging of underwater experimental apparatuses, avoiding further recovery operations of the main cable. During the same cruise two experimental apparatuses were deployed, plugged and put in operation. The geophysical and environmental monitoring station SN1, managed by the INGV was connected to the TSN termination. NEMO-OnDE was installed in the TSS Frame.

3

Add on to D12 148

Figure 1: Location of the LIDO East Sicily Site – Test Site.

The main task of the LIDO Demo Mission in the East Sicily site is to combine the two experimental set-ups (NEMO-OnDE and SN1) onboard a single multi-parametric station, capable to transmit data to shore in real-time, with a unique time reference, linked to the GPS.

The NEMO-SN1 enhancements needed for the LIDO pilot experiment will - align the functions of NEMO-SN1 to the ones of GEOSTAR deployed in the Gulf of Cadiz (Iberian Margin, NEAREST pilot experiment) in respect to the operation of a prototype of tsunamis warning system - extend the scientific application of the observatory data toward the bioacoustics and the detection and tracking of mammals routes.

2 RECOVERY OPERATIONS OF NEMO-OnDE and SN1

The recovery cruise of the NEMO-OnDE and SN1 stations was carried out from 21 to 16 April, 2007, under the responsibility of INFN. The Certamen Cable Layer vessel (C/L, equipped with Dynamic Positioning System), was used for the sea operation. The vessel was rented by INFN in the frame of the MECMA agreement. The mob/demob operations started in the Port of Catania, the logistic base of the Elettra-Tlc Company, member of MECMA and owner of the C/L Certamen.

The recovery procedure required also the use of dedicated instrumentation, namely: - An ARGUS light work class Deep Sea ROV (figure 2a); - MODUS the underwater vehicle dedicated to the deployment/recovery of GEOSTAR-class observatories with the auxiliary devices for its management (cable and winch, figure 2b).

4

Add on to D12 149

Figure 2: Left - The ARGUS ROV on board of the C/L Certamen ; right –MODUS vehicle.

The sea operations were based on the involvement of the following teams:

The C/L Certamen crew; charged of the vessel facilities and assistance in approaching the recovery site and maintaining the vessel in place;

The ROV team: charged of the ARGUS ROV management and driving

The Research Team composed by INFN and INGV personnel: - Mario Musumeci – INFN (Engineer, Sea Operation Responsible) - Giorgio Riccobene –INFN (Physicist, OnDE Station Responible) - Massimo Imbesi –INFN (Field Engineer) - Fabio Platania – INFN (Technician) - Roberto Trovato – INFN (Technician) - Giuditta Marinaro – INGV (Physicist) - Carmine Capua – on behalf of INGV (Technician) - Claudio Viezzoli – on behalf on INGV (Sea Operation Co-Responsible)

The planned schedule of operations is reported below:

April 18-20: All day Mob and tests of embarked instrumentation April 21-22 All day Navigation to the TSN site ROV: deep and shallow water tests April 23 00:00 ROV down to TSN frame; ROV: visual check of TSN frame and SN1; ROV: e.o. connectors unplug; 09:00 ROV recovery 11:00 Modus down at TSN 13:00 Modus: SN1 visual inspection

5

Add on to D12 150

15:00 Modus: SN1 connection 17:00 Modus: start SN1 recovery 21:00 SN1 recovered onboard the ship 22:00 Inspection of SN1 23:00 Navigation to TSS site April 24 01:15 ROV down to TSS frame 03:30 ROV: INFN dedicated operations 09:30 ROV: NEMO OnDE Recovery 11:00 ROV onboard OnDE onboard 11:30 Inspection of OnDE 13:00 Navigation to Port of Catania April 25-28 All day Demob and disembark

2.1 Recovery of SN1:

The SN1 station design comes from the successful experience of GEOSTAR. The mechanical structure is a titanium frame holding deep sea environmental and geophysics sensors and all the electronics vessels needed for power supply and data transmission. The mechanical frame is equipped with a special metallic hook on the top, which allows the connection to the deep sea shuttle Modus, used to deploy and recover SN1 to/from deep sea. The SN1 connection to shore is realised through an e.o. jumper cable that links SN1 to the e.o., ROV mateable, connector hosted in the TSN underwater frame. The SN1 recovery operation was carried out in 4 phases: 1) ROV descend for a visual inspection of SN1, of the frame and of the jumper cable; 2) disconnection, using the ROV, of the e.o. jumper plug from the TSN e.o. connector; 3) ROV recovery; 4) Modus descend to grab SN1 and to bring SN1 back to surface (Figure 3). The whole operation took about 22 hours of work under conditions of about 15 knt wind speed. A visual inspection of SN1 was carried out immediately after the recovery. The results of SN1 inspection are reported in Deliverable 4.1

Figure 3: Recovery of SN1 and MODUS on board the C/L Certamen.

6

Add on to D12 151

2.2 Recovery of NEMO-OnDE:

The NEMO-OnDE station was designed as an ancillary experiment of NEMO and it was hosted, thanks to small dimensions and low weight, onboard the TSS frame. During the deployment it was linked to the TSS e.o. connector through an e.o. ROV mateable connector. The mechanical connection between NEMO-OnDE the TSS frame was realised by means of plastic hooks, easily removable by the ROV manipulator. After the removal of these hooks the ROV can grab the station though a handle, and bring it back to surface. Thanks to its light weight (about 7 kg in water, about 50 kg in air) and small dimensions the ROV can easily recover the Station. The Sea operations for the recovery of NEMO-OnDE consisted in 2 phases: 1) ROV descend for visual inspection of NEMO-OnDE, disconnection of the plastic hooks (the e.o. connector was already disconnected in a previous sea campaign) and grabbing of the recovery handle; 2) ROV and NEMO-ONDE recovery. The whole operation took about 11 hours of work (including about 8 hours for dedicated INFN operations, not connected to this activity) under conditions of about 5 knt wind speed. The results of the visual inspection of NEMO-OnDE are reported in deliverable 4.1

Figure 4: Left - The TSS frame hosting NEMO-OnDEbefore the deployment. Right – The electronics housing of NEMO-OnDE after the recovery.

3 GENERAL PLAN FOR LIDO EAST SICILY DEPLOYMENT

The deployment operations for LIDO East-Sicily will be conducted with procedures similar to the successful operations adopted for NEMO-OnDE and SN1. The plan is to deploy two stations anchored in the proximity of TSN and TSS frames respectively, and plugged to the available underwater ROV mateable e.o. connectors. The station that will be anchored on TSN will be the refurbished SN1 station equipped with the OnDE hydrophones and additional sensors: vectorial magnetometer, absolute

7

Add on to D12 152

pressure sensor, part of a prototype of tsunameter whose components are hosted both on the observatory (sensors) and the shore station (electronics and software for real-time automatic processing). The station that will be anchored on TSS will be a new device, equipped with four hydrophones and their front/end electronics, hosted on an aluminium frame. Both stations are designed to be deployed using MODUS and connected to shore, through e.o. jumper cables linking the stations to the TSS and TSN frames (see Deliverable 1.2).

The sea operations will be carried out either using a MECMA Vessel or a Research Vessel with similar characteristics. The present plan foresees the use of new vehicle developed within a previous Italian project, namely PEGASO, as shown in figure 5. The PEGASO deployment/recovery/maintenance system is an innovative system to deploy and connect deep sea experiments and consists of: 1) a light work-class ROV; 2) a deep sea electro- optical-mechanical winch; 3) a Deep Sea Shuttle for modules deployment. The PEGASO system was realised and it is owned by INFN and INGV.

Figure 5: Left - The PEGASO Deep Sea Shuttle (DSS) deploys the station on the seabed. Middle – The PEGASO ROV, driven by means of an interface by the DSS, connects the e.o. jumper from the structure to the frame. Right – The PEGASO ROV and its garage.

The Sea operations foresee the deployment of the station in TSN using the PEGASO Deep Sea Shuttle, then its connection using the PEGASO ROV. During the same naval campaign the other station will be deployed in TSS with the same procedure. The time requested for the completion of the sea operations (deployment and check tests) is expected to not exceed 72 hours.

8

Add on to D12 153

REFERENCES

[1] P. Favali, L. Beranzoli, Ann. Geophys. 49, 2-3, 705 (2006). [2] G. Riccobene et al., NIM A-518, 220 (2004).

9

Add on to D12 154

Add on to D12 155

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE) Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems Sub Priority: III – Global Change and Ecosystems

ESONET WP4- DEMONSTRATION MISSIONS

LIDO – LIstening to Deep Ocean

DELIVERABLE D1.2 Status of SN1 and OnDE stations: new requirements and technical specifications of the enhancements

Due date of deliverable: December 2008 Actual submission date: April 2009

Start date of LIDO DM: September 2008 Duration: 24 months

Organisation name of lead contractor for this deliverable: INGV Lead authors for this deliverable: Giuditta Marinaro

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

Add on to D12 156

Add on to D12 157

CONTENTS

EXECUTIVE SUMMARY ...... 3 1 INTRODUCTION ...... 3 2 STATUS OF THE OBSERVATORY AFTER THE RECOVERY ...... 3 3 NEW REQUIREMENTS FOR SN1 STATION...... 4 4 NEW REQUIREMENTS FOR OnDE STATION ...... 6 5 CONCLUSIONS...... 6 REFERENCES...... 6

Add on to D12 158

Add on to D12 159

EXECUTIVE SUMMARY The present report refers to the enhancement to be apply to the NEMO-SN1 observatory components, SN1 and OnDE, in order to perform the LIDO pilot experiment. This experiment involves two ESONET key-sites and has the aim to establish a first nucleus of regional observatory network in the Eastern Sicily site (NEMO-SN1) and the Iberian Margin site (GEOSTAR). The report includes the new requirements for the upgrading of SN1 and OnDE in view of the LIDO demonstration mission development. This deliverable is one of the reference documents for the operations for the new installation (deployment and cable connection) of the observatory in the Eastern Sicily ESONET key-site.

1 INTRODUCTION

The NEMO-SN1 observatory was established in the frame of a MoU between INGV and INFN as a result of the synergy of activities devoted to the geophysical monitoring of one of the most risky Mediterranean areas for earthquakes and tsunamis (INGV) and a pilot experiment for the realisation and operation of a prototype of submarine neutrino telescope (INFN). The observatory includes a submarine module for the characterization of the ambient noise (Oνde station), a prototype of neutrino telescope, and the SN1 geophysical and oceanographic observatory. The observatory benefits of an infrastructure constituted by an underwater electro-optical cable equipped with interfaces and junction box, and a shore station which hosts the cable termination. The NEMO-SN1 enhancements needed for the LIDO pilot experiment will - align the functions of SN1 station to the ones of GEOSTAR (Iberian Margin) in respect to the operation of a prototype of tsunamis warning syste - extend the scientific application of the observatory data toward the bioacoustics and the detection and tracking of mammals routes.

2 STATUS OF THE OBSERVATORY AFTER THE RECOVERY

The status of NEMO-SN1 after 3 years of operation in deep sea gave positive outcomes in respect to the status the frames, connectors, vessels and sensor packages. The sacrificial anodes installed on the frames have demonstrated to be not negligible elements for the preservation of the material of the observatory components. The outcomes of the inspection have confirmed the original choice of the materials used for the construction of the observatory components. The following malfunctioning, already detected during the seafloor operation of the observatory were definitively assessed, as also reported in LIDO deliverable D4.1, and remedial action were designed and planned. For what concerns NEMO-OnDE, the device was tested in lab after the recovery and all major components were working. A minor mis-functioning was found on the compass data transmission line, due to a broken joint on a optical fiber, inside the electronics housing. Add on to D12 160

3 NEW REQUIREMENTS FOR SN1 STATION

In order to fulfill the LIDO Demo Mission the NEMO-SN1 has to be upgraded according to the following requirements: - geophysical monitoring requirements - bioacoustics and ambient noise monitoring requirements

A new configuration of the SN1 station is required to take full advantage from the cable connection. The SN1 station was designed originally to operate in autonomous mode and afterward adapted to be connected to the underwater cable. The original design indeed included the on-board acquisition and data control and storage while remote interrogation via acoustics was foreseen to check the station status and the retrieval of reduced data. The central clock of the station, that is the seismometer clock, was synchronised by a GPS signal transmitted from the shore station through the cable. An optical interfaces with acoustic modems were successively developed for the data transmission via optical line while adaptation to the power supply system was made to power the station via cable.

The new station configuration is based on the following addition of sensors and functional modifications: - the sensor packages of the stations will be enriched with o a three component magnetometer installed in a separate module and connected to the SN1 main frame to minimise the disturbances induced by the electronics on the measurements o three high sampling hydrophones o an absolute pressure gauge as part of a prototype of tsunami detector already tested in a previous experiment (EC NEAREST project) based on the real-time joint elaboration of seismometer and pressure time series; o a video camera and auxiliary device for images capture (e.g., lights); - the data acquired by the sensors on board the station are first digitalized, if needed, and then sent to the shore station; - the central acquisition and control system, formerly on-board, will be hosted in the shore station where the data storage and access/distribution will be managed; the data time tagging will be performed at the shore station too by means of the synchronisation with a GPS signal; Add on to D12 161

- the real-time automatic procedure for the joint analysis of the seismometer and pressure gauge time series as part of the prototype of tsunami detector will be operational at the shore station; - the data flow will be arranged for the following purposes: o storage o dissemination via web portal o images delivery to selected aquaria/museums o real time transmission to the Italian Seismic Monitoring Center.

The final sensor equipment list in reported in Table 1.

Table1 Sensor Sampling rate

Three-component broad-band seismometer 100Hz

Hydrophone (geophysics) 100 Hz

Hydrophones (bio-acoustics) 96 KHz

Gravity meter 1 Hz

Scalar magnetometer 1 sample every 10 min.

Fluxgate magnetometer 0.5 Hz

Three-axes single-point current meter 2Hz

CTD 1 sample every 12 min.

Differential Pressare Gauge 1sampl./15 s 1Hz

1sampl./15 s Absolute Pressare Gauge 1Hz

ADCP 1 profile/h

Add on to D12 162

4 NEW REQUIREMENTS FOR THE OnDE STATION

The successful operation of the OnDE station, implies that only minor changes will be applied to the electronics front-end and data transmission electronics. In particular, electro/optical media converters will be substituted with more recent models, having better reliability and less power consumption. The two, 2 channels ADC board will be substituted with a 4 channel ADC board.

The acoustic data transmission will be interfaced with geophysics data transmission using optical DWDM technology to improve data speed rate and redundancy: data will be transmitted on shore over two fibers of the main electro optical cable at the same time.

The major improvements compared to NEMO-OnDE will be focused on the shore data acquisition system. Instead of simple data recording, used for NEMO-OnDE, data will be analyzed on-line using dedicated machines and software tools.

All processed data (acoustics and geophysics) will be, then, saved on dedicated web server for further analysis and dissemination, as described in Deliverable 4.2.

5 CONCLUSIONS

The present report has to be considered as a reference for the design adaptation of SN1 and OnDE stations, components of NEMO-SN1 observatory of Eastern Sicily, in order to reconfigure the seafloor observatory for the development of the LIDO demonstration mission. The new configuration and upgrading of NEMO-SN1 will align it to the state of art with respect to geo-hazard and bioacoustics monitoring.

REFERENCES

Favali, P., L. Beranzoli, G. D’Anna, F. Gasparoni, J. Marvaldi, G. Clauss, H.W. Gerber, M. Nicot, M.P. Marani, F. Gamberi, C. Millot and E.R. Flueh (2006): A fleet of multiparameter observatories for geophysical and environmental monitoring at seafloor, Ann. Geophys., 49/2-3. Favali, P., L. Beranzoli, G. D’Anna, F. Gasparoni, H. W. Gerber (2006): NEMO-SN-1 the first ‘‘real-time’’ seafloor observatory of ESONET, Nuclear Instruments and Methods in Physics Research A 567 (2006) 462–467. Riccobene, L. Cosentino, M. musumeci, G. Pavan, F. Speziale for the NEMO Collaboration (2004): Acoustic detection of UHE neutrinos: a station for measurement of the deep sea acoustic noise, NIM A-518, 220.

Add on to D12 163

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE)

Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems

Sub Priority: III – Global Change and Ecosystems

ESONET WP4 – DEMONSTRATION MISSIONS

LIDO – Listening to Deep Ocean

DELIVERABLE D 1.4 Sea operations procedures for recovery and deployment Of GEOSTAR (Gulf of Cadiz) and refurbishment

Due date of deliverable: December 2008 Actual submission date: April 2009

Start date of project: March 2007 Duration: 48 months

Organisation name of lead contractor for this deliverable: TECNOMARE Lead authors for this deliverable:

Revision [April 2009]

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

Add on to D12 164

Add on to D12 165

co d i c e C l i e n t e T E C N O MAR E S . p . A . T@C l hl O I h'hl a l r@ 3 0 1 75 M a rg h e ra , V i a P a c i n o tt i 4 , + 39 04 1 7 9 6 7 1 1 c o d i ce Te c n o m a re 2 0 1 3 9 M i l a n o , V i a C a v i g l i a 1 1 , + 3 9 02 5 3 5 7 5 1 6 3 4 A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 P R I N

d i re z i o n e e m i tte n t e s e d e e m i tte n te : M a rg h e r a c o d i c i d o c u m e n t o

ES O N E T L I D O D E M O NST RAT I O N M I SS I O N

S E AO PE RAT I O N P RO C E D U R E S F O R G E O S TA R R E C OV E RY , D E P L OYM E NT AN D R E F U RB I S H M E NT ( G U L F O F CAD I Z )

d i s t r i b u z i o n e : S T I N / GA , S l RO/ F B , S I R O / FF , S I RO/ F D

i n fo rm a z i o n i s u p p l e m e n t a r i :

9

8

7

6

5

4

3

2

1

0 3 1 /0 3 / 0 9 I s s u e fo r C o m m e n t s 3 8 ...... & : ,, re v . d a t a d e s c r i z i o n e p a g i n e p r , l aI r a t o v e r i f i c a t o a p p ro v a to a u t o r!ti z z a to Q u e s t o d ocu m e n t o é d i p r o ) r i e t à d i Te cn o m a r e S . p . A . - E s s o o p a rt e d i e s s o n o n p u ò es s e r e u t i l i zza t o o r i p ro do t t o i n q u a fo rm a p e r s co p i d i ve r s i d a q u e l l i p e r cu i é s t a t o [ t o . Te cn o m a r e S . p . A . t u t e l e r& i s u o i d i r i t t i , a t e r m i n i d i l eg g e , i n og n i s e de , c i v .= p e n a l e . Add on to D12 166

c o d i c e C l i e n t e ES O N ET L I D O D E M O NS TRAT I O N M l SS l O N T C l h7 O l a l r co d i ce Te c n o m a re S E A O P E RAT I O N P R O C E D U R E S F O R 6 3 4 A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O S TAR R E C OV E RY , D EP L OY M E NT da ta : 3 1 / 0 3 /2 0 0 9 A N DR E F U R B I SH M E N T ( G U L F O F CA D I Z ) pag ina : 2

TAB L E O F C O NT E NTS

1 SC O PE ...... 4

2 T E C HN I CA L S PE C l F I CAT I O N S ...... 5

2 . 1 C o n f i g u ra t i o n ...... 6

2 . 2 D i m e n s i o n s ...... 7

2 . 3 We i g h ts a n d C e n t re s o f G rav i ty ...... 9

2 . 4 O p e ra t i n g l i m i t s ...... 1 0

3 L O G I ST I C R E Q U I R E M E N T S ...... 1 1

4 T RA N S P O RTAT I O N ...... 1 2

5 ASS E M B LY ...... 1 4

5 . 1 M a i n f ra m e ...... 1 4

5 . 2 U p p e r P y r a m i d ...... 1 4

5 . 3 F e e t ...... 1 4

5 . 4 P re s s u re Ve s s e l s ...... 1 5

5 . 5 S c i e n t i f i c p a y l o a d ...... 1 6

5 . 6 S e i s m o m e t e r ...... 1 6

5 . 7 Aco u s t i c c o m m u n i c a t i o n s y s t e m ...... 24

5 . 8 F e n d e rs ...... 2 5

P R E - M l SS l O N T E S TS A N D P R E PARAT I O N F O RD EP L OYM E N T ...... 2 6

6 . 1 Te s t c a b l e ...... 2 6

6 . 2 M O D U S t e l e m e t ry ...... 2 6

D EP L OY M E NT ...... 2 7

7 . 1 E m e rg e n cy co n d i t i o n s ...... 2 9

8 C H E C KS D U R I N GM I S S l O N ...... 3 0

9 R E C OV E RY ...... 3 1

1 0 R E F U R B I SH M E N T ...... 3 3

a u t o r i : ST I N/ GA Add on to D12 167

c o d i ce C l i e n te E S O N ET L I D O D E M O N S T RAT I O N M I SS l O N T C l hl G l I r@ co d i ce Te c n o m a re S E A O PE RAT I O N P RO C E D U R E S F O R 6 3 4 A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O S TA R R E C OV E RY , D EP L OYM E NT da ta : 3 1 / 0 3 /2 0 0 9 A N D R E F U R B I SH M EN T ( G U L F O F CAD I Z ) pagin a : 3

1 1 G E O S TA RD EP L OY M E N T A N D R E C OV E RY I N F RA S T R U CT U R E ...... 3 4

1 1 . 1 MO D US ...... 3 4

1 1 . 2 W i n c h ...... 3 7

1 1 . 3 U m b i l i ca l c a b l e ...... 3 8

a u t o r i : ST I N/GA Add on to D12 168

c o d i ce C l i e n te ES O N ET L I D O D E M O N ST RAT I O N M I S S I O N r" T C l h3 O l a l r co d i ce Te c n o m a re S EAO PE RAT I O NP R O C E D U R E S F O R 6 3 4A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O STARR E C OV E RY , D EP L OYM E N T da ta : 3 1 /0 3 /2 0 0 9 AN D R E F U R B I SH M E NT ( G U L F O F CA D I Z ) pagina : 4

1 S C O P E

T h e p re s e n t d o c u m e n t d e s c r i b e s t h e o p e ra t i o n a l p ro ce d u r e s fo r t h e ex e c u t i o n o f G E O S TA R d e m o n s t ra t i o n m i s s i o n i n C a d i z G u l f ( E S O NET L I DO p roj e c t f ra m ewo r k ) . T h e d o c u m e n t i s m a i n l y i n t e n d e d t o g i v e t o M a r i n e O p e ra to r a l l t h e n e ces s a ry i n fo r m a t i o n to p ro p e r l y p l a n a n d m a n a g e t h e m a d n e o p e ra t i o n s a n d a r ra n g e t h e n e ce s s a ry I o g i s t i c s o n b o a rd t h e s h i p .

T h e fo l l ow i n g p h a s e s a r e co n s i d e re d :

• G E O STA R a s s e m b l y • p r e p a ra t i o n fo r d e p l o y m e n t • d e p l o y m e n t a n d m i s s i o n s t a rt - u p • c h e c ks d u r i n g m i s s i o n .

T h e d o c u m e n t d o e s n o t co ve r a ) p ro c e d u re s fo r t h e i n s t a l l a t i o n o f t h e b u o y b ) p r o c e d u re s fo r t h e m a n a g e m e n t o f MO D US

a u t o r i : ST I N /GA Add on to D12 169

c o d i c e C l i e n te E S O N E T L I D O D E M O NSTRAT I O N M I SS I O N

co d i ce Te c n om a re S E A O PE RAT I O N P R O C E D U R E S F O R 6 3 4A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O S TAR R E C OV E RY , D E P L OYM EN T da ta ." 3 1 /0 3 /2 0 0 9 A N DR E F U R B I SH M E NT ( G U L F O F CA D I Z ) pagina : 5

2 T E C HN I C A L S PE C l F I C AT I O NS

G E O S TA R i s a s e a f l o o r o b s e rva t o ry d e s i g n e d fo r m u l t i d i s c i p l i n a ry , I o n g - t e r m m i s s i o n s i n m a r i n e e n v i ro n m e n t . G E O STA R h as b e e n d e s i g n e d t o b e co m p a t i b l e w i t h t h e s p e c i a l ROV MO D U S ( a l s o re fe r re d to a s " M o b i l e D o c ke r" , a n d c a p a b l e t o h a n d l e p a y l o a d u p t o 3 0 k N a t 4 0 0 0 m ) a n d t h e w i n c h e q u i p p e d w i t h a n e l e c t ro - o p t i c - m e c h a n i ca l ca b l e ( fo r m o re d e t a i l s s e e S e ct i o n 1 1 ) . U s i n g s u c h i n fras t r u ct u re s i t i s p os s i b l e t o d e p l o y t h e o b s e rva to ry i n a co n t r o l l e d a n d a c c u ra t e p ro c e d u re , a n d s u b s e q u e n t l y re cove r i t a t t h e e n d o f t h e m i s s i o n . T h e co n c e p t i s s h ow n i n F i g u re 1 .

S h o re s t a t i o n /- C o mm u n i ca t i o n S y s t em s

.,._. - l ; .

\ \ N e a r re a l -ti m e "X \ t r a n s m i s s i o n b u oy • g e rs ,Aco ust i c .._ , ( da ta c , psu l es) \ t rans m i s s l o k __" , " : ff : .

B ottOamn dS ta t i o n / / -- î. S c i e n t i fi c Pa c kag e s / Figure 1 - GEO STA R con cep t

O n ce i n s ta l l e d , t h e o b s e rva t o ry i s a b l e t o co m m u n i ca t e w i t h a s h i p o f o p p o rt u n i t y o r s u rfa ce b u o y v i a a b i - d i re ct i o n a l a co u s t i c m o d e m . A p h o t o o f G E O S TAR co n n e c t e d t o M O D U S i s s h ow n i n F i g u re 2 .

a u t o r i : ST I N /GA Add on to D12 170

c o d i ce C l i e n te ES O N ET L I D O D E MO N S TRAT I O N M I SS I O N

co d i ce Tec n om a re S E A O P E RAT I O N P RO C E D U R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E OSTAR R E COV E RY , D EP LOYM E NT da ta : 3 1 /0 3 /2 0 0 9 AN DR E F U R B I SH M E NT ( G U L F O F CAD I Z ) pagina : 6

Figure 2 - GEOS TAR b e ing reco vered onboa rd R/VUran ia

2 . 1 C o n f i g u ra t i o n

G E OSTAR co n f i g u ra t i o n i s b a sed o n t h e fo l l ow i n g s u b sys te m s :

• M ec h a n i ca l fra m e , i n c l u d i n g U p p e r py ra m i d

M a i n fra m e

Fe et

F e n d e rs

• S c i e n t i f i c P ay l o a d • P re s s u re co m pe n s a ted j u n ct i o n - b oxes • D a ta a cq u i s i t i o n a n d co n t ro l sys t e m • Ba tt e ry pa c k • Aco u s t i c C o m m u n i ca t i o n Sys te m

a u to r i : ST I N /GA Add on to D12 171

c o d i ce C l i e n te E S O NET L I D O D E M O N S TRAT I O N M I S S I O N

c o d i ce Te c n o m a re S EA O PE RAT I O N P RO C E D U R E S F O R 6 34A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E OSTAR R E C OV E RY , D EP L OYM E NT da ta : 3 1 / 0 3/2 0 0 9 A N D R E F U R B I SH M E N T ( G U L F O F CAD I Z ) pagina : 7

O b s e rva to ry p a y l o a d a n d co m m u n i ca t i o n s ys t e m a re c o n fi g u re d a cco rd i n g to t h e s p e c i f i c m i s s i o n re q u i re m e n ts . F o r t h i s rea s o n s o m e s u b sy s te m s u s e d i n t h e p rev i o u s fo u r G eo s ta r m i s s i o n s ( l i ke t h e m a g n e t o m e t e rs a n d re l eva n t s u p p o rt s , wa t e r s a m p l e r , c h e m i ca l a n a l ys e r , h o r i z o n t a l a co u s t i c t ra n s m i s s i o n sys t e m ) a re n o t p a rt o f t h e co n f i g u ra t i o n a d o p te d fo r E SO N E T L I DO d e m o n s t ra t i o n m i ss i o n . Ev e n i f p h o t o s u s e d i n t h e d o c u m e n t m ay re fe r to p a s t co n f i g u ra t i o n s , a l l t e c h n i ca l d a ta ( d i m e n s i o n s , we i g h ts ) a n d d raw i n g s p rov i d e d i n t h e fo l l ow i n g re fe r t o t h e E s o n e t L I D O d e m o n s t ra t i o n m i s s i o n co n f i g u ra t i o n .

2 . 2 D i m e n s i o n s

T h e ove ra l l d i m e n s i o n s o f t h e O b s e rv a to ry a re : b a s e 3 6 0 0 x 3 6 0 0 m m , h e i g h t 3 3 5 0 m m .

Figure 3 - D e ta il o f GEOS TAR fra me (OR I ON m iss io n con figura tion , with m agn e tome ter booms in s ta lle d)

a u t o r i : ST I N/GA Add on to D12 172

c o d i c e C l i e n te E S O N ET L I D O D E M O NST RAT I O N M I SS I O N

c o d i ce Te c n o m a re S E A O P E RAT I O N P R O C E D U R E S F O R 6 34A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E OSTA R R E C OV E RY , D EP L OYM E NT da ta ." 3 1 /0 3 /2 0 0 9 A N D R E F U R B I SH M E N T ( G U L F O F CAD I Z ) p a gina : 8

I ,N E I d I A L SEN 5 0 { S U P PO RT " S E E D WG $ 0 0 3

Y

C T D

u N rr

U P P E R PLAN V I E W

Fig u re 4 - GEOS TA R fra m e upp er we w

a u t o r i : ST I N /GA Add on to D12 173

co d i ce C l i e n t e E S O N ET L I D O D E M O N ST RAT I O N M I SS I O N

c o d i ce Te c n o m a re S EA O PE RAT I O NP R O C E D U R E S F O R 6 34A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 GE OSTA RR E C OV E RY , D EP L OY M E NT da ta : 3 1 /0 3 /2 0 0 9 A N D R E F U R B I SH M EN T ( G U L F O F CA D I Z ) p a gina : 9

I I ATS - 'v - ELEC TRUN I T

L EV EL 1 . 2 0 I

LEVE L 0 . 3 5

LEVEL 0 . 0 0

E LEVAT I Q N I

Figure 5 - GEO S TA R fra m e s ide vie w

2 . 3 We i g h t s a n d C e n t r es o f G r av i ty

T h e fo l l ow i n g t a b l e c o n t a i n s d e ta i l s a b o u t G E O S TA R we i g h ts a n d p o s i t i o n o f ce n t re o f g ra v i t y .

We i g h t ( a i r) We i g h t ( wa te r) C G ( a i o C G ( wa t e r) [ k N ] [ k N ] X , Y , Z [ m m ] ( * ) X , Y , Z [ m m ] ( * ) F ra m e co m p l e t e

w i t h S c i e n t i f i c a p p rox 2 4 a p p rox 1 2 . 5 74 , -4 1 , 1 0 3 7 8 6 , - 3 5 , 1 0 8 9 P a y l o a d

( * ) T h e o r i g i n o f t h e C o o rd i n a te S ys t e m i s i n t h e ce n t r e o f t h e f ra m e a t ze ro l e ve l .

a u t o r i : ST I N/GA Add on to D12 174

c od i ce C l i e n t e E S O N E T L I D O D E M O NSTRAT I O N M I SS I O N

c o d i c e Te c n o m a re S E A O P E RAT I O N P R O C E DU R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O S TARR E C OV E RY , D E P L OYM E N T da ta : 3 1 / 0 3 /2 0 0 9 A N D R E F U R B I SH M E N T ( G U L F O F CA D I Z ) pagina : 1 0

2 . 4 0 p e ra t i n g l i m i ts

2 . 4 . 1 D e p t h

T h e o b s e rva t o ry i s d e s i g n e d to o p e ra t e a t m ax i m u m d e p t h o f 4 0 0 0 m

2 . 4 . 2 T e m p e ra t u re

T h e o b s e rva t o ry i s d es i g n e d t o o p e ra t e a t m i n i m u m t e m p e ra t u re o f 0 ° C .

2 . 4 . 3 M ax i m u m s l o p e

T h e o b s e rva t o ry i s d e s i g n e d to o p e r a t e w i t h m ax s o i l s l o p e o f + /- 1 0 o .

2 . 4 . 4 S o l i s h e a r s t r e n g t h

T h e o b s e rva t o ry i s d e s i g n e d t o o p e r a te w i t h a s o i l s h e a r s t re n g t h o f m i n 2 k P a .

a u t o r i : ST I N /GA Add on to D12 175

c o d i ce C l i e n te E S O N ET L I D O D E MO NST RAT I O N M I SS I O N

c o d i ce Te c n o m a re S E A O P E RAT I O N P ROC E D U R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O S TARR E C OV E RY , D EP L OY M E N T da ta : 3 1 / 0 3 /2 0 0 9 A N D R E F U R B I SH M E N T ( G U L F O F CA D I Z ) pagina : 1 1

3 L O G I ST I C R E Q U l R E M E NTS

To c a r ry o u t G E O STAR d e p l oy m e n t m i s s i o n , i t i s a s s u m e d t h a t m a r i n e o p e ra t o r s h a l l p rov i d e t h e n e ce s s a ry I o g i s t i cs , p e rs o n n e l a n d s h i p t i m e .I n p a rt i c u l a r

a ) m a n a g e d e p l o y m e n t o p e ra t i o n b ) m a n a g e a l l o p e ra t i o n s o n d e c k , i n v o l v i n g l i ft i n g , p o s i t i o n i n g a n d h a n d l i n g o f t h e w h o l e o b s e rva t o ry ( w i t h o r w i t h o u t MO D U S ) a n d pa rt s o f i t c ) p r o v i d e a d e q u a t e s p a c e o n d e c k fo r t h e f i n a l i n te g ra t i o n o f G E O S TAR a n d M O D US d ) p rov i d e a d e q u a t e i n t e r n a l s p a c e to i n s t a l l a n d o p e ra t e M O D U S co n t ro l u n i t e ) p rov i d e a d e q u a t e s t o r a g e a re a fo r b oxe s , c r a t e s e tc . f) c a r ry o u t a d e t a i l e d s u rve y o f t h e a r e a i d e n t i f i e d fo r G E O S TAR d e p l o y m e n t , to d e t e r m i n e exa c t b a t h y m e t ry a n d c h a r a c t e r i s t i cs o f t h e s e a f l o o r ( s l o p e , a b s e n ce o f o b s t a c l e s )

a u t o r i : ST I N / GA Add on to D12 176

cod i ce C l i e n te E S O N ET L I D O D E M O N ST RAT I O N M I S S l O N

c o d i ce Tec n o m a re S EA O P E RAT I O N P RO C E D U R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E OSTARR E C OV E RY , D EP L OYM E NT da ta : 3 1 /0 3 /2 0 0 9 AN D R E F U R B I S H M E NT ( G U L F O F CAD I Z ) pagina : 1 2

4 TRANS P O RTAT I O N

G E OSTAR i s t ra n s p o rte d d i s a ss e m b l e d . T h e t ra n s p o rta t i o n co n f i g u ra t i o n i n c l u d es t h e fo l l ow i n g i te m s :

M a i n fra m e

U p p e r P y r a m i d F e e t ( 4 off)

DAC S Ve s s e l wo od e n b ox

B a tte ry ve s s e l wo o d e n b ox S e i s m o m e te r h o u s i n g

F e n d e rs

A s e t o f b oxes ( wo od e n o r m e ta l l i c ) w i t h sc i e n t i f i c p ay l o a d , a co u s t i c t ra n s m i ss i o n sys te m ,

ca b l e s a n d a cces s o r i es

S i n ce t h e w i d t h o f t h e m a i n fra m e i s n ' t co m p a t i b l e w i t h t h e m ax i m u m t ra n s p o rta b l e d i m e n s i o n s o f a s ys t e m i n a I o r ry , i t i s n e c e s sa ry to t ra n s p o rt i t l a i d o n a s i d e a n d p ro p e r l y s e c u re d . T h e ove ra l l d i m e n s i o n s o f t h i s s u bsys te m , wh i c h i s t h e m os t b u l ky , a re : b a s e 1 5 5 0x3 0 0 0 mm , h e i g h t 3 0 0 0 m m

a u t o r i : ST I N /GA Add on to D12 177

cod i ce C l i e n te E S O N ET L I D O D E M O NST RAT I O N M I SS I O N

co d i ce Te c n om a re S EA O PE RAT I O N P R O C E D U R ES F O R 6 3 4 A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O STAR R E C OV E RY , D E P L OYM E N T da ta : 3 1 /0 3 /2 0 0 9 AND R E F U R B I S H M E N T ( G U L F O F CA D I Z ) pagina : 1 3

Fig. 6 - GEO S TA R con fig ura tio n for tra nsp o rta tion (No te : on th e re a r o f th e truck a n o th e r fra me h a s b e en Ioa de d)

a u t o r i : ST I N/ GA Add on to D12 178

c o d i ce C l i e n te E S O N E T L I D O D E M O NST RAT I O N M I SS I O N T C l n3 ¢ l a l r c o d i ce Te c n o m a re S E A O P E RAT I O N P RO C E D U R E S F O R 6 3 4 A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O S TA R R E C OV E RY , D E P L OYM E N T da ta : 3 1 / 0 3 /2 0 0 9 A N DR E F U R B I SH M E NT ( G U L F O F CAD I Z ) p a gina : 1 4

5 ASS E M B LY

T h e s e q u e n ce o f a s s e m b l y a n d d e t a i l s o f t h e va r i o u s c o m p o n e n ts a re g i ve n i n t h e fo l l ow i n g .

5 . 1 M a i n f r a m e

O n c e t h e m a i n f ra m e h a s b e e n u n l o a d e d f ro m t h e t r u c k , i t h a s t o b e p l a c e d i n t h e r i g h t p o s i t i o n ( ove rt u r n e d w i t h t h e fe e t f l a n g e s o n t h e f l o o r) .

D I M E NS I O N S ( p l a n t v i ew )( m m ) 2 9 5 0 x 2 9 5 0 H E I G H T ( m m ) 1 5 5 0 W E I G H T ( k N ) 7

I n t h e m a i n f ra m e t h e 2 J u n c t i o n B oxe s co n n e c t e d t o t h e co r re s p o n d e n t o i l co m p e n s a to r a re a l re a d y m o u n te d o n t h e i r s u p p o rt s .

5 . 2 U p p e r P y r a m i d

T h e u p p e r p y r a m i d i s m o u n t e d o n t h e m a i n f ra m e , u s i n g a n o r m a n to fa c i l i t a te t h e a l i g n m e n t o p e r a t i o n o f t h e f l a n g e s . T h e re i s a n e xa c t co r re s p o n d e n c e b e twe e n t h e M a i n F r a m e a n d t h e U p p e r P y ra m i d : s e e t h e l e t te rs m a r ke d o n co n n e c t i o n f l a n g e s

D I M ENS I O N S ( p l a n t v i ew )( m m ) 2 4 0 0 x 2 4 0 0 H E I G H T ( m m ) 1 9 0 0 W E I G H T ( k N ) 4

5 . 3 F e e t

T h e 4 fe e t a r e m o u n t e d o n t h e b a s e o f t h e m a i n f ra m e . D i m e n s i o n s a r e 1 0 0 0 m m m ax i m u m

d i a m e t e r , 2 5 0 m m h e i g h t . T h e we i g h t o f e a c h c o m p o n e n t i s a b o u t 0 , 2 k N .

a u t o r i : ST I N /GA Add on to D12 179

c o d i ce C l i e n te E S O N ET L I D O D E M O N ST RAT I O N M I S S I O N

c o d i ce Te c n om a re S EAO PE RAT I O NP ROC E D U R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O STARR E C OV E RY , D EP L OYM E NT da ta : 3 1 / 0 3 /2 0 0 9 AND R E F U R B I S H M E N T ( G U L F O F CAD I Z ) pagina : 1 5

Fig . 9 - D e ta il o f on e fo o t b olte d to th e fra m e o f th e Ob se rva to ry

5 . 4 P re s s u re Ves s e l s

P re s s u re ves s e l s a re to b e m o u n te d a n d f i xe d to t h e i r s u p p o rt s , ta k i n g i n t o a cco u n t t h e i r we i g h t fo r t h e p ro p e r h a n d l i n g :

• B a tt e ry Ve s se l 5 k N

• DAC S Ve s s e l 2 k N

• AT S E l e c t ro n i c Ve s s e l 0 . 1 2 k N • ATS B a tt e ry Ve s s e l 0 . 6 k N

a u to r i : ST I N /GA Add on to D12 180

c o d i ce C l i e n te E S O N E T L I D O D E M O NST RAT I O N M I SS I O N

c o d i ce Te c n o m a re SEA O PE RAT I O N P RO C E D U R E S F O R 6 3 4A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O S TAR R E C OV E RY , D E P L OYM ENT da ta : 3 1 / 0 3 /2 0 0 9 A N D R E F U R B I SH M E N T ( G U L F O F CAD I Z ) pagina : 1 6

5 . 5 S c i e n t i f i c p a y l o a d

T h e fo l l ow i n g s e n s o r s ca n n ow b e m o u n t e d O h t h e re l e va n t s u p p o rts o f t h e f ra m e

Sc ien tific Pa ckage Man ufa c turer an d m o de l S e i s m o m e t e r + acce l e ro m e te r G u ra l p C MG - 4 0 T + C M G - 5 T ( v i a d i g i t i s e r D M - 24 ) H yd ro p h o n e OAS E -2 P D ( v i a d i g i t i z e r D M - 24 )

P re s s u re s e n s o r P a ro s c i e n t i f i c S e r i e s 8 0 0 0

G ra v i t y M e t e r I F S I p ro to t y p e # 2 CTD + T ra n s m i s s o m e te r S e a B i rd S BE 1 6 p l u s + We t L a b s

A D C P W o r k h o rs e 3 0 0 k H z R D I Wo r k h o r s e 3 0 0 k H z

C u r r e n t m e t e r N o b s ka MAV S - 3

A p a rt t h e s e i s m o m e te r ( e n c l o s e d i n a t i ta n i u m ve s s e l fo r w h i c h a d e d i c a t e d m o u n t i n g p r o ce d u re h a s b e e n d e f i n e d , s e e p a ra g r a p h 5 . 6 ) , a l l t h e c o m p o n e n t s l i s te d b e fo re c a n b e e a s i l y h a n d l e d by h a n d ( we i g h t l e s s t h a n 2 0 Kg f) .

5 . 6 S e i s m o m e t e r

5 . 6 . 1 I n t ro d u c t i o n

T h i s p a r a g ra p h s u m m a r i s e s t h e co n ce p t o f s e i s m o m e te r h a n d l i n g i n a G e o s ta r - c l a s s o b s e rva t o ry . T h e s e i s m o m e t e r d e p l o y m e n t a n d r e co ve ry o p e ra t i o n s a re s h owe d i n t h e n ext s ke t c h e s . W i t h re fe re n c e t o t h e d e p l o y m e n t , a fte r t h e t o u c h d ow n o f t h e O b se rv a to ry , t h e m e c h a n i c a l re l e a s e i s a c t i v a te d a n d t h e s e i s m o m e t e r a s s e m b l y fa l l s d ow n fo r a b o u t 2 0 - 3 0 c m g o i n g i n co n ta c t w i t h t h e s e a f l o o r . At t h e s a m e t i m e i t r e m a i n s j o i n e d t o t h e f ra m e by m e a n s o f a m e c h a n i c a l ro p e + a n e l e ct r i ca l c a b l e w h i c h m u s t b e i n s l a c k to o p t i m i z e t h e r u n n i n g o f t h e i n s t r u m e n t w i t h o u t t ra n s m i tt i n g v i b ra t i o n s .

a u t o r i : ST I N /GA Add on to D12 181

co d i ce C l i e n te E S O N ET L I D O D E M O NSTRAT I O N M I SS I O N ì] Tecnomam cod i ce Te c n om a re S EA O P E RAT I O N P ROC E D U R E S F O R 6 34A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E OSTARR E C OV E RY , D E P L OYM E NT da ta : 3 1 /0 3 /2 0 0 9 A N DR E F U R B I SH M EN T ( G U L F O F CAD I Z ) pagina : 1 7

i

1\ \ s \ )

Afte r t h e m i s s i o n , w h e n t h e O b s e rva to ry i s recove re d , t h e p re s e n ce o f t h e m e c h a n i c a l ro p e a l l ow t h e l i ft o f t h e s e i s m o m e te r o u t o f t h e sed i m e n t a n d i ts re cove ry to g e t h e r w i t h t h e fra m e

/ , î '

' t I

a u to r i : ST I N /GA Add on to D12 182

cod i ce C l i e n te ES O N ET L I D O D E M O N S TRAT I O N M I S S I O N Tecnoma re cod i ce Te c n om a re S EA O P E RAT I O NP ROC E D U R E S F O R 6 34A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E OSTARR E COVE RY , D EP LOYM ENT da ta : 3 1 /0 3/2 0 0 9 AN D R E F U R B I S H M E NT ( G U L F O F CAD I Z ) pagina : 1 8

5 . 6 . 2 S e i s m o m ete r as s e m b l y p re p a rat i o n

T h e m a i n p h a ses o f t h e s e i s m o m e te r p re pa rat i o n a n d m o u n t i n g a re t h e fo l l ow i n g :

- P re p a ra t i o n o f th e h o u s i n g - P re pa ra t i o n o f t h e c i rc u l a r t ray d evo te d to s to re t h e a s se m b l y m e c h a n i ca l ro p e + e l e ct r i ca l ca b l e - I n sta l l a t i o n o f t h e s e i s m o m e te r a s se m b l y i n t h e o bse rva to ry fra m e

T h e d e ta i l s o f t h e va r i o u s p re p a ra t i o n a re a n a l yz e d i n t h e fo l l ow i n g s e ct i o n s

5 . 6 . 2 . 1 S e i s m o m ete r h o us i n g p re pa rat i o n

P o s i t i o n t h e s e i s m o m ete r o n t h e b as e o f t h e h o u s i n g s u p p o rt e q u i p p ed w i t h l e a d d ea d we i g h ts . I t ' s i m po rta n t to re s pect t h e r i g h t o r i e n t a t i o n : t h e N o rt h o f t h e i n s t r u m e n t m u s t co i n c i d e w i t h t h e n o rt h o f t h e s u p p o rt . I n o rd e r to l i ft t h e i n s t r u m e n t , i t i s p o ss i b l e to u s e a s m a l l c h a i n wh i ch m u s t b e co n n ected te m p o ra ry to t h e sc rews o f t h e s u p e r i o r f l a n g e .

a u to r i : ST I N/GA Add on to D12 183

co d i ce C l i e n te E S O N ET L I D O D E MO NSTRAT I O N M I S S l O N

Tocflomaro cod i ce Te c n om a re S EA O PE RAT I O N P ROC E D U R E S F O R 6 34A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E OSTARR E C OVE RY , D EP LOYM E NT da ta: 3 1 /0 3/2 0 0 9 A N DR E F U R B I SH M E NT ( G U L F O F CAD I Z ) pagina : 1 9

Fo to 1 0 - se ismome ter positioned on its support

• A p p l y i n s u l a t i o n s h e ets a l l a ro u n d t h e b ase a n d t h e l a te ra l s u rface o f t h e i n st r u m e n t i n o rd e r to avo i d g a l va n i c co n ta ct b e twe e n t h e se i s m o m e te r a n d t h e s u p p o rt

• M o u n t a n d f i x t h e c i a m p

• Ve r i fy t h e i n s u l a t i o n b e twe e n t h e s u p p o rt a n d t h e i n s t r u m e n t w i t h a tes te r .

Fo to 1 1 - se ismome ter fixe d on its supp ort

P os i t i o n t h e h o u s i n g b e l l ove r t h e se i s m o m ete r res pec t i n g t h e n o rt h : t h e n o rt h o f t h e be l l m u s t co i n c i d e w i t h t h e n o rt h o f t h e s u p p o rt . U se t h e co r res p o n d e n t s c rews i n o rd e r to f i x t h e h o u s i n g to t h e s u p po rt bas e

a u to r i : ST I N/GA Add on to D12 184

c o d i ce C l i e n te ES O N ET L I D O D E M O N STRAT I O N M I S S I O N

c o d i ce Tec n om a re S E A O PE RAT I O N P ROC E D U R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O STAR R E COV E RY , D E P LOYM EN T da ta : 3 1 / 0 3/2 0 0 9 AN D R E F U R B I SH M E N T ( G U L F O F CAD I Z ) pagina : 2 0

Fo to 1 2 - de ta il of th e se ism ome ter h o us ing

5 . 6 . 2 . 2 C i rc u l a r T ray p re p a rat i o n

T h e exa ct l e n g t h o f t h e m ec h a n i ca l ro p e to b e u s e d fo r t h e m i s s i o n h as to b e a g re e d w i t h t h e m a r i n e o p e ra t o r , a s i t m ay affec t t h e re cove ry p ro ce d u re . F o r E SO N E T L I D O d e m o n s t ra t i o n m i s s J o n , fo u r m ec h a n i ca l ro p es a re ava i l a b l e :

N r . 1 ro pe l e n g t h 2 . 5 m ( d i a m e te r 1 1 m m ) ; N r . 1 ro p e l e n g t h 3 . 5 m ( d i a m e te r 1 1 m m ) ; N r . 2 ro p e l e n g t h 5 m ( d i a m e te r 1 4 m m ) ;

C o n s e q u e n t l y t h e to t a l l e n g t h o b ta i n a b l e a re : 2 . 5 , 3 . 5 , 5 , 6 , 7 . 5 , 8 . 5 , 1 0 , 1 1 , 1 2 . 5 , 1 3 . 5 , 1 6 m

Afte r t h e exact l e n g t h h as b e e n d e f i n e d , m e c h a n i ca l ro p e ca n b e as s e m b l ed a s fo l l ows . T h e co n n e ct i o n s o f t h e d i ffe re n t m ec h a n i ca l ro p es ca n b e rea l i ze d u s i n g t h e s h a c k l e s/s n a p h o o k

d ev i ces .

a u to r i : ST I N/GA Add on to D12 185

co d i ce C l i e n t e E S O N E T L I D O D E M O NST RAT I O N M I SS I O N T nO l mS c o d i c e Te c n o m a re S E A O PE RAT I O N P RO C E D U R E S F O R 6 3 4A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O S TA R R E C OV E RY , D EP L OYM E N T da ta : 3 1 / 0 3 /2 0 0 9 AN D R E F U R B I SH M E N T ( G U L F O F CAD I Z ) p a gina : 2 1

I E L EVAT I O N

I P LA N I

m m SH AC K L E ( SNA P H O O K ] MAT , r l TA N I U M G r . 5 M AT . T ITAN I UMO r . 5

Fo to 1 3 - de ta il o f th e de vice s to con n e c t th e differe n t m e ch a n ica l rop es

D u r i n g t h i s o p e ra t i o n , t h e e l e c t r i ca l ca b l e m u s t b e fa s to n e d t o t h e m e c h a n i c a l r o p e u s i n g a d h e s i ve t a p e / p l a s t i c s t r i p s p a y i n g a t t e n t i o n to l e av e i t i n s l a c k .

O n ce t h e r o p e a s s e m b l y h a s b e e n c o m p l e t e d , t h e fo l l ow i n g s te p s m u s t b e p e rfo r m e d :

W i n d t h e s ke i n ( m e c h a n i c a l ro p e + e l e ct r i ca l c a b l e ) i n t h e c i rc u l a r t r a y M o u n t t h e m e c h a n i c a l r e l e a s e o n t h e f ra m e w h i c h s u p p o rt s t h e c i rc u l a r t r a y ; P o s i t i o n t h i s fra m e ove r t h e s e i s m o m e te r h o u s i n g p a y m g a tt e n t i o n t o re s p e ct t h e o r i e n t a t i o n o f

t h e n o rt h

Act i v a t e t h e m e c h a n i c a l r e l e a s e i n o rd e r t o a l l ow t h e c o n n e c t i o n b e twe e n t h e re l e a s e h o o k w i t h

t h e s e i s m o m e te r h o u s i n g ;

Lo c k t h e r e l e a s e h o o k .

a u t o r i : ST I N /GA Add on to D12 186

c o d i ce C l i e n te E S O N ET L I D O D E MO N ST RAT I O N M I S S I O N

co d i ce Tec n o m a re SEA O P E RAT I O N P RO C E D U R E S F O R 6 3 4A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O STAR R E COV E RY , D E P L OYM E NT da ta : 3 1 /0 3 /2 0 0 9 AN D R E F U R B I S H M E N T ( G U L F O F CAD I Z ) pagina : 2 2

Fo to 1 4 - de ta il o f th e co nn e ction be twe en th e seism ome ter h ousing an d the rele ase

a u to r i : ST I N/GA Add on to D12 187

cod i ce C l i e n te E S O NET L I D O D E M O NST RAT I O N M I S S I O N

co d i ce Te c n o m a re S EAO P E RAT I O N P RO C E D U R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O STAR R E C OV E RY , D E P LOYM E NT da ta : 3 1 / 0 3/2 0 0 9 AN D R E F U R B I S H M E NT ( G U L F O F CAD I Z ) pagina : 2 3

lr

Fo to 1 5 - se ismom e ter assemb ly re a dy to be position e d inside th e frame

a u to r i : ST I N/GA Add on to D12 188

c o d i ce C l i e n te E S O N ET L I D O D E M O NST RAT I O N M I S S l O N T nomsm c o d i ce Te c n om a re S EA O P E RAT I O N P R O C E DU R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E OSTAR R E C OV E RY D E P L OYM E N T da ta : 3 1 / 0 3 /2 0 0 9 A N D R E F U R B I S H M EN T G U L F O F CA D I Z ) pagina : 24

5 . 6 . 2 . 3 I n s t a l l at i o n o n t h e O bs e rva t o ry

O n ce t h e s e i s m o m e t e r a s s e m b l y i s rea d y , i t m u s t b e l i fte d a n d p o s i t i o n e d i n s i d e G E O STAR re s p e c t i n g t h e o r i e n ta t i o n : t h e n o rt h o f t h e s e i s m o m ete r m u s t co i n c i d e w i t h t h e n o rt h o f t h e f ra m e ( s e e d raw i n g s ) .

D i a m e t e r ( m m ) 6 0 0 H e i g h t ( m m ) C i rca 1 1 O 0 We i g t h i n a i r ( k N ) 2

At re cove ry , t h e s e i s m o m e te r h o u s i n g we i g h t i s 1 k N .

5 . 7 A c o u s t i c c o m m u n i c a t i o n sys t e m

I n c l u d e s two p re s s u re ve s s e l s ( ATS b a tt e ry a n d ATS e l e c t ro n i c s ) a n d a n u n d e rwa t e r t ra n s d u ce r , w h i c h h a s to b e m o u n t e d o n t h e m a i n f ra m e .I t c a n b e e a s i l y h a n d l e d b y h a n d b e ca u s e t h e we i g h t i s ve ry I ow : a b o u t 2 . 5 kg f .

Fig . 1 1 - A TS Un de rwa ter Tra n sducer

a u t o r i : ST I N/GA Add on to D12 189

co d i c e C l i e n t e E S O N ET L I D O D E M O NST RAT I O N M I SS I O N

c o d i ce Te c n o m a re S EA O PE RAT I O N P RO C E D U R E S F O R 6 3 4A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O STA R R E C OV E RY , D EP L OYM E N T da ta : 3 1 / 0 3/2 0 0 9 A N D R E F U R B I SH M E NT ( G U L F O F CA D I Z ) pagin a : 2 5

5 . 8 F e n d e rs

O b s e rva to ry a s s e m b l y i s c o m p l e t e d w i t h t h e m o u n t i n g o f 4 fe n d e rs . T h ey a re n ' t i n t e r c h a n g ea b l e , s o t h e y m u s t b e m o u n te d a cco rd i n g to t h e m e c h a n i c a l d raw i n g s

D I M E NS I O NS ( P l a n t v i ew ) ( m m ) 3 4 0 0 x 6 5 0 H E I G H T ( m m ) 3 OO W E I G H T ( k N ) 2 0 0 N e a c h

a u t o r i : ST I N / GA Add on to D12 190

c o d i ce C l i e n t e E S O N E T L I D O D E M O NST RAT I O N M I SS I O N

co d i c e Te c n o m a re S EA O P E RAT I O N P R O C E D U R E S F O R 6 3 4 A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O STARR E C OV E RY , D EP L OYM E NT da ta : 3 1 /0 3 /2 0 0 9 A N D R E F U R B I S H M E N T ( G U L F O F CA D I Z ) p a gina : 2 6

6 P R E - M I S S I O NT ES TS A N D P R E P ARAT I O N F O R D EP L OY M E NT

B e fo re s ta rt i n g t h e p re - m i ss i o n t e s t s , t h e fo l l ow i n g s t e p s h a ve t o b e c a r r i e d o u t a ) c h e c k a l l p re s s u re v e s s e l s a r e p ro p e r l y c l o s e d b ) o i l co m p e n s a to rs p ro p e r l y f i l l e d c ) co n n e ct i o n o f a l l ca b l e s d ) a l l ca b l e s f i xe d to t h e f ra m e by m e a n s o f p l a s t i c s t r i p s e ) o b s e rva t o ry p owe re d o n ( b a tte ry p a c k s c o n n e c t e d )

P r e - m i s s i o n te s t s h a l l b e c a r r i e d o u t a c c o rd i n g t o t h e fo l l ow i n g p r o ce d u re .

6 . 1 Tes t c a b l e

T h e s e t e s t s a re ca r r i e d o u t u s i n g t h e t e s t c a b l e d i re c t l y co n n e ct e d t o t h e S u rfa ce U n i t .

Te s t i n c l u d e

• t e s t o f a l l s e n s o rs

• te s t o f s ys t e m s t a t u s ( DAC S , b a tte ry ) • m i s s i o n co n f i g u ra t i o n • t e s t o f ATS t e l e m e t ry ( i n a i r )

6 . 2 M O D U S t e l e m e t ry

W h e n t h e a b ove te s t a re s u cce s s f u l l y c o m p l e t e d a n d M O D U S h a s b e e n m o u n t e d O h t h e o b s e rva t o ry , t h e t e s t c a b l e w i l l b e d i s c o n n e c te d a n d t h e MO D U S te l e m e t ry c a b l e c a n b e c o n n e c t e d to t h e s a m e p o rt . Acc o rd i n g l y , t h e S u rfa c e U n i t h a s t o b e c o n n e cte d t o M O D USS u rfa ce U n i t .

T e s t i n c l u d e

• te s t o f a l l s e n s o r s

• t e s t o f sys t e m s t a t u s ( DAC S , b a t t e ry )

a u t o r i : ST I N /GA Add on to D12 191

co d i ce C l i e n t e E S O N ET L I D O D E M O NST RAT I O N M I SS I O N

c o d i ce Te c n o m a re S E A O PE RAT I O N P R O C E D U R E S F O R 6 3 4A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O STARR E C OV E RY , D EP L OYM E N T da ta : 3 1 / 0 3 /2 0 0 9 A N D R E F U R B I SH M EN T ( G U L F O F CAD I Z ) pagina : 2 7

7 D E P L OY M E NT

D e p l o y m e n t p ro c e d u r e i n c l u d e s t h e fo l l ow i n g s t e p s

a ) s h i p f i n a l p o s i t i o n i n g o n t h e s e l e c te d s i t e ( ke e p r e c o r d o f co o rd i n a t e s fo r s u b s e q u e n t re cove ry m i s s i o n ) b ) AT S t r a n s d u ce r a t s e a ( a b o u t 1 0 m u n d e r t h e s e a s u rfa ce ) a n d co n n e c t e d t o i t s s u rfa c e u n i t c ) L a u n c h a t s e a d ) E xe c u t i o n o f t h e s e q u e n c e o f s te p s s u m m a r i z e d i n t h e fo l l ow i n g t a b l e ( v a l u e s re fe r re d to a n i n s t a l l a t i o n d e p t h o f a b o u t 3 0 0 0 m )

ACT I O N C O MMAN D TY P E O F RE P LY

G E O S TA R I owe re d few m e te rs C H E C K I F S Y S T E M I S O K ( n o b e l ow s ea l e ve l wa t e r d e t e cto rs s i g n a l s , t e l e m e t S TO P d e p l o y m e n t o k ) G E O S TAR I owe re d a t 2 0 - 3 0 A U TOT E S T AT S I f t h e r e p l y i s n e g a t i ve : m u n d e r s e a l e ve l 1 . I owe r G E OSTAR u p t o S TO P d e p l o y m e n t 1 0 0 rn m ax C h e c k u m b i l i c a l ca b l e p ayo u t 2 . m o d i fy AT S p a ra m e t e r s 3 . p o s s i b l e s h i p p ro p e l l e r

n o i s e ?

G E OS TA R I owe re d a t 1 0 0 m S TAT U S S E NS O RS I f DAC S d o e s n ' t re p l y : S TO P d e p l o y m e n t ( b a t te r y c u r re n t , wa te r d e t e c t o r ) 1 . t ry a g a i n

2 . re c ove r G E OSTAR o n

RAW DATA fro m a l l s e n s o rs d e c k

G E O S TAR I owe re d a t 5 0 0 m S TAT USS E NS O R S

STO P d e p l o y m e n t RAW DATA ( CT D ) C h e c k u m b i l i c a l ca b l e p a y o u t

G E O S TAR I owe re d a t 1 0 0 0 m S TAT US S E NS O R S

S TO P d e p l o y m e n t RAW DATA ( a l l s e n s o r s ) C h e c k u m b i l i ca l ca b l e p a y o u t AT S t e s t

G E O S TAR I owe r e d a t 1 5 0 0 m S TAT USS E NS O R S

S TO P d e p l o y m e n t RAW DATA ( CT D ) C h e c k u m b i l i ca l ca b l e p a yo u t

G E OSTA R I owe re d a t 2 0 0 0 m STAT U S S EN S O R

a u t o r i : S T I N / GA Add on to D12 192

c o d i c e C l i e n t e E S O N ET L I D O D E MO NST RAT I O N M I S S I O N T cno l 8 1 í c o d i c e Te c n o m a re S EA O PE RAT I O N P R O C E D U R E S F O R 6 3 4 A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O S TA RR E C OV E RY , D EP L OY M E N T da ta : 3 1 / 0 3 /2 0 0 9 A N DR E F U R B I SH M E NT ( G U L F O F CAD I Z ) p a gina : 2 8

STO P d e p l o y m e n t RAW DATA ( a l l s e n s o r s ) C h e c k u m b i l i ca l ca b l e p a y o u t ATS t e s t G E O S TA R a t 2 5 0 0 m STAT U S SENS O R ( a l t i m e te r , t i l t ) S TO P d e p l o y m e n t RAW DATA ( CTD ) C h e c k u m b i l i c a l ca b l e p a y o u t

G E OSTAR a t 3 0 0 0 rn S TAT U SS E NS O R

S TO P d e p l o y m e n t RAW DATA ( a l l s e n s o rs ) C h e c k u m b i l i ca l c a b l e p a yo u t ATS te s t

G E O STA R a t a d i s t a n c e o f 1 0 0 S TAT U S S E NS O R

m fr o m s e a b e d C o n t i n u o u s c h e c k o f e c h o s o u n d e r

STO P d e p l o y m e n t d a ta C h e c k u m b i l i ca l c a b l e p a yo u t

G E O S TA R a t 3 0 m f r o m S TAT USS E NS O R

s e a f l o o r ( e c h o s o u n d e r m ax ta n g e ) STO P d e p l o y m e n t C h e c k u m b i l i ca l c a b l e p ayo u t

C o n t i n u e d e s c e n t a t m i n i m u m C o n t i n u o u s c h e c k o f e c h o s o u n d e r

s p e e d d a t a

TO U C H D OW N S TAT USS E NS O R To u c h - D OW N co n f i r m a t i o n

U m b i l i ca l ca b l e i n s l a c k ( m a x ( t i l t a n g l e s c h a n g e d ; 2 0 m ) a l t i m e t e r m e a s u r e s G E O S TA R s e t t l e m e n t ) G E O S TA R a t s e a b e d RAW DATA ( a l l s e n s o r s ) N OT E : t h i s p h as e i m p l y R E L EAS E s e i s m o m e t e r t h a t t h e s h i p h as t o S TATUSS E NS O R S re m a i n i n p i a c e w i t h

S TART M I S S I O N M O D US c o n n e c t e d t o

O FF M D - B S D R I V E R G E OSTAR fo r a l l t h e t i m e

re q u i r e d t o v e r i fy a l l t h e

f u n c t i o n s . D u ra t i o n

d e p e n d s o n t h e n u m b e r

o f t h e t e s t t o b e ex e c u t e d

a n d re l ev a n t res u l t s ( a

t i m e b e twe e n 1 5 a n d 3 0

a u t o r i : ST I N / GA Add on to D12 193

c o d i ce C l i e n te ES O N ET L I D O D E M O N S TRAT I O N M I SS l O N

c o d i ce Te c n o m a re [ T C l nl O l h l r S E A O P E RAT I O N P R OC E D U R E S F O R 6 3 4 A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O S TARR E C OV E RY D E P L OYM E N T da ta : 3 1 /0 3 /2 0 0 9 A N D R E F U R B I SH M E N T G U L F O F CAD I Z ) p a gina : 2 9

m i n u t es m a y b e p re l i m i n a r i l y a s s u m e d ) M O D US D I S C O NN E CT I O N

e ) R e cov e r o n b o a r d MO D U S f) R e cov e r ATS t ra n s d u ce r o n b o a r d

7 . 1 E m e rg e n c y c o n d i t i o n s

O c c u r r e n ce o f o n e ( o r m o re ) o f t h e fo l l ow i n g c o n d i t i o n s s h a l l ca u s e a b o rt o f t h e d e p l o y m e n t p ro ce d u re a n d i m m e d i a te G E O S TA R re cov e ry o n b o a rd :

a ) DAC S n o t r e s p o n d i n g b ) Wa t e r d e te c t a l a r m i n DAC S o r B a tt e ry Ve s s e l s c ) L ow b a t t e ry o r H i g h C u r re n t a l a r m d ) S e i s m o m e te r n o t re s p o n d i n g e ) S e i s m o m e te r r e l e a s e co m m a n d fa i l e d

I n c a s e d e p l o y m e n t s e q u e n ce h a s to b e i n t e r r u p te d fo r a n y re a s o n , t h e fo l l ow i n g o p e ra t i o n s s h a l l b e ca r r i e d o u t a s s o o n a s G E O STAR i s re cov e r e d o n b o a rd :

a ) wa s h t h o ro u g h l y t h e o b s e rva to ry w i t h f re s h wa t e r b ) c l e a n s c i e n t i f i c p a c ka g e s a c co r d i n g t o t h e i r s p e c i f i c re q u i re m e n ts c ) d i s m o u n t a n d s t o r e i n p ro t e c t e d a rea pa c ka g es re q u i r i n g s p e c i a l h a n d l i n g

a u t o r i : ST I N /GA Add on to D12 194

c o d i ce C l i e n te E S O N ET L I D O D E M O N S T RAT I O N M I SS I O N

c o d i c e Te c n o m a re S E A O P E RAT I O N P ROC E D U R E S F O R 6 3 4 A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O STAR R E C OV E RY , D EP L OY M E N T da ta : 3 1 / 0 3 /2 0 0 9 A N D R E F U R B I S H M E N T ( G U L F O F CAD I Z ) pagina : 3 0

8 C H E C KS D U R I N G M I SS I O N

Alt e r m i s s i o n s t a rt , G E O S TAR s t a t u s ca n b e c h e c ke d v i a Ac o u s t i c t e l e m e t ry . Afte r d e p l oy m e n t , i t i s n e c e s s a ry t o c h e c k G E O S TA R s ta t u s a t l e a s t two t i m e s a ) few h o u rs ( 2 - 3 ) a fte r m i s s i o n s ta rt b ) a ft e r 2 4 h o u rs a ft e r m i s s i o n s ta rt

D u r i n g e ve r y c h e c k a t l e a s t a DATA M E SSAG E a n d a STAT U S M ESS AG E ( fo r exa m p l e , t h e o n e s re l e va n t t o t h e l a s t c o m p l e t e d h o u r o f m i s s i o n ) s h a l l b e re cove re d .

A l t h o u g h n o t s t r i c t l y n e ce s s a ry , i t i s a l s o re co m m e n d e d t o c a r ry o u t a c h e c k e ve ry t i m e t h e s h i p i s i n t h e v i c i n i t y o f t h e d e p l o y m e n t s i t e .

a u t o r i : ST I N /GA Add on to D12 195

c o d i ce C l i e n t e E S O NET L I D O D E M O NST RAT I O N M I SS I O N TQcnoma ro c o d i ce Te c n om a re S EAO PE RAT I O N P R O C E D U R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O S TARR E C OV E RY , D E P L OYM EN T da ta : 3 1 / 0 3 /2 0 0 9 A N DR E F U R B I SH M E NT ( G U L F O F CAD I Z ) pagina : 3 1

9 R E C OV E RY

D u r i n g re c ov e ry o p e ra t i o n t h e o b s e rva to ry i s to ta l l y pa s s i ve ( s e e F i g u re 1 2 ) . A l l o p e ra t i o n s a re m a n a g e d by t h e d e d i ca te d ve h i c l e MO D U S m a n a g e d fro m t h e s u rfa ce w i n c h a n d u m b i l i ca l ( b a s i c s p e c i f i ca t i o n s a re re p o rte d i n S e ct i o n 1 1 ) . Fo r a l l d e t a i l s re l eva n t t o t h e MO D US ve h i c l e o p e r a t i o n ( i n c l u d i n g p re p a ra t i o n fo r t h e m i s s i o n , l a u n c h , p o s i t i o n i n g , a p p ro a c h , d o c k i n g , re co ve ry o n b oa rd ) re fe re n ce h a s to b e m a d e to MO D US o p e ra t i o n a l p ro ce d u re s .

Fig . 1 2 - Se q ue n ce o f MOD US veh icle approa ch a n d docking to GEO S TA R

a u to r i : ST I N / GA Add on to D12 196

c o d i c e C l i e n t e E S O N ET L I D O D E M O NST RAT I O N M I SS I O N

c o d i ce Tec n o m a re S EA O P E RAT I O NP RO C E D U R E S F O R 6 34A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O STARR E C OV E RY , D E P L OYM EN T da ta : 3 1 / 0 3 /2 0 0 9 A N DR E F U R B I S H M E N T ( G U L F O F CA D I Z ) p a gina : 3 2

O n ce t h e O b s e rva to ry h a s b e e n re cov e re d o n b o a rd t h e s h i p , t h e fo l l o w i n g o p e ra t i o n s s h a l l b e c a r r i e d o u t :

a ) wa s h t h o ro u g h l y M O D U S a n d O b s e rv a t o ry w i t h f r e s h wa te r b ) c l e a n s c i e n t i f i c p a c ka g e s a c co rd i n g to t h e i r s p e c i f i c re q u i re m e n t s c ) d i s co n n e c t t h e b a t t e ry p a c k a n d p u t d u m m y p l u g o n co n n e cto r d ) d i s co n n e ct ATS b a t te ry p ac k a n d p u t d u m m y p l u g o n c o n n e c t o r e ) o p e n DAC S ve s s e l a n d t r a n s fe r t h e DAC S i n s i d e l a b o r a t o ry f) re m ove h a r d d i s ks a n d b l a c k - b o xe s g ) d ow n l o a d co n t e n t o f h a rd d i s k s a n d b l a c k- b oxe s , u s i n g t h e s o ftwa re a p p l i c a t i o n s d e ve l o p e d fo r t h e p u r p o s e h ) d i s m o u n t t h e e q u i p m e n t a n d p re p a r e fo r p a c k i n g

a u t o r i : ST I N / GA Add on to D12 197

c o d i ce C l i e n te E S O N E T L I D O D E M O NST RAT I O N M I S S I O N

c o d i ce Te c n o m a re S EA O P E RAT I O N P R O C E D U R ES F O R 6 3 4A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O STARR E C OV E RY , D E P L OYM E N T da ta : 3 1 /0 3 /2 0 0 9 A N DR E F U R B I SH M E NT ( G U L F O F CA D I Z ) pagina : 3 3

1 0 R E F U RB I SH M E NT

G E O STAR re f u r b i s h m e n t p r o ce d u re i n c l u d es

c h e c k a n d ( w h e re n e ce s s a ry ) re - c a l i b ra t i o n o f a l l s e n s o rs c l e a n i n g a n d i n s p e ct i o n o f t h e f ra m e ( w h e re n e ce s s a ry N DT o f t h e m o s t c r i t i ca i we l d s ) c h e c k o f a l l c a b l e s a n d co n n e c t o rs

c h e c k a l l e l e c t ro n i cs

e m p ty j u n ct i o n b oxe s a n d p re s s u r e co m p e n s a t o r c h e c k p re s s u r e co m p e n s a t o r s u b s t i t u t i o n o f t h e b a tt e ry p a c k s u b s t i t u t i o n o f t h e AT S b a t t e ry p a c k i n s p e c t s e i s m o m e t e r re l ea s e a n d p re p a re fo r n ew m i s s i o n ( c l e a n , r e p l a ce b a tt e ry ) f i l i j u n c t i o n b ox e s a n d p re s s u re co m p e n s a t o r t e s t p re s s u re ve s s e l wa te rt i g h t n e s s p re p a re p r e c i s i o n c l o c k ( re p l a c e b a t t e r i e s , t i m e s y n c h r o n i s a t i o n ) s y s t e m f u n c t i o n a l t e s t s

a u t o r i : ST I N / GA Add on to D12 198

cod i c e C l i e n t e E S O N ET L I D O D E M O NST RAT I O N M I S S I O N TQCnO l Sm co d i ce Te c n o m a re S E A O P E RAT I O N P R O C E D U R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O S TAR R E C OV E RY , D E P L OYM E NT da ta : 3 1 / 0 3/2 0 0 9 AN DR E F U R B I SH M EN T ( G U L F O F CAD I Z ) pagina : 3 4

1 1 G E OSTA R D E P L OYM E NT AN D R E C OVE RY I N F RASTRU CTU R E

1 1 . 1 M O D US

B a s i c d e ta i l s o f M O D U S a re g i ve n i n t h e fo l l ow i n g

U n d e rwa te r ve h i c l e

d i m e n s i o n s 2 3 5 0 x 2 9 0 0 x 1 7 0 0 m m

we i g h t 1 0 0 0 kg f ( i n a i r ) , 7 0 0 kg f ( i n wa t e r ) m a t e r i a l s : a l u m i n i u m , s ta i n l es s s te e l , t i t a n i u m d e s i g n d e p t h : 4 0 0 0 m o p e ra t i ve i n m a x s e a s ta te 3 m ax p ay l oa d 3 0 0 0 Kg f ( i n a i r) n av i g a t i o n p a y l o a d : s o n a r 3 6 0 ° ; 4 TV ca m e ras + l i g h ts ; a l t i m e te r ; h ead i n g ; t i l t ; L F t ra n s p o n d e r • 2 s e r i a l l i n ks ( R S -2 32 ) + p owe r fo r ext e r n a l p a y l o a d l a te ra l m ove m e n t c a p a b i l i ty : 5 % o f d e p t h p ro p u l s i o n 4x7 0 0 N ( h o r i z o n ta l ) , 2 x7 0 0 N ( v e rt i c a l ) • p owe r : 2 5 kW ( 3 x3 0 0 0 VAC 3 - p h a s e , v i a u m b i l i ca l ) • te l e m e t ry : 4 v i d e o c h a n n e l s + 1 2 s e r i a l l i n e s v i a u m b i l i c a l ( 3 s i n g l e m o d e o p t i ca l f i b re s )

Fig . 1 3 - MOD US o vera ll vie w

a u to r i : ST I N/GA Add on to D12 199

cod i ce C l i e n te ES O NET L I D O D E M O N S TRAT I O N M I S S I O N Tecnoma re co d i c e Te c n om a re S E A O P E RAT I O N P R O C E D U R E S F O R 6 3 4A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E OSTARR E COV E RY , D EP L OYM E N T da ta : 3 1 /0 3 /2 0 0 9 AN DR E F U R B I SH M E NT ( G U L F O F CAD I Z ) pagina : 3 5

S u rfa ce U n i t

• F o u r ra c ks a p p rox 1 5 0 0 x 8 0 0 x 8 0 0 m m e a c h • e q u i p p e d w i t h M a n - M a c h i n e I n t e rface , 4 m o n i to rs a n d 4 VC Rs , s o n a r s u rfa ce u n i t • 2 2 0 VAC , 5 0 H z p owe r s u p p l y • co n n e c t e d v i a f i b e r o p t i c ca b l e to w i n c h s l i p r i n g

Fig . 1 4 - De ta il o f MOD USSurfa ce Un it

P owe r u n i t

• R a c k i n c l u d i n g p owe r s y s t e m , t ra n s fo r m e r , re c t i f i e r • p owe r o f a b o u t 2 5 kW fo r t h e u s e o f M O D US i s p rov i d e d by a n u m b i l i c a l w i t h t h re e c o n d u cto rs . T ra n s m i s s i o n i s re a l i z e d b y 3 p h as e 3 0 0 0 V c u r re n t . T h e g e n e ra t o rs o f t h e s h i p u s i n g s t a n d a rd vo l t a g e s a n d c u r re n t s fe e d t h e b o a rd u n i t . T h e s u rfa c e t ra n s fo r m e r u n i t i s e q u i p p e d w i t h s a fe ty d ev i ce s .

a u t o r i : ST I N/GA Add on to D12 200

c o d i ce C l i e n te E S O NET L I D O D E M O NSTRAT I O N M I S S I O N

c o d i ce Te c n o m a re S EA O P E RAT I O NP R O C E D U R E S F O R 6 3 4 A2 1 1 3 - P R O - 0 0 0 0 - 0 0 1 . 0 G E O S TA RR E C OV E RY , D EP L OYM E NT da ta ." 3 1 / 0 3 /2 0 0 9 A N DR E F U R B I SH M EN T ( G U L F O F CAD I Z ) pagina : 3 6

Figure 1 5 - De ta il o f MOD US Po wer Un it

a u t o r i : ST I N /GA Add on to D12 201

c o d i ce C l i e n te E S O N ET L I D O D E M O NSTRAT I O N M I S S l O N

co d i ce Tec n o m a re S EA O P E RAT I O NP RO C E D U R E S F O R 6 34A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O STAR R E C OV E RY , D EP L OYM EN T da ta : 3 1 /0 3 /2 0 0 9 AN DR E F U R B I SH M EN T ( G U L F O F CAD I Z ) pagina : 3 7

1 1 . 2 W i n c h

W i n c h a n d H P U m a i n c h a ra cte r i s t i cs a re

D i m e n s i o n s 3 8 0 0 x 2 3 5 0 x 24 0 0 m m

We i g h t 1 8 0 0 0 kg f

H P U d i m e n s i o n s 1 7 7 0 x 1 1 5 0 x 1 7 8 0 m m

H P U we i g h t 2 0 0 0 kg f s ta t i c I oa d 8 0 0 0 kg f ( to p l aye r) m ax p ayo u t s p e e d 7 0 m / m i n ( l s t l a ye r) , 5 1 m / m i n ( 1 0 t h l a ye r) ca b l e ca pa c i ty : 4 0 0 0 m , 2 5 . 4 m m d i a , 1 0 l aye rs

Figure 1 6 - De ta il o f th e Win ch

a u to r i : ST I N /GA Add on to D12 202 c o d i c e C l i e n te E S O N ET L I D O D E M O NSTRAT I O N M I S S l O N T c r o l a l r c o d i ce Te c n o m a re S E A O PE RAT I O N P R O C E D U R E S F O R 6 3 4A2 1 1 3 - P RO - 0 0 0 0 - 0 0 1 . 0 G E O S TAR R E C OV E RY , D EP L OYM E NT da ta : 3 1 / 0 3/2 0 0 9 A N D R E F U R B I SH M E N T ( G U L F O F CA D I Z ) pagina : 3 8

1 1 . 3 U m b i l i c a l c a b l e

R o c h e s te r e l e ct ro m e c h a n i c a l ca b l e

2 5 . 4 m m o . d .

3 x 3 0 0 0 VAC , 6 A p owe r c o n d u c t o r s 3 s i n g l e m o d e f i b e r o p t i cs wo r k i n g I o a d 8 9 0 0 kg f b re a k i n g s t re n g t h 2 0 5 0 0 kg f we i g h t 2 2 0 0 k g f/ k m ( i n a i r) , 1 8 0 0 kg f/ k m ( i n wa t e r ) l e n g t h 4 3 0 0 m

a u t o r i : ST I N/GA Add on to D12 203

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE)

Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems

Sub Priority: III – Global Change and Ecosystems

Deliverable reference number and title:

D1.5 New requirements and technical specifications of the enhancements of the GEOSTAR surface buoy (UPC)

Due date of deliverable: December 2008 Actual submission date: March 2009

Start date of project: March 2007 Duration: 48 months

Organisation name of lead contractor for this deliverable: UPC Lead authors for this deliverable: Michel André

Revision [April 2009]

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

Add on to D12 204

Add on to D12 205

LIDO DEMO MISSION

WP1 – Recovery, refurbishment and enhancements of the observatories: the work package will develop enhancements of existing NEMO-SN1 and GEOSTAR observatories and infrastructures to open the nodes of a first nucleus of regional network to other disciplines (bioacoustics) and homogenise the geophysical equipments of these observatories by integrating additional sensor, devices, and software. The development of the pilot experiment for long-term operation of the observatories and comparative tests is also included.

Deliverable D1.5 New requirements and technical specifications of the enhancements of the GEOSTAR surface buoy (UPC). In the original proposal it was suggested to use a ‘full’ hydrophone array with the capability of locating sound sources that would be connected to shore using satellite communication (Figure 1). In light of available financial resources and technical limitations this design has been simplified.

Figure 1. Initial design of the Geostar Bioacoustics Antenna

The objective of the system will be to demonstrate the usefulness of the code developed for LIDO in an embedded application. Its task will be to analyse acquired sound in real-time, classifying the recordings into several broad categories (i.e. data segments that may contain dolphin-like, sperm whale-like, shipping, etc sounds). This broad classification will allow making a decision whether or not the data needs to be stored locally for further off-line analysis. The system will be deployed at a depth of around 50 meters at the current GEOSTAR site and programmed to store especially cetacean signals (see Figure 2). The following components are considered for the system (some specifications may change): • One digital hydrophone from Smid Technology; this hydrophone has a frequency bandwidth from 20 Hz to 100 kHz, with build in maximum sampling frequency of 192 kHz, a selectable gain between either 20 or 40 dB and digitizes the data at 16 bit. The Add on to D12 206

choice for this hydrophone will avoid the need for a separate a/d converter or gain/conditioning modules. The hydrophone will be connected through and is powered by USB. Drivers for Linux will need to be developed.

• Intel ATOM based processing board; such a board can run on a standard Linux version and will require minimal time for testing/adapting the current LIDO code.

• SSD internal storage (either a Samsung or Intel drive as these have received the best reviews).

All components will be housed in a casing suitable for the deployment area and duration. As the use of a solar panel is not technically feasible for this implementation the system will be battery powered. This will put a strong limit on the maximum time the system can be deployed.

The maximum storage for the system is expected to be around 128 GB (2 SDD drives of 64 GB, at the time of purchase other sizes may be available). If the sampling frequency is set at 96 kHz, which would allow detection and recording of both dolphin, sperm and beaked whale sonar, then the system can record continuously for around 190 hours. To ensure that the storage space is not exhausted within 8 days (the deployment area is expected to have a high Add on to D12 207

level of cetacean activity) a mechanism will be added to limit the daily amount of recorded data. This daily limit will be adjusted according to the maximum battery power available. Add on to D12 208

Add on to D12 209

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE)

Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems

Sub Priority: III – Global Change and Ecosystems

ESONET WP4 – DEMONSTRATION MISSIONS

LIDO – Listening to Deep Ocean

Deliverable D 4.1 Report on functioning/misfunctioning Parts and subsystems of the recovered instrumentation

Due date of deliverable: December 2008 Actual submission date: April 2009

Start date of project: March 2007 Duration: 48 months

Organisation name of lead contractor for this deliverable: TECNOMARE Lead authors for this deliverable:

Revision [April 2009]

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

Add on to D12 210

Add on to D12 211

co d i ce C l i e n te TE C N O MARE S . p . A .

T@C l h3 O I h a l r@ 3 0 1 7 5 M a rg h e ra , V i a P ac i n o tt i 4 , + 3 9 04 1 7 9 6 7 1 1 c o d i ce Te cn o m a re 2 0 1 3 9 M i l a n o , V i a C av i g l i a 1 1 , + 3 9 0 2 5 3 5 75 1 6 34A2 1 1 3 - RA P - 0 0 0 0 - 0 0 1 . 0 P R I N d i rez i o n e e m i t te n te s e d e e m i tte n te : M a rg h e ra c o d i c i d o c u m e n t o

E S O N ET L I D O D E MO N STRAT I O N M I SS I O N

REP ORT O N F U N CT I O N I N G/ M I S F UN CT I O N I N G

PARTS AN D S U B SYSTE M S O F TH E

RE COVE RE D I NSTRU M E NTAT I O N

d i s t r i b uz i o n e : ST I N /GA , S I RO/ F B , S I RO/ FF , S I RO/ F D

i n fo rm a z i o n i s u p p l e m e n t a r i :

0 3 1 /0 3 /0 9 I s s u e fo r C o mm e n ts 5 rev . d a t a d e s c r i z i o n e p a g i n e p re p a ra t o ve r i f i c a t o a p p rova t o Q u e s to do c um e n t o é d i p ro p r i età d i Te c n o ma re S . p . A . - E s s o o p a rte d i e s s o n on p uò e s s e re u t i l i zza to o r i p rodo tto i n q u a l s i a s i fo rma p e r s co p i d i ve rs i da q ue l l i p e r cu i é s t a to p ro dot to . Te c nom a re S . p . A . t u t e l e rà i s uo i d i r i tt i , a te rm i n i d i l e g g e , i n o g n i s e de , c i v i l e e p e n a l e . Add on to D12 212 ES O N ET co d i ce C l i e n te L I D O D E M O NSTRAT I O N M I S S I O N

R E P O RT O N co d i ce Te c n o m a re F UN CT I O N I N G / M I S F UN CT I O N I N G PARTS 6 34A2 1 1 3 - RAP - 0 0 0 0 - 0 0 1 . 0 AN D S U B SYST E M S O F T H E R E COVE R E D da ta : 3 1 /0 3/2 0 0 9 I NST R U M E NTAT I O N pa gina : 2

TAB L E O F C O NTE NTS

1 S CO PE ...... 3

2 G E OSTAR STATUS AT R E C OVE RY ...... 4

3 S N - 1 STATUS AT R E C OV E RY ...... 5

a u t o r i : S I RO/ F B Add on to D12 213 ES O NET co d i ce C l i e n t e L I D O D E M O N S TRAT I O N M I SS I O N

R EP O RT O N co d i ce Te cn o m a re [ T@@ Ih3 O I 8 1 F@ F UN CT I O N I N G/ M I S F UN CT I O N I N G PARTS 6 34A2 1 1 3 - RAP - 00 0 0 - 0 0 1 . 0 AN D SU B SYSTE M S O F T H E R E C OVE R E D da ta : 3 1 /0 3 /2 0 0 9 I N ST R U M E N TAT I O N pagin a : 3

1 S C O PE

T h e p res e n t d oc u m e n t s u m m a r i zes

• T h e s ta t u s o f t h e G E O STAR sys te m fo l l ow i n g N ea res t M i s s i o n ( A u g u s t 2 0 0 7 - Au g u s t 2 0 0 8 ) • T h e s t a t u s of t h e ca b l e d o b s e rva t o ry S N - 1 afte r i t s 2 n d m i s s i o n ( J a n 2 0 0 5 -M ay 2 0 0 8 )

I n t h e n ext two s ect i o n s , a b r i ef d es c r i p t i o n of t h e o b s e rve d p ro b l e m s a n d re m e d i a l a c t i o n s w i l l b e g i ve n , i n v i ew o f t h e s e t- u p o f t h e two o b s e rva t o r i e s fo r t h e p l a n n e d E s o n e t L I D O D e m o n s t ra t i o n m i ss i o n ..

a u t o r i : S I RO/ F B Add on to D12 214 E S O N ET c o d i ce C l i e n te L I D O D E M O N ST RAT I O N M I S S I O N

R E P O RT O N co d i ce Te c n o m a re F U N CT I O N I N G / M I S F U N CT I O N I N G PARTS 6 34A2 1 1 3 - RAP - 0 0 0 0 - 0 0 1 . 0 AN D SU B SYST E M S O F T H E R E C OVE R E D da ta : 3 1 /0 3/2 0 0 9 I NST R U M E N TAT I O N pagina : 4

2 G E OSTAR STATU S AT RECOV E RY

DES CR IPTI ON REA S ON REMED IA L AC TI ON

H yd ro aco u s t i c l i n k b e twee n B u oy a co u s t i c m o d e m n o t Re p l a ce m e n t o f a co u s t i c m o d e m s G e os t a r a n d t h e b u oy n eve r o p e ra t i o n a l . MATS 1 2 w i t h t h e u p g ra d e d ve rs i o n wo rked . MATS 2 0 0

B u oy m oo r i n g b ro ke n a p p rox o n e I m p ro pe r d es i g n of m oo r i n g l i n e M o o r i n g l i n e a n d i t s a tt ac h m e n t t o t h e m o n t h a ft e r d e p l oy m e n t co n n ec t i o n t o t h e b u o y b u o y s h a l l b e re - d e s i g n ed b y a q u a l i fi ed m a n u fa c t u re r ( F L OAT EX ) N o i se o n se i s m i c d a ta d u e t o C a u sed by a n o m a l o u s S e i s m o m e t e r a n d d i g i t i z e r se n t t o t h e co n t i n u o u s ce n te r i n g of b e h av i o u r o f t h e s e i s m o m e t e r m a n u fac t u re r fo r d i a g n os t i cs a n d s e i s m o m e t e r m a sses ( d i g i t a l n o i se o n a co n t ro l l i n e ) re p a i r . Ad d i t i o n a l co m p o n e n t a d d e d to t h e e l ect ro n i c b o a rd . P res s u re s e n s o r d e s t roy e d by U s e o f n eo p re n e t o i s o l a t e t h e • N ew se n s o r p u rch a s ed co r ro s i o n ( M a rc h 0 8 ) s ta i n l ess s te e l s e n so r . N o • U s e o f a p ro tect i o n a n o d e ca t h o d i c p ro t e ct i o n a d o p t e d . • U s e o f a p l a s t i c c l a m p t o fas t e n t h e se n so r t o t h e s t a t i o n fra m e

P res s u re s e n s o r d a t a a ffecte d by Re as o n s p ro ba b l y d u e to s e n so r S e e a b ove n o i s e ( es p . n ov - d e c 0 7 d a ta ) co rros i o n P e r i o d i c re b oo ts of C P U b oa rd DAC S f i rmwa re b u g DAC S f i r mwa re u pg ra d e d m a n ag i n g t h e s e i s m o m e t e r Eve ry 24 b i t d i g i t i ze r re b oo t D i g i t i ze r e r ro n e o u s d e s i g n S oftwa re/ h a rd wa re m od i f i ca t i o n s to be ca u ses a fa l se eve n t i m p l e m e n t ed by t h e d i g i t i s e r m a n u fa c t u re r S o m e d a m ag es t o t h e fra m e B a d s e a s t a t e co n d i t i o n s T h e fra m e s h a l l be re p a i re d occ u r red d u r i n g d e p l o y m e n t H yd ro p h o n e fa i l u re i m m ed i a t e l y P ro b a b l y wa te r i n t r u s i o n . S e n s o r s e n t t o a q u a l i f i e d l a b o ra to r y aft e r s ta rt m i ss i o n ( N u rc ) fo r c h e c k a n d d i a g n o s t i cs . B a tt e ry p ac k d u ra t i o n l e s s t h a n B a tt e ry ca p ac i t y d e ra t i n g , S e i s m o m e t e r u p g ra d i n g s h a l l e n s u re t h e p l a n n e d d u e t o o p e ra t i o n a t p ro p e r o p e ra t i o n s m i n i m i z i n g powe r t e rm p e ra t u re I owe r t h a n co n s u m p t i o n . p rev i o u s m i s s i o n s ( ~ 2 ° C i n s t ea d o f 1 3 - 1 5 ° C ) Exces s i ve co n s u m p t i o n d u e t o co n t i n u o u s re ce n t e r i n g o f se i s m o m e t e r m as s es ( d u e t o a m a l fu n c t i o n i n g of t h e se n s o r)

a u t o r i : S I RO/ F B Add on to D12 ES O N ET 215 co d i ce C l i e n t e L I D O D E M O N S T RAT I O N M I SS I O N

R EP O RT O N T C l ril O l ma l r c o d i ce Te c n o m a re F U N CT I O N I N G / M I S F U N CT I O N I N G PARTS 6 34A2 1 1 3 - RAP - 0 0 0 0 - 0 0 1 . 0 AN D S U B SYST E M S O F T H E R EC OV E R E D da ta : 3 1 /0 3/2 0 0 9 I NST R U M E N TAT I O N p agin a : 5

3 S N - 1 STATUS AT REC OV E RY

DES CRIPTION REA SON REMEDIA L A C TION E l e ct ro n i c b o a rd m a n ag i n g F re q u e n t powe r s h u t d own A l l SN - 1 e l e c t ro n i c s i s be i n g h yd ro p h o n e s t o p p e d o p e ra t i o n o f t h e o b s e rva t o ry ca u s e d re p l a ce d w i t h co m p l e te l y by fa i l u res t o t h e u m b i l i ca l n ew h a rd wa re . ca b l e B ad o r m i ss i n g m ag n e t o m e te r I m p ro pe r i n s t a l l a t i o n o f t h e M ag n e to m e t e rs s h a l l b e d a t a s e n s o r i n s i d e t h e i n s t a l l e d i n s i d e a s e p a ra t e o b s e rva to ry m o d u l e d e p l oye d fa r fro m t h e o b s e rva t o ry ( u p to 1 0 1 5 m a p a rt ) S e i s m o m e te r c l o ck F a u l t o f G P S re ce i ve r G P S re ce i ve r t o b e sy n c h ro n i s a t i o n by s h o re G P S re p l ace d I os t a p p rox M a rc h 0 6

a u t o r i : S I RO/ F B Add on to D12 216

4 NEMO-ONDE STATUS AT RECOVERY

After the recovery of NEMO-OnDE, all the parts were inspected.

The tests procedure consisted in:

1) Visual inspection:

a. Check for water leaks

b. Check for evident signatures of corrosion

2) Analysis of single mechanical and electronics parts (non destructive).

3) Electronics test on shore:

a. Power up of the station.

b. Shore test of data acquisition and transmission

4) Analysis of single mechanical and electronics parts (destructive).

The analysis demonstrated the proper functioning of the station after three years of deployment in deep sea. After the recovery, the NEMO-OnDE Station was transported at LNS-INFN laboratories. After verification of absence of water leaks, NEMO-OnDE was switched on, on a test bench. The system properly worked in all the main components. The only not working sub-system was the data transmission line of the compass. The optical fiber inside the glass housing, connecting the media converter used for compass data transmission, was found broken. This optical fiber was jointed on- shore before the deployment.

DESCRIPTION STATUS REASON OF REMEDIAL ACTION MISFUCTION

Mechanics: Electro Correctly Working in Optical Jumper Deep Sea from January between TSS and 2005 to December NEMO-OnDE 2006. Then disconnected.

Correctly working in lab tests after the recovery.

Mechanics: Glass Correctly working. 300 housing for NEMO- mb internal pressure OnDE Electronics (as before deployment) registered after the recovery.

Mechanics: Cables and Correctly working. Possible inappropriate Use glass epoxy Connectors metal-metal contact connectors for LIDO A thin red rust layer among bulkhead and observed in 2 over 4 plug (though they were Add on to D12 217

connectors. both purchased by the same company).

Mechanics: Optical All connection working Bad joint realized by Avoid use of fiber-fiber fiber and electrical except one. The optical the supplier joint. cables inside the glass fiber-fiber joint (used housing for compass data transmission) was found broken.

Mechanics: Aluminum Correctly working. vessels for hydrophones and No water leak observed preamps

Electronics: offshore Correctly working. power conversion system Successful lab test after recovery.

Electronics: offshore Correctly working. front-end system (preamps,ADC) Successful laboratory test after recovery.

Electronics: offshore All electronics part data transmission correctly working. system

Add on to D12 218

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE)

Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems

Sub Priority: III – Global Change and Ecosystems

ESONET WP4 – DEMONSTRATION MISSIONS

LIDO – Listening to Deep Ocean

Deliverable D 4.2 TDR of new hydrophone arrays; TDR of data acquisition, Power and data transmission systems, sea operations

Due date of deliverable: February 2009 Actual submission date: April 2009

Start date of project: March 2007 Duration: 48 months

Organisation name of lead contractor for this deliverable: INFN Lead authors for this deliverable: Giorgio Riccobene

Revision [April 2009]

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

Add on to D12 219

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE) Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems Sub Priority: III – Global Change and Ecosystems

ESONET WP4- DEMONSTRATION MISSIONS

LIDO – LIstening to Deep Ocean

DELIVERABLE D 4.2, Part A TDR of new hydrophone arrays

Due date of deliverable: February 2008 Actual submission date: April 2009

Start date of LIDO DM: September 2008 Duration: 24 months

Organisation name of lead contractor for this deliverable: INFN Lead authors for this deliverable: Giorgio Riccobene

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

1

Add on to D12 220

Add on to D12 221

CONTENTS

EXECUTIVE SUMMARY 2

1 INTRODUCTION 2

2 TESTS OF HYDROPHONES 3

3 TESTS WITH THE WHOLE DAQ CHAIN 5

REFERENCES 6

2

Add on to D12 222

EXECUTIVE SUMMARY The present report refers to the enhancement to test of hydrophones and Data carried out by the LIDO members. Two different hydrophones were acquired and tested: RESON TC 4037 and SMID TR-401(V)1. The first one turned out to be more sensitive but suitable only for depth not larger than 2000 m, the second one is suitable also for deeper installation sites, though its sensitivity is about 15 dB less than the previous one. The SMID hydrophones were tested also in high pressure using a facility available at NATO Undersea Research Centre of La Spezia (Italy). A test with the whole data acquisition chain was also carried out using the SMID hydrophones.

1 INTRODUCTION

As described in Deliverable 1.1, the LIDO East Sicily installation foresees the deployment of two hydrophones arrays located at about 2100 m depth, 25 km offshore the port of Catania, the relative distance between the two stations will be about 5 km. The two station will be equipped with an array of 4 hydrophones displaced in tetrahedral shape, as already done for the OnDE station [1]. Due to mechanics constraints, imposed by the dimensions of the supporting frames that will be deployed, the antennas will have a side of about 1 m. This configuration permits, for each station the evaluation of the acoustic wave arrival direction. The intersection between the arrival directions, recovered independently by the two stations, will permit the measurement of the acoustic source position.

One of the main goals of this WP consisted in the selection and characterization of deep sea hydrophones. For this goal we have acquired and tested RESON TC 4037 hydrophones, already used in OnDE, and a different kind of hydrophones SMID TR- 401(V)1.

2 TESTS OF HYDROPHONES

The determination of hydrophone calibration curve at high pressure is a fundamental task for LIDO: the aim is, indeed, the measurement of acoustic noise at large depth and the determination of the acoustic source sound pressure level.

3

Add on to D12 223

This work was also carried out with the aim of selecting hydrophones suitable for larger depth compared to the East Sicily Site (2100 m), for installation of hydrophones arrays in deeper sites enumerated in the ESONET proposal. The determination of hydrophone calibration curve at high pressure is a fundamental task for LIDO: the aim is, indeed, the measurement of acoustic noise at large depth and the determination of the acoustic source sound pressure level. The results of tests with RESON TC 4037 and SMID TR-401(V)1 are reported below.

HYDROPHONE RESON TC 4037

This hydrophone was successfully used during the OnDE deployment; the characteristics are reported in Table 1. It is composed by a couple of piezo-ceramics hemispheres, moulded in special rubber and mechanically supported by a metal body in aluminum or sea-bronze. The overall length is about 3 cm. The typical calibration curve of this hydrophone is reported in figure 1.

Table 1 Usable Frequency range: 1 Hz - 80 kHz

Linear Frequency range: 1 Hz to 50 kHz

Receiving sensitivity -194dB ±3 re 1V/uPa nominal:

Horizontal Directivity Omnidirectional ±2dB at 40 Pattern: kHz

Vertical Directivity Pattern: 270° ±3 dB at 40 kHz

Operating depth: 2000 m Survival depth: 2500 m

4

Add on to D12 224

Figure 1: Left- Typical calibration curve of hydrophone RESON TC 4037, using a 20 dB gain preamplifier. Right- Equivalent noise of RESON TC 4037 compared to Wenz minimum.

HYDROPHONE SMID TR-401(V)1

This hydrophone was developed by SMID to work at very different large depths, without changes of sensitivity as a function of pressure. The hydrophone characteristics are reported in Table 2. Table 2 Usable Frequency range: 1 kHz - 70 kHz

Linear Frequency range: 1 kHz to 70 kHz

Receiving sensitivity -204 dB ±3 re 1V/uPa nominal:

Horizontal Directivity Omnidirectional ±3dB at 20 Pattern: kHz Vertical Directivity Pattern: Not measured

Hydrophone dimensions in mm Operating depth: 4000 m Survival depth: >4000 m

The Hydrophone SMID TR-401(V)1 and its preamp

5

Add on to D12 225

Due to the lower receiving sensitivity compared to RESON TC 4037, a special preamplifier was developed for this hydrophone, having a gain of +38 dB (differential). A typical calibration curve and directivity pattern of this hydrophone is shown in Figure 1.

Figure 1: Left – Typical calibration curve for hydrophone SMID TR-401(V)1 with +38 dB preamplifier. Right – Typical beam pattern of the same hydrophone at 30 kHz (red) and 50 kHz (blue) .

Another fundamental test carried out with this hydrophone was the measurement of sensitivity curve change as a function of pressure. This task was carried out at the NATO Undersea Research Centre of La Spezia (Italy) with a dedicated setup. The results of the tests, carried out on 40 different hydrophones is shown in figure 2.

Figure 2: Sensitivity variations, for 40 different SMID TR-401(V)1 hydrophones, as a function of hydrostatic pressure, relative to 50 bar. The measurement refers to a 20 kHz frequency signal.

3 TESTS WITH THE WHOLE DAQ CHAIN

The work of this WP was also the test of hydrophones using the whole DAQ Chain, on a test bench. The test was conducted using an experimental setup consisting of: 4 SMID

6

Add on to D12 226

hydrophones and preamps, a four channel ADC (24 bit, 192 kHz sampling), electro optical media converters for data transmission along 25 km optical fibre, a 4 channel acoustic data acquisition board installed on a Pentium 4 PC. The hydrophones were placed in a silent and electrically shielded chamber. The result of the test is shown in figure 3: the electronics noise is well below the expected sea noise (SS0) upto about 30 kHz. Results of tests using the RESON TC4037 will be soon delivered.

Figure 3: Electronic self noise of SMID hydrophones measured using the whole DAQ chain.

REFERENCES

[1] G. Riccobene et al., NIM A-518, 220 (2004).

7

Add on to D12 227

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE) Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems Sub Priority: III – Global Change and Ecosystems

ESONET WP4- DEMONSTRATION MISSIONS

LIDO – LIstening to Deep Ocean

DELIVERABLE D 4.2, Part B TDR of power, data acquisition and transmission systems.

Due date of deliverable: February 2009 Actual submission date: April 2009

Start date of LIDO DM: September 2008 Duration: 24 months

Organisation name of lead contractor for this deliverable: INFN Lead authors for this deliverable: Giorgio Riccobene

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

ESONET WP4- DEMONSTRATION MISSIONS

1

Add on to D12 228

Add on to D12 229

CONTENTS

LIST OF ACRONYMS 2

REFRENCES 2 1 LIDO Data acquisition and data transmission system 3

2 LIDO Power transmission system 8

2

Add on to D12 230

List of Acronyms

General use for LIDO

CTSL Catania Test Site Laboratory TSS Test Site South TSN Test Site North OνDE Ocean Noise Detection Experiment SN1 Submarine Network 1 NEMO Neutrino Mediterranean Observatory For this document

ADS Acoustic Data Server MADS Main Acoustic Data Storage PADS Processed Acoustic Data Storage RADS Raw Acoustic Data Storage LAN Local area Network POP Point of Presence NTP Network Time Protocol DMZ De-Militarized Zone TCPIP Transmission Control Protocol / Internet Protocol Institutions

LNS Laboratori Nazionali del Sud INFN Istituto Nazionale di Fisica Nucleare UPC Universitat Politecnica de Catalunya INGV Istituto Nazionale di Geofisica e Vulcanologia CIBRA Centro Interdipartimentale di Bioacustica e Ricerche Ambientali – Università di Pavia GARR Gruppo per l'Armonizzazione delle Reti della Ricerca

References [1] P. Favali, L. Beranzoli, Ann. Geophys. 49, 2-3, 705 (2006). [2] G. Riccobene et al., NIM A-518, 220 (2004). [3] The NEMO Collaboration, NEMO-OnDE: a submarine station for real-time monitoring of acoustic background installed at 2000 m depth in the Mediterranean Sea. ArXiv: astro-ph 0804.2913 available at http://xxx.lanl.gov

3

Add on to D12 231

1 LIDO Data Acquisition and Data Transmission System

1.1 Available infrastructures in Catania LNS and Port Laboratory LIDO–East Sicily will be installed using the Catania Test Site infrastructures installed and operated by the Laboratori Nazionali del Sud (LNS) of INFN, about 25 km offshore the Port of Catania (Sicily, Italy) as described in Deliverable 1.1. The termination of the main electro-optical cable connecting the deep sea infrastructures to shore, is housed in the Catania Test Site Laboratory (CTSL) of the LNS. Similarly to what was installed for the SN1[1] and NEMO-OνDE [2] experiments, the CTSL will host the main power supply, and the on-shore data acquisition and data storage units. The CTSL completely fulfils the requirements of power, physical space and logistics in general for the LIDO- East Sicily experiment. A radio link between CTSL-LNS and LNS is also available and operational, permitting the access to the internet through network infrastructure of the INFN-LNS. At LNS a 100 Mbps connection to the internet (to be soon upgraded to 1 Gbps) is available through the GARR- GigaPOP installed at Campus of the University of Catania (Figure 1).

Fig. 1: The LNS-CTSL link

4

Add on to D12 232

The CTSL-LNS radio link has a measured maximum speed of 26 Mbps. This link undergoes also failures due to bad weather conditions and is not always functional (few percent of time failure in a year was experienced). The INFN requires, for dedicated instrumentation, about 10 Mbps of this bandwidth for experiment communication and controls. The rest of the bandwidth is available for LIDO (data transmission and on-line controls) and standard communications (mailing, internet browsing, …), thus its use and sharing must be carefully evaluated. In fact, a new critical parameter for LIDO, compared to the previous experiments, is the request of downloading of the large amount of acquired data from different international institutions, thus the access to data through the available internet connections. In this document a proposal for the acoustic data acquisition and transmission system is presented.

1.2 Data Acquisition

CTSL data acquisition and network infrastructure Data will be continuously transmitted from deep sea stations to CTSL through optical fibres. The expected data rate from the deep-sea acoustic detector that will be installed on each cable termination is about 12 Mbps of data payload (96 kHz sampling, 32 bit, 4 Channels). A limited bandwidth (few kbps) is required by the geophysics sensors. The transmission to the internet of this large amount of data is hardly possible using the available radio link between CTSL and LNS, since part of the available 16 Mbps, must be available for direct access to PCs for on-line controls (remote-desktop-like connections), another part to the standard communications (mailing, web browsing,...). Therefore raw data from the underwater detector must be acquired and stored locally at CTSL. On the other hand, the experiment has to provide data availability to participating Institutions and to general public. These requests set boundaries to the data acquisition/reduction/transmission system, to optimize the acquired data availability. The solution proposed in this document is sketched in Fig. 2. Acoustic data from deep sea will be acquired by a machine called Acoustic Data Server (ADS) that will receive the raw data stream and will make it available on the CTSL Local Area Network (details will be given in the following sections). We foresee 3 main Acoustic Data Clients: - A UPC dedicated workstation;

5

Add on to D12 233

- A LNS/CIBRA dedicated workstation; - A Raw Acoustic Data Storage (RADS) Unit.

UPC and CIBRA/LNS will have proprietary PCs to run on-line trigger on real-time data analysis. Triggered data will be saved on a Processed Acoustic Data Storage (PADS) Unit. The raw data (e.g. continuous recordings of 15’-long files from the whole 4 hydrophones) will be saved on the RADS and then compressed. The Data coming from the geophysics sensors will be addressed to a dedicated PC, thus sent to the RADS. No compression is required for these data.

Fig. 2 The proposed architecture for the LIDO Acoustic Data Acquisition

LNS data acquisition and network infrastructure Processed and compressed acoustic data, together with geophysics data, will be continuously transferred to LNS, through the radio link, where a Main Acoustic Data Storage (MADS) unit will be installed. This unit could be accessed only from LIDO

6

Add on to D12 234

participants and allowed users through dedicated high-speed links. Another Data Storage unit will be deployed at LNS for general public access (sound streaming, web browsing…). LNS, in fact, benefits of a 100 Mbps connection to the internet (to be soon upgraded to 1 Gbps), thus multiple access to the above storage units is expected to be fully sustainable.

1.3 Data Acquisition Architecture at CTSL

As shown in the DAQ scheme of figure 2, data from deep sea will be acquired by the Acoustic Data Server and then distributed to Acoustic Data Clients and storage Units. A short description of the architecture is given.

Acoustic Data Server (ADS) The Acoustic Data Server will only acquire and distribute raw data to clients and will be not accessible from the internet. All the PCs will be synchronized by a Server Machine connected to a GPS antenna (deployed and maintained by INGV) that will distribute a reference clock, via NTP (Network Time Protocol) to accurately timestamp all datasets. The ADS will be equipped with a professional audio card capable to sustain the underwater hydrophones data stream. Then, data will be checked and sent to clients using TCP-IP protocol.

Raw Acoustic Data Storage (RADS) The Raw Acoustic Data Storage will be controlled by a dedicated PC that will recover raw data from the local CTSL network, re-arrange them, and record them on audio files. Recorded file will be compressed and they will be stored on the RADS. RADS will act as a large circular buffer storage unit. Data on RADS will be acquired, compressed, transferred to LNS (MADS) and deleted.

Other Acoustic Data Clients This architecture allows the addition of other Acoustic Data Clients. At present two clients are planned to perform real-time data analysis, classification and reduction. The two clients will be managed independently by UPC and CIBRA, in order to test detection and classification algorithms to be implemented in future processing.

7

Add on to D12 235

1.4 Data Acquisition Architecture at LNS

The Data Acquisition architecture at LNS relies on the network infrastructure available at the Computer Centre of LNS. For the LIDO experiment we propose the deployment of two storage units: - A Main Acoustic Data Storage (MADS) Unit, also used for geophysics data. - A general public acoustic Data Storage Unit, to be used also as a web server and file streaming server.

Main Acoustic Data Storage (MADS) The Main Acoustic Data Storage will have a dedicated link to CTSL and it will continuously download and save the compressed acoustic data files and geophysics files. MADS will be the main data repository of the experiment (i.e. also for the geophysics data). Access to the MADS will be restricted to dedicated machines of the LIDO partners.

General Public Acoustic Data Server and Storage A dedicated machine will be deployed for general public access to selected data (via web, streaming etc.). Dedicated codes for simple data visualization or listening will be implemented for dissemination of results to the general public.

8

Add on to D12 236

2 LIDO Power Transmission System

2.1 Infrastructures at the Catania Test Port Laboratory

The technology for power transmission from shore to the deep sea infrastructures was assessed and tested with the operation of SN1 [1] and NEMO-ONDE [2].

The LIDO East-Sicily station that will be deployed on TSN will be powered from shore using a dedicated power supply, powered by the 220VAC line, and equipped with a power step-up transformer to 500 VAC shown in figure 3. The voltage at the offshore cable termination will be about 400 VAC.

Fig. 3 Scheme and photo of the Power supply Rack installed at the shore station to power the LIDO Underwater Station that will be deployed on TSN.

The power line will be split in 2 different lines, one dedicated to the Acoustics front-end electronics, hosted inside a glass housing (benthosphere), the other one dedicated to the geophysics instrumentation and to front-end and data transmission electronics, hosted inside the DACS and J-Box vessels, hooked to the SN-1 mechanical frame (see figure 4).

9

Add on to D12 237

Fig. 4 Cabling scheme of the LIDO Underwater Station that will be deployed on TSN

The power cabling scheme of the station that will be anchored on TSS will be simpler and will be the same as the one used for NEMO-OnDE [3]. The Station will be connected to the NEMO Test Site Junction Box (JB) shown in figure 5, which has an electro optical, ROV mateable connector equipped with 2 optical fibers and electrical connectors. An electro optical jumper cable will be used to link the JB to the LIDO TSS station, hosted in a dedicated frame (see Deliverable 1.1).

Fig. 5 The NEMO Junction Box, deployed at TSS, is connected to the TSS frame and it provides several electro-optical connections for deep sea experiments. One of the electro optical connectors will be used for the LIDO East Sicily station

10

Add on to D12 238

The power provided by the JB is 380 VAC. Transformers and AC/DC converters are now under construction following the design adopted for NEMO-OnDE Station. Available low voltage DC power lines will be used for electro-optical media converters, hydrophone preamplifiers and ADCs (see figure 6).

Fig. 6 Scheme of the Power distribution system that for the LIDO East Sicily station that will be installed at TSS.

11

Add on to D12 239

Project contract no. 036851

ESONET

European Seas Observatory Network

Instrument: Network of Excellence (NoE)

Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems

Sub Priority: III – Global Change and Ecosystems

Deliverable reference number and title:

D5.1 DEMO MISSION: LIDO 6 MONTH BASED REPORTS

Due date of deliverable: March 2009 Actual submission date: April 2009

Start date of project: March 2007 Duration: 48 months

Organisation name of lead contractor for this deliverable: UPC Lead authors for this deliverable: Michel André

Revision [April 2009]

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) X

Add on to D12 240

Add on to D12 241

LIDO (Listening to the Deep-Sea Ocean Environment) proposes activities addressed to geo- hazard monitoring (earthquakes and tsunamis) and characterisation of marine ambient noise with special attention to bioacoustics (marine mammals).

The objective is:

1. to extend the present capabilities of the observatories working in the Eastern Sicily site (NEMO-SN1) and in the Gulf of Cadiz (GEOSTAR revised for NEAREST pilot experiment) by including sensor equipments also related to additional disciplines, like bioacoustics; to develop a real-time acoustics management architecture and the associated codes to allow the log term assessment of noise effect in the marine environment, especially on cetaceans.

2. to establish a first nucleus of multidisciplinary observatory network allowing for a regional scale (Mediterranean) observations in geohazards and bioacoustics.

Available infrastructures Eastern Sicily: NEMO-SN1 observatory including - A laboratory at Catania Harbour connected to the GARR node of Catania University by a mix radio and fiber optic link - A main electro optical cable with 10 optical fibers and 4 power lines, total length 25 km down to 2100 meter depth, at about 20 km the cable is splitted in 2 branches, terminated by frames and two hybrid wet mateable connectors (ODi Type) for each branch - A Junction Box with 3 available Outputs (ROV mateable connector for interface) already cabled to the southern branch - OνDE (Acoustic station, high sampling rate hydrophones) - NEMO detector structure with 16 optical sensors for neutrino detection, also equipped with hydrophones, ADCP, CTD, transmissometer - SN1, a GEOSTAR-type multiparameter station, equipped with three-component broad-band seismometer, hydrophone, gravity meter, scalar magnetometer, single point three-component current-meter, CTD.

Gulf of Cadiz: GEOSTAR observatory operating in the frame of the pilot experiment of the NEAREST EC project, equipped with three-component broad-band seismometer, hydrophone, gravity meter, single point three-component current-meter, CTD, ADCP, high accuracy pressure sensor, accelerometers (2), surface buoy with meteo-station and equipped with acoustic-satellite communication.

LIDO PARTNERS

Principal Investigator PI coordinates Partner Partner Institution Name (PI) (Address, Email, Num. for the Demo Mission Telephone, fax..) UPC (Coordinator) Michel André 1. [email protected] Universitat Politècnica de Catalunya UB* 2. Christoph Waldmann [email protected] University of Bremen (Marum) FFCUL/ CGUL* 3. Jorge Miguel Miranda [email protected] Fundação da Faculdade de Ciências da Add on to D12 242

Universidade de Lisboa Centro de Geofísica da Universidade de Lisboa INGV 4. Istituto Nazionale di Geofisica e Paolo Favali [email protected] Vulcanologia ISMAR Consiglio Nazionale delle Ricerche 5. Nevio Zitellini [email protected] Istituto Scienze Marine, Dipartimento di Bologna Istituto Nazionale di Fisica Nucleare 6. Giorgio Riccobene [email protected] INFN* Consejo Superior de Investigaciones CSIC* Cientificas – Unitat de Tecnologia Marina 7. Juan Josè Danobeitia [email protected] - Centre Mediterrani d’Investigacions Marines i Ambientals dBScale 8. Eric Delory [email protected] dBS* Centro Interdisciplinare di Bioacustica e CIBRA 9. Ricerche Ambientali, Università degli Gianni Pavan [email protected] Studi di Pavia Technische Fachhochschule Berlin -FB VIII TFH* [email protected] 10. Hans W. Gerber - Maschinenbau, Verfahrens- und [email protected] Umwelttechnik - AG Tiefseesysteme Tecnomare-ENI S.p.A. francesco.gasparoni@tecnomar 11. Francesco Gasparoni TEC* e.it

LIDO WORKPACKAGES

WP WP/Activity Leader Tasks short description Related /Activity name Instituion Deliverables num. WP1 Recovery, INGV Developments of enhancements of D1.1.1, D1.1.2, Refurbishment NEMO-SN1 and GEOSTAR D1.1.3, D1.1.4, and observatories and infrastructures D1.1.5, D1.1.6 Deployment of to open the nodes of a first nucleus Observatories of regional network to other disciplines (bioacoustics) and homogenization of geophysical equipments by integration of additional sensor, devices, and software. WP2 Quality and UB Standardisation of ocean D2.1, D2.2, D2.3, Data observatory measurements by D2.4, D2.5 Management implementing international accepted standard methods in data acquisition and management; Establishment of a sensor inventory; Long- term seismometric measurements and analysis. Add on to D12 243

WP3 Public Outreach FFCUL Real-time transmission of marine D3.1 mammal acoustic signals and acoustic images from seafloor cabled observatory to public institutions (e.g., Scientific Museums, Aquaria) where the whole ESONET network will be presented together with the “sonic imagery” of the LIDO stations.

WP4 RT Software UPC Development of RT and automatic D2.1,D2.2,D2.3 Development analysis softwares: Long-term recording and analysis of natural, artificial and biological sound sources; Identification and tracking of cetaceans; Long-term noise interactions and masking. WP5 Technological INFN Test and validation of low cost D4.1, D4.2, D4.3, Assessment acoustic arrays and recording D4.4, D4.5, D4.6, systems to be implemented in D4.7, D4.8 additional locations to extend the monitoring network and possibly evaluate new European sites for long term monitoring. WP6 Project UPC Implementation of the D5.1, D5.2 Management administrative and financial decisions of the SC, within the framework set by the European Commission and under the authority of the ESONET NoE. The Activity Leaders are advised by the Advisory Council.

6 MONTH ACTIVITY REPORT BY PARTNERS

UPC

DELIVERABLE D1.5: New requirements and technical specifications of the enhancements of the GEOSTAR surface buoy. This deliverable was sent to the ESONET Coordinator

UPC ACTIVITIES IN WPs WP1: Developments of enhancements of GEOSTAR observatories and infrastructures to open the nodes of a first nucleus of regional network to other disciplines (bioacoustics) WP3: Public Outreach Real-time transmission of marine mammal acoustic signals from seafloor cabled observatory to an internet website. WP4: RT Software Development. Development of RT and automatic analysis soft wares: Long-term recording and analysis of natural, artificial and biological sound sources; Identification and tracking of cetaceans; Long-term noise interactions and masking. In the context of the WP3 and WP4 of Lido we contributed to the Data infrastructure of ESONET see activities of WP1 task 1b. WP5: Technological Assessment Technical architecture of the RT acoustic Management Add on to D12 244

WP6: Project Management UPC Implementation of the administrative and financial decisions of the SC, within the framework set by the European Commission and under the authority of the ESONET NoE. The Activity Leaders are advised by the Advisory Council.

UPC organized several LIDO Meetings

Kick-off Meeting (organisation and coordination), October 2-3 2008, Vilanova i la Geltrú, Barcelona

THURSDAY OCTOBER 2, 2008 ; PROJECT MANAGEMENT Time Agenda points 15:00 Welcome, approval kick-off meeting agenda UPC 15:10 – 17:10 Status and 6 month projection for work package objectives and deliverables 15:10 Recovery, Refurbishment and Deployment of Observatories (Nemo & GeoStar) (INGV, INFN, TEC, CSIC, TFH) [WP1] INGV The activity progress report must be completed and send before September 29. 15:40 Report on quality and data management ; standardisation and spreading of acoustic sensors and tsunami detectors (UB, dBSCALE) [WP2] UB 16:10 Report on public outreach; design of website for RT-display and data availability to third parties (UPC); “sonic imagery” (FFCUL) [WP3] UPC & FFCUL 16:40 RT Software Development (UPC, CIBRA) [WP4] UPC 17:10 Data Sharing Agreement LIDO reference paper UPC 17:30 Coffee Break 18:00 Discussion and approval of the activity time schedule of the next 6 months 21:00 Dinner

FRIDAY OCTOBER 2, 2008 ; TECHNICAL ASPECTS WORKSHOP Time Agenda points 09:00 – 11:30 Discussion of Technical Aspects: NEMO Site 09:00 Data distribution protocol at CTSL INFN 09:30 Connection library interface UPC 10:00 Data storage protocol at RADS/MADS (PADS?) INFN 10:30 External access for partners to data and servers INFN 11:00 Data sharing for third parties UPC 11:30 Coffee Break 12:00 – 13:30 Discussion of Technical Aspects: GEOSTAR-NEAREST Site 12:00 GeoPhysics data streaming INGV 12:30 Acoustic data recovery UPC 13:00 Acoustic hardware specifications UPC 13:30 Conclusions and closing remarks

LIDO Technical Meeting, October 13-14, Catania Test Site Laboratory, Sicily, Italia (Acoustic Data Management, see below). Oct. 13 - LIDO East Sicily Off-shore

10:30 Introduction - NEMO and LIDO :INFN Add on to D12 245

11:00 Sea Operations: INFN / INGV / CSIC / ... 12:30 Status of Mechanics for LIDO on TSN: Tecnomare 13:00 Status of Mechanics for LIDO on TSS: INFN 13:30 Lunch 15:00 Status of Optical data transmission system on LIDO TSN and TSS: INFN 15:30 Status of Geophysics data transmission/power chain: INGV 16:30 Status of Acoustics data transmission/power chain: INFN 17:30 Micro-Biology in LIDO (T.B.C.) : Uni Messina 18:00 Discussion 19:00 End of the day

Oct. 14 - LIDO East Sicily On Shore

9:00 The LNS computing and networking infrastructure: INFN 9:45 Acoustic data transmission/storage : INFN 10:15 Acoustic data on-line treatment : UPC 11:00 Coffee break 11:20 Geophysics data on-line treatment : INGV 12:00 Services for Data Storage, accesses and on-line controls: INFN/LAB/INGV/Tecnomare 13:30 Lunch 14:15 Web and streaming services for LIDO: UPC 15:00 Discussion: milestones and work schedule 16:30 end of the meeting

UPC presented LIDO during the ESONET General Assembly, October 22-23, Faro, Portugal. Presentation of LIDO results (see below).

The LAB-UPC has attended the ANTARES Collaboration Meeting in Geneva, January 19- 23 2009, where it was proposed and accepted that the same real-time acoustic data management architecture developed and implemented in LIDO is adapted to the ANTARES configuration. This site is of relevant importance for the internationalisation of the standards that ESONET is pretending to implement. The RT Acoustic Data Management is one of the good examples that is already working out nicely.

LIDO (Catania) The Sensor Web Enablement (SWE) concept and related standards will be considered during the Demo-Mission. Data have been analysed on recorded samples from previous deployment and the analysis codes developed accordingly. The codes will be ready in Spring 2009. Once the observatory is deployed, raw data will be streamed from four channels to local servers for RT analysis: sea noise will be discarded (except for low frequency components which would be of use in oceanography) and the resulting acoustic events will be RT classified into different categories (Biological, i.e. dolphins, whales, etc.; Natural, i.e. seismic events, etc.; Artificial, e.g. shipping, etc.), stored locally and made available to third parties (registered users only). Raw data from one channel will be compressed and stored. One channel will also be devoted to real time access for public in mp3 format. A sound library will allow the public to go back on time to stored events with interesting acoustic information. Statistical analyses will be extracted from time series and made immediately available to the public. The development of the RT acoustic data management is modular, allowing its adaptation and implementation in other interested Add on to D12 246

observatories, thus aiming at a standardisation of the analysis and comparison of time series. Tools might be propagated for wider usage in ESONET geophysics. Seismometer, pressure sensor, hydrophones data are integrated in the Italian centre for earthquakes (INGV). It could be useful as complementary data for multivariate analysis etc…

In the framework of LIDO: acoustic data management Test and validation of low cost acoustic arrays and recording systems to be implemented in additional locations to extend the monitoring network and possibly evaluate new European sites for long term monitoring The stream of data coming from the observatory will be directed to a server (ADS) that will distribute it to pre-processing servers where the first filters will be applied as well as where the following specific analysis of the data will be performed. A dedicated server (RADS) will compress and store the roar data. Through a WI-FI connection the processed data will then be sent tot he LNS station where one server will allow the safe public access to the low resolution data and another one will offer the access to high resolution data to registered users. Both servers will be separated for safety reasons and spam/virus protection.

Public out reach in the framework of the LIDO demonstration mission: Real-time transmission of marine mammal acoustic signals and acoustic images from seafloor cabled observatory to public institutions (e.g., Scientific Museums, Aquaria) where the whole ESONET network will be presented together with the “sonic imagery” of the LIDO stations. The LAB-UPC has developed a website where the visitors can listen in real-time to the acoustic sources flowing through the Sicily Antenna, follow this statistical analysis and track the different sources. This site will be put online in the next weeks. The same site will host the tracking of the acoustic sources coming from other ESONET and non-ESONET observatories. The website will be found in the next weeks at www.lab.upc.es/lido

UB (KDM/UNIHB) and dBScale

• Participation to Kick-off meeting and presentation of standardization concepts applicable to LIDO

• Paper accepted and presented at Passive 08, Hyères, France:

A proposed architecture for marine mammal tracking from globally distributed ocean acoustic observatories E. Delory (1) , C. Waldmann (2), J. Fredericks (3) (1) dBscale Environmental Sensing, C/ Leon y Castillo 25 Telde, Spain, [email protected] (2) University of Bremen/MARUM Leobener Strasse P.O. Box 330440 28334 Bremen Germany (3) Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA

Abstract: The rise of deep-sea observatories across the planet (e.g. NEPTUNE, ESONET/EMSO, MARS, VENUS, DONET) offers an unprecedented opportunity to view ocean acoustic and marine mammal monitoring from a global perspective. It is expected that these observatories will be equipped with hydrophone arrays that will enable real-time acquisition of acoustic data, the amount of which will inevitably accelerate the need for Add on to D12 247

efficient algorithms to reduce the time-bandwidth product to be broadcast over the internet. Though it is expected that the on-going research in acoustic pattern recognition will probably meet the milestone, a major issue remains to make these data computer-usable on a global scale. In order to enhance the potential of marine mammal passive monitoring tools it is therefore necessary that the hosted acoustic monitoring platforms be interoperable, i.e. sensors be discoverable from the internet, data catalogues and sensor metadata be accessible in standard format. Sensor-web enablement (OGC) currently offers an integrated solution through a set of recently approved standards. How these standards may be applicable to the task of interest is discussed and as a result, a global framework and architecture for marine mammal monitoring is presented from the perspective of a globally distributed acoustic monitoring network.

• Planning of the implementation of a simple smart sensor embedded on the East-Sicily site package. Definition of specifications will take place end of April 2009 in Catania. Potential standards of interest will be IEEE1451, SWE, CANOpen, etc. Instrument may initially be a CTD.

FFCUL

Participation in the LIDO KICK-OFF MEETING, Vilanova i la Geltrú, 2-3 October 2008

INGV

Participation in the LIDO KICK-OFF MEETING, Vilanova i la Geltrú, 2-3 October 2008 Participation in the LDO Technical Meeting, October 13-14, Catania Test Site Laboratory, Sicily, Italia

ISMAR

ISMAR, during 2008, participated to several meeting in Catania, Venice, Rome, Barcelona devoted to the preparation of LIDO demo Mission. ISMAR in collaboration with INGV carries out, from September 2008, all the activities needed for the refurbishment, the new preparation and the upgrade of GEOSTAR abyssal station, which is planned to be newly deployed in the Gulf of Cadiz during the summer 2009 for a 6 month running within LIDO demo Mission.

INFN

Participation in the LIDO KICK-OFF MEETING, Vilanova i la Geltrú, 2-3 October 2008 Organisation of the Technical Meeting, October 13-14, Catania Test Site Laboratory, Sicily, Italia

LIDO WP1 Recovery, Refurbishment and Deployment of Observatories. This WP aims at developing enhancements of the existing observatories and infrastructures. INFN has the task of upgrading the Onde station. The station has already been recovered. Requirements for upgrading the station are under study. (2 man month)

Add on to D12 248

LIDO WP2 Quality and Data Management UB Standardisation of ocean observatory measurements by implementing international accepted standard methods in data acquisition and management; Establishment of a sensor inventory; Long- term seismometric measurements and analysis. (1 man month) LIDO WP5 Technological Assessment Test and validation of low cost acoustic arrays and recording systems to be implemented in additional locations to extend the monitoring network and possibly evaluate new European sites for long term monitoring. The task performed concern the analysis of the recovered Onde Station, and an initial assessment of the technologies for the station upgrade. (3 man months).

CSIC

Participation in the LIDO KICK-OFF MEETING, Vilanova i la Geltrú, 2-3 October 2008. CSIC participants : Juanjo Dañobeitia

During the meeting, came out useful interchange of ideas between all the groups, many questions related with the recovery, refurbishment and deployment of SN-1 and platforms GEOSTAR were discussed, especially on the marine operations and movements of ship. Previous contacts, between staff engineers from INGV and CSIC, confirm that using the BO Sarmiento de Gamboa is feasible for the deployment and recovery of these platforms. The CSIC managed to set up ship time for May 2009 which is already scheduled in the ship calendar. A series of visits to Vigo and vice versa and set up for the coming months in order to set up all the technical requirements needs for such deployment.

TFH

Participation in the cruises to deploy the observatories for the use of the project. Adaptation of the system to the dedicated purposes.

TECNOMARE

DELIVERABLE D1.4 SENT TO THE ESONET COORDINATOR

Participation in the LIDO KICK-OFF MEETING, Vilanova i la Geltrú, 2-3 October 2008 Participation in the Technical Meeting, October 13-14, Catania Test Site Laboratory, Sicily, Italia

Participation to meetings for the detailed definition of technical aspects relevant to the Demonstration Missions LIDO. Coordination with partners of LIDO Demo Missions for definition of mission requirements and selection of scientific payload to be adopted in the two observatories involved in the parallel missions (SN-1 site offshore Catania, GEOSTAR in Gulf of Cadiz site), focusing on standardisation aspects and continuous, long-term multidisciplinary monitoring. Coordination with INGV for the definition of mission requirements and selection of the scientific payload to be adopted in SN-4 observatory in the Marmara Sea mission, focusing on standardisation aspects and continuous, long-term multidisciplinary monitoring, Based on the requirements expressed by the scientific partners of the Demo Missions, Add on to D12 249

preliminary technical evaluations of aspects to be finalised after the start of the Demo Mission activities: - seafloor observatory architecture (payload position, connection etc.) - data acquisition and control hardware and software - data management Feasibility study of a bioacoustic monitoring system for GEOSTAR observatory.