Search for anomalous t[bar over t] production in the highly-boosted all-hadronic final state

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation Chatrchyan, S., V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, et al. “Search for Anomalous t[bar over t] Production in the Highly-Boosted All-Hadronic Final State.” J. High Energ. Phys. 2012, no. 9 (September 2012). © CERN, for the benefit of the CMS collaboration

As Published http://dx.doi.org/10.1007/jhep09(2012)029

Publisher Springer-Verlag

Version Final published version

Citable link http://hdl.handle.net/1721.1/86207

Terms of Use Creative Commons Attribution

Detailed Terms http://creativecommons.org/licenses/by/3.0/ JHEP09(2012)029 , 0 Springer July 25, 2012 April 11, 2012 August 1, 2012 : : : September 11, 2012 : Revised Received Accepted 10.1007/JHEP09(2012)029 Published doi: . 2 c Published for SISSA by . Upper limits in the range of 1 pb are resonances that are sufficiently massive 1 t production beyond expectations of the − 0 production in the ¯ t t t pair. The search focuses on Z Hadron-Hadron Scattering A search is presented for a massive particle, generically referred to as a Z , Copyright CERN, [email protected] modeled for several widths, as well as for a Randall-Sundrum Kaluza-Klein gluon. In E-mail: 0 Open Access for the benefit of the CMS collaboration Keywords: set on the productZ of the productionaddition, cross the section result and contrain any branchingstandard enhancement fraction mode in t for for tt a invariant topcolor mass larger than 1 TeV/ to produce highly Lorentz-boosted topare quarks, partially which or yield collimated fullyjet decay merged products substructure, into providing that suppression single ofis jets. the based non-top The on multijet a analysis backgrounds. datacorresponding uses The sample to new analysis of an methods proton-proton integrated to collisions luminosity of analyze at 5 a fb center-of-mass energy of 7 TeV, The CMS collaboration Abstract: decaying into a t highly-boosted all-hadronic final state Search for anomalous JHEP09(2012)029 0 t t production ], and the Randall- ] have recently been 6 ]. These interactions – 16 4 – 11 . – 13 2 1 c bosons, that can decay into t 2 0 8 TeV/ ], and provide the most stringent resonance with a moderate width . 0 0 26 – ≈ ) resonances, e.g. excluding a topcolor 0 24 Z ]. Searches for new physics in top-pair t production are considered, including a Z described in refs. [ ]. Other models [ 23 , 0 12 22 – 1 – 12 4 18 ]. Model-independent studies of the implications of a large 13 2% for masses below . 8 ) of narrow-width (Γ 21 0 – Z 15 15 24 = 1 17 m 0 5 Z 3 , if the observed discrepancy with the predictions of the SM is due 2 /m 0 c Z 1 19 1 TeV/ t pairs would be expected at the (LHC) for invariant > t t t enhancement analysis m In this Letter, several models of resonant t 5.2 t 3.4 Results of event selection 5.1 Resonance analysis 3.1 Analysis of3.2 jet topologies Signal efficiency 3.3 Background estimate t resonance with Γ production have been performedlower at limits the on Tevatron the [ masst ( resonance with a narrow width of 1% of the mass, a Z proposed to resolve thereported discrepancy at in the the Tevatron forward-backward [ asymmetryforward-backward asymmetry in t suggest that asection strong for enhancement t ofmasses the production cross to new physics at some large mass scale [ Among scenarios for physics beyond theinteractions standard model with (SM) are large possibilitiespredict couplings of new new to gauge massive third-generation states,pairs. quarks generically [ referred Typical to examplesSundrum Kaluza-Klein as are (KK) Z the gluons of topcolor ref. Z [ 1 Introduction 6 Summary The CMS collaboration 4 Systematic uncertainties 5 Statistical treatment 3 Analysis method Contents 1 Introduction 2 CMS detector, event samples, and preselection JHEP09(2012)029 t ] and . c 33 is defined gives the η 4 , and the rest 6 quarks, and c 4.4.12 [ defined relative 350 GeV/ θ → > b T 3. The CMS detector p − for objects of negligible < 300 GeV/ | c c bW z z η > ]. An enhancement over t p p | + + − T MadGraph 12 p W E E / ln generator is also used to model → 1 2 t = ) states [ y 5. The surrounding ECAL and HCAL 0 describes the statistical methodology . 2 , using new techniques in jet reconstruc- collected by the Compact Muon Solenoid 5 t t MadEvent 1 < t pairs in the all-hadronic channel, taking | − m . For lower masses, the background from η 2 | MadGraph c – 2 – ], it is possible to study highly boosted top quarks 1 TeV/ 31 describes the CMS detector and the event reconstruc- – is the longitudinal momentum of the particle. Charged 2 > z 27 p t t invariant masses is also considered. t are the energy and mass of the ). The decay prod- . Offline, one jet is required to satisfy m t c m and ] in proton-proton collisions at a center-of-mass energy of 7 TeV at ) of a single jet measured in the calorimeters. The instantaneous E T 32 p ] event generators. The ) of the counterclockwise proton beam. The pseudorapidity 2), which agrees with the rapidity z 34 θ/ presents a summary of the results. is the energy and explains the strategy for the analysis and the derivation of the efficiency and 6 3 E 2, where t background is simulated with the > ln tan( 6.4.22 [ 2 − c t = There are several Monte Carlo (MC) simulated samples in the analysis. The contin- Events were selected with an online trigger system, with decisions based on the trans- In the following Letter, section This study examines decays of produced t η E/m ods. Most of thewith data a were threshold collected of with 240 GeV/ a threshold of jet uum SM t pythia provide coverage for photon, electron, andalso jet has reconstruction extensive for forward calorimetry that isin not gas-ionization used detectors in this embedded analysis. in Muons the are steel measured return yokeverse outside momentum the ( solenoid. luminosity increased with time, hence two thresholds were used for different running peri- The CMS detector usesto a the polar direction coordinate ( systemas with the polar angle mass, where particles are reconstructed in the tracker for The CMS detector is asegmented general-purpose lead-tungstate detector that crystal uses electromagnetic a (ECAL)(HCAL) silicon calorimeters. and tracker, as brass/scintillator These well hadronic as subdetectorswithin finely have the full azimuthal bore coverage of and a are superconducting contained solenoid that provides a 3.8 T axial magnetic field. misidentification probability of the substructuresystematic tools uncertainties that in were theused. used. analysis. Section Section Section 2 CMS detector, event samples, and preselection corresponds to an integrated luminosity of(CMS) experiment 5 fb [ the LHC. tion. Section prohibitively difficult in this channel.tion At to high identify jet( substructure [ ucts of these highlyinto boosted single top jets quarks with arefrom several collimated, the separate bottom and subjets quark, are corresponding and partially to two or light-flavor the fully quarks final-state from merged quarks the (one W decay). The data sample continuum production at large t advantage of thefocuses large (46%) on branching finalquantum-chromodynamic fraction states (QCD) of with production t of non-top multijet events makes the search of 10% of the mass, as well as broader KK gluon (g JHEP09(2012)029 , . . i 0 2 g c iB and d m 2 2 . ) 0 φ ≈ ] parton dis- + (∆ 36 2 ) η ], as implemented , particle cluster (∆ ij 41 , d p ]. All jets are required 40 ], which identifies all re- ]. The events must have = 45 , and widths of 38 39 2 ij c t pairs of 0.93, 0.92, 0.90, and R ] is used to generate Randall- t are simulated. The width of ]. 35 ]. The CA algorithm sequentially 37 [ 5. The rapidity is used in this case 1, respectively, however for the CA . . In the more common cases of the 43 2 , − n t system has sufficient energy for the 2 i , where ∆ 42 T < 2 = p | y n /R 60%. | Geant4 = 2 ij , so as to check the predictions for a narrow 1.5, 2, and 3 TeV/ ≈ 0 is the azimuthal angle [ , R Z – 3 – iB , only decays to t φ 0 m d = 1 = ∆ 0 is smaller than all of the other g = 1 and and i ij m 8.145 event generator [ 2 n d ], as well as ], /R 38 2 ij 44 space, where R interaction vertex are considered, reducing the effect of multiple φ 6 is also used to generate non-top multijet events for background pythia - )∆ η 2 T n p 2 j T 8 in . , p that has SM-like couplings and mass between 1 and 3 TeV/ pythia n software package version 2.4.2 [ 2 i 0 algorithms [ = 0 T p T R k = 0, and hence only angular information is used in the clustering. When the 2. As a consequence, the top quarks can be either partially merged when n > 8, until the minimum is less than or equal to the so-called beam distance FastJet . = min( 2 c t ij The selected particles, after removal of charged hadrons from pile-up and isolated Events are reconstructed using the particle-flow algorithm [ and anti- d = 0 T 3 Analysis method The analysis isdecay designed products for of cases eachE/m in top which quark the toonly be t the emitted into W a decay single products hemisphere, are implying merged that into a single jet, or fully merged when all top is identified as aJet jet energy and scale the corrections clusteringto are proceeds satisfy applied for jet-quality as the criteriabecause documented remaining [ the in particles jets in ref. acquire the [ a event. finite mass as part of the imposed jet-quality criteria. which equals unity in theto CA algorithm. More generallyk these distance measures are equal algorithm beam distance for particle cluster parameter of in the merges into single objects,closest by in four-vector addition, the theR distance pairs measure of particle clusters that are a well-reconstructed primary vertex, andtent only with the charged highest particles Σ identifiedinteractions as per being beam consis- crossing (pile-up) by leptons, are clustered into jets using the Cambridge-Aachen (CA) algorithm with a distance constructed observable particles (muons, electrons,in photons, an charged and event neutral by hadrons) removal combining of information beam from background all by25% requiring subdetectors. of that the Event events tracks selection with satisfying at begins high-purity least with tracking 10 requirements tracks [ have at least Sundrum KK gluons withThese masses Randall-Sundrum gluons have branching fractions0.87, respectively. to t studies, cross-checks, and for calculatingtribution correction functions factors. (PDF) The are CTEQ6Lusing used [ the in CMS the detector simulation. simulation The based detector on response is simulated mented with a Z However, in the MCthe generation resonance of is the set Z and to a 1% moderate resonance anddetector width, 10% resolution. respectively. of Here, The the 10% width is comparable to the generic high-mass resonances decaying to SM top pairs. In particular, a model is imple- JHEP09(2012)029 0 . 3.3 , the signal or are at large 3.1 T p . 2 c signal has a peak at 0 , where the values chosen 2 c , because the combination with 2 c 250 GeV/ < shows the expected jet mass for the Z masses below 1 TeV/ 0 50 GeV/ jet 1a > are considered. The top-tagging algorithm is < m T – 4 – p (140 60%) consists of the jet remnants from the W decay. 2 . Both candidates are tagged by a top-tagging algo- c > , and the background estimate is shown in section c 3.2 is required to be 175 GeV/ 350 GeV/ T p ≈ > t T m p ] to define merged top jets. In the case of more than two top-tagged jets, . 28 , 27 3.4 The 1+1 events are required to have at least two Type-1 top-quark candidates, each In this section, the jet topologies in the analysis are defined in section The largest background in this search is the non-top multijet (NTMJ) background. ground from MC asthe a top solid mass yellow correspondingcorresponding histogram. to to fully partially As merged merged expected,three top top the subjets jets, jets. Z of and The highest hasthe minimum a minimum pairwise pairwise shoulder invariant mass mass at often of the ( the W mass dominates the jet energyof because the of top gluon quark emission shareof in the the the jet summed final energy four-vector state, more ofmass the equally the of and decay constituents a emerge products of top at theare quark wider hard optimized angles. jet through must The MC be mass signal simulation). consistent from Figure with MC the as a dotted histogram, and the expected jet mass for the NTMJ back- the two top-tagged jetsbased with the on highest the decompositionjet-clustering of sequence. a In this jetangles decomposition, into particles relative subjets, that to by have the small each reversing jet. parent the While cluster final the are steps subjets ignored. of of generic the jets At CA tend least to three be close subjets together, are and one required of in them often channel. Further channels, such as 2+2,are which not would considered correspond in to this two analysis. Type-2 top The quarks, 1+1 and 1+2reconstructed selections are with now discussed in detail. rithm [ jet corresponds tocandidate. a The fully 1+2 merged channel comprises1 top-quark trijet top-quark events candidate, candidate that in fail denoted one thefrom as hemisphere, 1+1 a and criteria, a b at with quark least a Type-1 (although two Type- jet top-quark jets no in from identification the algorithms a other, are W. one applied) being and a These the jet other two a separate merged jets define a Type-2 top-quark candidate in the 1+2 section 3.1 Analysis ofThe jet events topologies are classifiedthat into appear two categories, in depending each on hemisphere. the The number of 1+1 final-state channel jets comprises dijet events in which each control regions are constructed bylections inverting fixed. substructure selections This while mistagging keepingthe probability mass contribution is se- from then the applied NTMJ to background. the signal region toestimate estimate is described inFinally, section the results of the event selection and the background estimate are presented in masses, and upper limits are not evaluated for Z This is highly suppressed bying requirements NTMJ on background the is jet estimatedthe mass by top-jet and computing selections substructure. the (misidentification probability The probability) for remain- in non-top control jets regions to of pass the data. These decay products are merged into a single jet. Thus, this analysis becomes inefficient for low JHEP09(2012)029 2 c 4 GeV/ . and rapidity. = 80 T p W of the final subjets m µ and becomes fully efficient for , and is required to be smaller 2 jet c shows the efficiency for tagging a m 2–4%, depending on 1b of reconstructed pruned jets are com- ]. The W-tagging algorithm requires space. ≈ 0 TeV/ T . φ , the efficiency plateaus between 50–60%. p 30 - , c is defined as the ratio of the mass of the η = 1 29 t background, the efficiencies of the analysis µ t t m – 5 – . That is, only events that fail the 1+1 criteria ], which are 500 GeV/ c ≈ 45 350 GeV/ . The W jet is required to be tagged by a W-tagging al- . Above 4). This selection helps to discriminate against generic jets, . c values. The W-jet and b-jet candidates combine to form the T > 0 ]. The mass-drop p µ , where the values chosen are optimized using MC simulation). T 2 31 to the mass of the complete jet ), and an acceptable “mass-drop” parameter c p 2 µ < 1 c 30 GeV/ m ≡ > jet . The value of the trigger efficiency is estimated per jet on a sample of of matched generator-level particle jets, that also underwent the pruning , and another jet from a b quark (although no identification algorithm 2 signal and the (subdominant) t T c 250 GeV/ c 0 p T /m 100 GeV/ 1 p < m < jet 5 TeV/ jet . 75% (60%) for 1+1 (1+2) events at 1 200 GeV/ ≈ < m > Three scale factors are applied to the efficiency. The first scale factor is used to correct The jet-pruning technique used to select W jets removes a portion of the jet, which is The 1+2 events are required to have exactly one hemisphere containing a top-tagged < m > t t T simulated signal events. Theinefficiency systematic from uncertainty MC. is TheMC assigned difference to is between be roughly the measured 50% inscale trigger of this factor efficiency the range, is in used trigger but data tothe suffers correct and full from for jets. large any This differences statistical is in referred uncertainties. jet-energy to scale as The for the second the subjet subjets jet-energy and scale factor. for The third scale factor true top jet as a function of for the trigger in simulatedfrom signal events. Its value ism equal to the trigger efficiency:simulated NTMJ it rises events passing the top-quark candidate selections, it is then applied to 3.2 Signal efficiency For both the Z selection are estimatedmeasured from differences Monte with respect Carlo to simulation, the data. with Figure scale factors to account for procedure, and the difference ofuncertainty in 2–3% the observed jet in energy absolute fromadded response this to suggests source. the a uncertainties An systematic for uncorrelatedfor 3% standard both uncertainty jet the is top-tagging energy therefore and corrections. jet-pruningeral algorithms, jet This energy and uncertainty scale is is corrections added of applied in ref. quadrature [ to the gen- not accounted by the ordinaryanalysis jet are energy derived scale from corrections. unprunedgated The jets, using jet and a corrections the dijet used impact MC in onpared sample. pruned this to jets In is the particular, therefore the investi- which usually have larger Type-2 top-quark candidate, whose(140 mass must beWhen consistent there with are that more oftaken than as the the two top one jets quark closest in to the the Type-2 W-tagged jet hemisphere, in the b-quark candidate is gorithm, based on thetwo jet subjets, pruning a technique total [ (60 jet mass consistent withrelative the mass to of the the hardmore W jet massive boson subjet [ than 40% ( Type-1 candidate with are considered for the1 1+2 candidate, selection. there mustp In be the at hemisphere leastis opposite two used) the jets, with top-tagged one Type- identified as a W-jet candidate, with JHEP09(2012)029 . c . T p MC (open 30 GeV/ 0 > T p ) 2 400 2000 t events where there is a large 350 1800 ), both as a function of jet MC events is shown as red squares (GeV/c) T 0 3.3 MC t 300 1600 Jet p t → Z' Non-top multijet MC m(top jet) (GeV/c 250 1400 MC Signal Efficiency Mistag Probability (a) (b) 1200 200 – 6 – = 7 TeV = 7 = 7 TeV TeV == 77 s ss 1000 150 requirements for the jets. The leading jet is required at T -1 p 800 100 600 ), and the type-1 per-jet mistag probability for top tagging measured 50 , and the sub-leading jet is required to satisfy , and at least two jets. The event selection is nearly identical to c CMS Simulation, CMS Simulation, CMS Simulation, CMS, L = 5 fb CMS, L 3.2 400 µν 0 0 1 -1 -2 -3

→ 10 0.01 10 10

0.04 0.03 0.02 0.07 0.06 0.05

Probability / 5 GeV/c 5 / Probability

Top Mistag Rate Mistag Top 2 200 GeV/ ], except for larger > 46 T (a) The simulated jet mass for NTMJ MC (light yellow histogram) and Z p Wb, with W These second two scale factors are both determined in a control sample comprising → to satisfy Due to a small number ofconstruct fully-merged a (Type-1) sufficiently top large jets number inof of this jets true sample, with Type-1 substructure it is is top studied notfraction jets. with possible of moderately-boosted Instead, to partially-merged the t (Type-2) characterization top-quark candidates and the W-jets within them. factor. The derivation of the second and third scaleevents factors with a is single now muon discussed (referredof in to t detail. as the muon controlthat sample), in usually ref. from [ the decay with error bars (see section in data is shown as black circles with error bars (see section is used to correct forfinding the jets impact of with any substructure. differences between This data is and MC referred in to efficiencies as for the subjet selection-efficiency scale Figure 1. histogram). (b) The type-1 per-jet top-tagging efficiency for Z JHEP09(2012)029 , t 2 c ]. A ]. The 51 [ 01 and . 46 0 3 GeV/ . 0 ± ± 5 49 FEWZ . . 01. Combining . 0 , after W tagging, , respectively. The . In this figure, the = 0 c ± = 82 , and at least one jet c 2a 2a 64 . MC W W m DATA m  = 0 10 GeV/ ], also used in ref. [ 30 GeV/ > and 47 MC µ ) in figure > 2 T  2 c p b. In the other hemisphere, these c T 0 ) favors the topology in which the c p q or ]. The non-W mulitjet component is q c 50 → 7 GeV/ – 01 and . . 0 0 48 ± 100 GeV/ Wb ± 200 GeV/ 0 6 nb computed at NNLO with . 15 GeV/ 2 jets with . < → > 1 64 > . – 7 – ≥ ± jet T = 83 3 01, including statistical uncertainty only. . p . 1. Events are rejected if they contain other isolated = 0 . 0 2 < m ± = 31 DATA W < | ν 01 DATA µ 1 with m . η .  + | ` 2 requirement ( → < T W | and p σ η t production of 163 pb [ c | . Unlike the all-hadronic channel discussed in this Letter, in the muon c 45 GeV/ 01, respectively. Similarly, the mass-drop selection is checked in data and > . 0 t fraction of this control region, the events are required to contain at least T p ± 200 GeV/ 50 03. The same scale factor and uncertainty are assumed for Type-1 jets, which . . > 0 T t contribution is normalized to the approximate next-to-next-to-leadingorder (NNLO) p = 0 ± The subjet selection-efficiency scale factor is estimated by comparing the observed The subjet jet-energy scale factor is estimated by extracting a W mass peak in the The events in the muon control sample used to study W-tagging are dominated by t W 97 . m MC Monte Carlo, following the W-masswith window the selection, and observed a values similarefficiencies being of efficiency the is mass-drop extracted, and massto selections, be the subjet applied selection-efficiency0 scale to factor, the MC to obtain the same efficiency as in data, is determined to be selection efficiency in theof muon events control in sample the in Wto data mass and the window MC. number (60 The ofwithin ratio events of the in the mass number the window. muon control For sample, data defines and the MC W selection the efficiency values are fit of the sum ofilar two Gaussian fit functional to forms the to simulated datadistributions events is in is given data shown by and as the MC a solid are respectively. dashed line, line. The and subjet The a jet-energy sim- centers scale ofof factor the these for main two W Gaussian values, jets and is determined equals by 1 taking the ratio distribution is therefore taken toground. be This the is same acceptable as becauseare very that the similar mass of in structure these the two within generic samples,that the and non-W pass the candidate multijet the sideband top-quark data back- selection jets sideband criteria. hasproduction many cross The more section W+jets events of contribution is normalized to the inclusive W MC t cross section for inclusive t based on sidebands in dataing that spectrum have is the normalized muon through isolation ateria criterion fit of reversed. to this the The analysis missing contribut- provide transverse very energy. few The W+jets stringent events cri- that pass the required selections. This b-tagging algorithm combines atforms least a two discriminating tracks variable into based on at the least three-dimensional one decay secondary lengthmuon vertex, control of sample, the and and vertex. comparingthe the jet peaks of in largest data mass and in MC. the The hadronic mass hemisphere distribution is of shown in figure electrons or muons within remaining events are then required towith have control sample, there are twoenhance well-separated the jets t originating fromone b jet quarks, tagged so with a in secondary-vertex order b-tagging to algorithm [ decays, and the leading-jet two top quarks are produced back-to-back, thereby“hadronic” facilitating top jet quark, merging containing on jets the from sideevents t of contain the one isolatedvertex, muon, with consistent with originating from the primary collision JHEP09(2012)029 0 03. 4b 06. 400 . 03. . . 0 0 0 > masses ± ± and ± T 0 p 97 94 subsample 4a . 97 . . T p thresholds, the T . It is normalized p 3.2 . The b-tagging require- signal, the scale factor is . 2 c 0 3.2 1 TeV/ ∼ jets, the main backgrounds expected T m p t component is significantly smaller than t production. The background from NTMJ MC described in section 0 t events. Also, to capture the kinematics of – 8 – , but with selections that require Type-2 top-quark signal with 0 2b of the W-jet within the Type-2 top-quark candidate, as T . The scale factor extracted from this higher- and p distribution for the Type-2 candidates in the muon control c T 2a p are overlaid for comparison. For completeness, figures 2 c 400 GeV/ shows the > . The same procedure is used to construct these Type-2 top-quark can- 3b shows the T p 2b 3a = 1 TeV/ m 0.11, which is consistent with the quoted data-to-MC scale factor of 0 ± . Figure c In both 1+1 and 1+2 channels, estimates of the dominant NTMJ background are ob- The selection that provides sideband regions most kinematically similar in kinematics To check the dependability of our assumption, namely that the data-to-MC scale fac- The Type-1 jet selection cannot be checked at the same level of precision as the W-jet GeV/ the same correction factors as foundto for the the approximate Z NNLO cross section described in section tained from data as follows.as First, a the top-quark probability jet is through estimated for the mistaking top-tagging a algorithm. non-top jet This procedure defines the mistag Since this analysis focuses onare signatures from with SM high- non-top multijetproduction production is and estimated t from sidebandsconsidered in in the this data analysis, asthe the described NTMJ irreducible background below. SM contribution, For and t the is Z therefore estimated from MC simulation using signal with show plots identical to figures candidates with is 0.99 3.3 Background estimate to that of the signal region is a requirement that thesample, Type-2 and top figure candidate satisfy defined by the jet of largest mass in the event. Arbitrarily normalized distributions for a Z ment is dropped inthe background, order instead to of collectwithout using isolated more the muon t distribution candidates, for asW+jets is W+jets is done taken from in instead the the fromdata-to-MC sidebands fit the scale W+jets in to factor MC. the data In is W all found mass, samples the to with distribution be large for consistent with the measured value of 0 W-tagging is appropriate for three-body decays such as thetors Type-1 are top-quark the system. measured same in for a control the sampleof muon using phase more control stringent space sample kinematic similar requirements as to to for select that a the of part Z a Z shown in figure didates as in thethe 1+2 statistical selection, uncertainty, including good thethe agreement selection W-mass is of observed and Type-2 in mass-drop top-quarkas the selections. candidates a data considers Within W and a boosted simulation. tag,provides three-body the Since further decay agreement as confidence between well for the the characteristics assumption of that candidates the in data scale and factor in for MC the efficiency of contain Type-1 jets. Asboth two 1+1 top-quark and tags 1+2 are events required is the in square each of event,selection the the because single-tag of correction the scale for small factor,the number yielding of Type-2 0 Type-1 top-quark jets in candidate the muon selection control can sample. be However, tested in the muon control sample, as is consistent with results from the statistics-limited control sample of muon events that JHEP09(2012)029 thresholds of 350, 200, ) ) T 200 2 600 2 p 2 2 180 t 500 t W+Jets Non-W MJ t W+Jets Non-W MJ Data fit MC fit Data t Data 160 t Monte Carlo events in dark red, the 0.3 GeV/c 0.7 GeV/c ± ± 3 jets are selected for the 1+2 topol- 140 ≥ m(W+b) (GeV/c m(W-jet) (GeV/c 400 = 83.0 = 82.5 120 DATA W MC W m m (a) (b) 100 300 – 9 – = 7 TeV = 7 = 7 TeV = 7 80 s s 200 at at 60 -1 -1 40 ] for details of non-W MJ distribution derivation). The jet mass 100 46 20 CMS, L = 5 fb CMS, L = 5 fb CMS, L 0 0 0 0

40 20 80 60 40 20 80 60

]. The mistag probability is therefore obtained as a function of total 120 100 180 160 140 120 100 Events / 10 GeV/c 10 / Events Events / 5 GeV/c 5 / Events

2 2 52 ). Higher momentum jets have a larger probability to radiate gluons, and increases, they are more likely to have top-like substructure and thereby m , respectively, without any requirements placed on the jet mass of the Type-1 P c T (a) The mass of the highest-mass jet (W-jet), and (b) the mass of the Type-2 top p , using the following procedure. Events with T p ogy, with the threeand leading 30 GeV/ jets incandidate. the The event mass required of to thefall W-boson pass within candidate the within W-boson therequired mass Type-2 to candidate window, is fall and required within the to the invariant mass top-quark of mass the window. Type-2 However, candidate the is mass-drop requirement probability ( as the jet satisfy a top tagjet [ sample. The data areW+jets shown Monte as Carlo points with eventsshown error in in bars, light lighter the yellow green, t (seeis and ref. fitted non-W [ to multijet awhich (non-W sum lies MJ) directly of behind backgrounds two the Gaussians are solid in line both for data most of (solid the line) region. and MC (dashed line), the latter of Figure 2. candidate (W + b), in the hadronic hemisphere of moderately-boosted events in the muon control JHEP09(2012)029 ) T = 1 p ( m m P ), the probability i ) equals the mistag MC signal with 0 i NTMJ P 600 600 . 500 500 t t Data t W+Jets Non-W MJ arb. norm.Z' (1 TeV), Data t W+Jets Non-W MJ arb. norm.Z' (1 TeV), 1b > 200 GeV/c > 200 GeV/c T T (W+b) (GeV/c) (W-jet) (GeV/c)(W-jet) T T p p 400 400 (a) (b) 300 300 – 10 – of the W-candidate from within the Type-2 top-quark = 7 TeV, Leading p TeV, = 7 = 7 TeV, Leading p TeV, = 7 s s T p 200 200 at at -1 -1 . (b) 2b 100 100 and CMS, L = 5 fb CMS, L = 5 fb CMS, L 0 0 2a 0 0

20 80 60 40 20 80 60 40

220 200 180 160 140 120 100 140 120 100 Events / 10 GeV/c 10 / Events Events / 10 GeV/c 10 / Events 4) to define a signal-depleted sideband. The small contribution from the . of the Type-2 top-quark candidate in the muon control sample. The color scheme 0 T p µ > (a) jet in the event (the probe jet) is not required to be top-tagged. These samples (with arbitrary normalization for visualization) to compare kinematics in the muon control T 2 p t continuum is subtracted using MC expectation, and the mistag probability c Next, the 1+2 and 1+1 samples are defined using a loose selection: (i) in trijet events, . The resulting mistag probability appears in figure T TeV/ two jets in one hemisphere areone required randomly-chosen to jet pass is the required Type-2high- selection to and pass (ii) the in Type-1 dijetare events, selection. dominated In by both NTMJthat cases, events. the the For event other each would event pass in the the full loose selection selection in the ( signal region ( is inverted ( SM t is defined by thep fraction of Type-1 candidates that are top-tagged, as a function of their candidate, after a selectionOverlaid on on both the (a) jet and mass (b) are of the theregion corresponding highest-mass to distributions jet the from signal in a region. Z the muon control sample. Figure 3. is the same as in figures JHEP09(2012)029 (3.1) (3.2) ), i T p ( i shows the distribution of ) ) 200 2 600 2 3a , ) 2 2 i T p 180 ( m 500 t W+Jets Non-W MJ Data t spectrum in this sideband is kine- P 160 t 1.0 GeV/c 3.2 GeV/c t ± ± . =1 loose ) m i X 140 i T N m(W+b) (GeV/c m(W-jet) (GeV/c 400 p = 80.1 = 81.7 ( = ) is then equal to the sum of the weights , except there is an additional requirement on (W+b) > 400 GeV/c (W+b) > 400 (W+b) > 400 GeV/c m 120 T T DATA W MC W P m m 2b (a) (b) = 100 300 NTMJ i NTMJ of the probe jet in event – 11 – N P and T = 7 TeV, p TeV, = 7 = 7 TeV, p TeV, = 7 p 80 s s 2a i NTMJ =1 loose i X P 200 N at at 60 -1 -1 = 40 100 t Data t W+Jets Non-W MJ Data fit MC fit NTMJ to be similar to the signal region. Figure 20 . N T T CMS, L = 5 fb CMS, L = 5 fb CMS, L p p 0 0

8 6 4 2 0 8 6 4 2 0

14 12 10 24 22 20 18 16 14 12 10

Events / 10 GeV/c 10 / Events Events / 5 GeV/c 5 / Events

2 2 )), evaluated at the T p ( m is the number of events passing the loose selection and the other quantities ). P (a) The mass of the highest-mass jet (W-jet), and (b) the mass of the Type-2 top 3.1 loose N The ensemble of jets in the loose pretagged region have, on average, a lower jet mass The total number of NTMJ events ( where are defined above. than the jets in the signal region. Consequently, the from eq. ( sample. The figure correspondsthe to Type-2 figures top candidate the Type-2 top candidate probability ( Figure 4. candidate (W + b), in the hadronic hemisphere of moderately-boosted events in the muon control JHEP09(2012)029 t t m t mass . 2 shows the c 36 1b ± have also been 2 and a width of 0 c 6 2 )). As can be ob- c ± . Figure 3.2 3.3 ), which is used as input to = 3 TeV/ in eq. ( 30 817 also shows for comparison 0 loose Z =1.3–2.4 TeV/ ± )) to which the mistag prob- 5 N t m 6 t 3.2 NTMJ 1+1 1+2 m t estimate is shown as red (dark) ± 18401 30253 N 741 signal with from eq. ( 31 0 ± . The first row corresponds to the number of 2 2 6 c loose – 12 – c , the first and second uncertainties are statistical and N ± NTMJ N ) and are described in detail in section 22 1239 3.2 =0.9–1.1 TeV/ ). For ± t t and 1.3–2.4 TeV/ 4 3.2 . The NTMJ background expectation determined from data is m 2 1+1 1+2 ± c 22015 70545 5 443 , the primary uncertainty on the NTMJ background is from the systematic 1 distributions for 1+1 and 1+2 events in data are compared to the expected t t provides an estimate for the mistagged NTMJ background for two t ) used in eq. ( contributes less than 1% to the events defined through the loose selection criteria loose NTMJ T m 1 The number of events observed in the loose selection ( 2 p N N c ( ). Both appear in eq. ( m P The uncertainty on this procedure is taken as half the difference between the Table Possible biases in the calibration procedure from the presence of a new Z This procedure is cross-checked on a NTMJ MC sample to ensure that the methodology NTMJ N Observed backgrounds in figure given by the yellowfilled (light) histograms, filled and histograms. theindicate The data are SM the shown t total as uncertainty solid on black points. the The backgrounds. hatched gray Figure regions the mistagged NTMJ background inserved the in signal table region ( uncertainty assigned to the procedure for modifying probe-jet3.4 masses. Results of event selection as well as to the sideband regions used to determine the probability of mistagging jets. current method is slightly more conservative. windows: 0.9–1.1 TeV/ events observed in theability loose is selection applied. ( The second row corresponds to the number of expected events from probability using the abovetags procedure, for and the then remaining usedevents. events, to which The is predict observed compared and the to expected expected the number number observed of of number tags of agreeinvestigated tags within in in statistical the these uncertainties. analysis.30 For instance, GeV/ a Z distributions obtained using theof modified alternative and prior unmodified distributions probe-jetprior for masses. described the above, probe-jet Two choices and mass were a investigated, flat the prior. MC-based The systematic uncertainty estimated with the matically biased. To emulate theprobe event jet kinematics is of ignored, the andof signal instead jet region, it masses the is of jet set probe mass to of jets a the from value NTMJ randomly MCachieves drawn closure. events from in In the this the distribution cross-check, range half 140 of the to events in 250 GeV/ the MC are used to derive a mistag ( value systematic, respectively. Table 1. compute the number of events predicted in the signal region for the mistagged NTMJ background JHEP09(2012)029 . , 2 4 c 2 c 38 41 15 ± ± ± , and 1.3– 2 = 1 TeV/ c t t 1%). The trig- t masses above m < 6%, as described lists the number 1% to account for 32 817 53 841 ≈ 2 42 24 ≈ =1.3–2.4 TeV/ ± ± ± t 809 841 1+1 1+2 t 1% for t 65 m 741 806 < t mass windows for the 1+1 2 signals with masses from 1 to 32 70 c 62 0 t production, resulting in a 50% , and ± ± 2 ± c . The impact of changes in parton 2 . t invariant mass spectrum fall into three = 1 TeV/ 23 1239 43 1349 2–4% from standard jet energy corrections, 36 110 t =0.9–1.1 TeV/ ≈ t 5.1 ± ± ± t t 506 1383 m 1+1 1+2 – 13 – t mass windows: from 0.9–1.1 TeV/ m 69 443 512 1%), and jet angular resolution ( < t is taken from MC predictions, and the expected NTMJ t continuum background and are estimated in the same t production. The implementation of b-quark jet selections . , as described in section 2 1 c ] is found to be negligible. 53 5 TeV/ . t events 1 , it is clear that the dominant background in this analysis is from NTMJ > 5 t t t invariant-mass distribution. Several sources of systematic uncertainties can ), jet energy resolution ( m ), integrated luminosity (2.2%), subjet-selection efficiency ( . The trigger uncertainty is larger for 1+2 events: 20% for . The systematic uncertainties on these values are now summarized in section Expected and observed number of events in two different t 3.2 with a width of 1%, in the 1+1 and 1+2 samples, but with cross sections taken 2 2 c c 2 3.2 c Expected SM t Expected non-top multijet events Total expected events Observed events Similar uncertainties affect the t To demonstrate the components of the background estimate, table From figure 3% from the application of the jet corrections to pruned jets, and and 3% for distribution functions [ manner. In addition, the(a large factor uncertainty of on two) the is found renormalization to and have factorization significant impact scales on SM t ≈ the uncertainty on thesection determination of thein section W mass inger uncertainty data for and 1+1 MC,1.5 events TeV/ as is 13% described for in categories: (i) the determinationshape of of the the efficiency, t (ii)simultaneously the affect mistag these probability, three and categories, (iii)have to and the be in varied such in cases,in a any the correlated changes overall way. jet-energy in The scale parameters uncertainties for on tagged efficiency jets include ( uncertainties 2.4 TeV/ 4 Systematic uncertainties The sources of systematic uncertainty on the t has not as yetan been improvement introduced in performance to of improve b-tagging the in sensitivity merged of topof this jets. search, events and expected mustthe from await observed background number sources of in events, the for 1+1 two t and 1+2 channels, along with Table 2. the signal expectation from3 MC TeV/ for several hypotheticalfrom Z the expected limits discussed in section events rather than from SM t and 1+2 samples.background The is derived expected in SM table t JHEP09(2012)029 . ) of 5.1 σ

N

Predicted Predicted

− − Predicted Predicted Data Predicted Predicted Data -axis on the left of the y 0.5 0 -0.5 0.5 0 -0.5 ) ) ) ) 2 2 2 2 5000 5000 5000 5000 4500 4500 4500 4500 t production. The black points are = 0.18 pb σ = 1.0 pb = 0.06 pb = 0.03 pb ) σ σ σ σ σ 2 4000 4000 = 0.18 pb N (Data-Pred)/Pred N (Data-Pred)/Pred 4000 4000 ) ) ) 2 2 2 mass (GeV/c mass (GeV/c σ mass (GeV/c = 1.0 pb = 0.06 pb mass (GeV/c t t ) t t t t σ σ 2 t t ) ) sys. bkgd uncert. hypotheses are shown for the assumption 2 2 ⊕ 0 3500 3500 sys. bkgd uncert. 3500 3500 ⊕ simulation t Observed Non-top multijet t Stat. Z'(1 TeV/c Z'(1.5 TeV/c Z'(2 TeV/c Z'(3 TeV/c simulation t Observed Non-top multijet t Stat. Z'(1 TeV/c Z'(1.5 TeV/c Z'(2 TeV/c 3000 3000 3000 3000 (a) (b) – 14 – 2500 2500 2500 2500 = 7 TeV 1+2 Type TeV = 7 = 7 TeV 1+1 Type TeV = 7 2000 2000 2000 2000 s s , , -1 -1 1500 1500 1500 1500 1000 1000 1000 1000 CMS, L = 5 fb CMS, L CMS, L = 5 fb CMS, L 1 1 500 500 2 0 2 0 1 1 3 2 500 2 500 -1 -1 -2 -2

10 10

10 10 10 σ σ

N N

Events / 100 GeV/c 100 / Events Events / 100 GeV 100 / Events -axis on the right of the plot, and the number of standard deviations ( 2 y Results for (a) 1+1 and (b) 1+2 event selections and background estimates. The yellow red circles, with the the observation from theplot, prediction, where shown the as binning a is black adjusted histogram to with have the at least 20 events in each bin. (light) histograms are theand non-top the multijet (NTMJ) red (dark) estimates histogramsthe from data. are data, the as The MC described hatched estimatesbackground. gray in boxes from the For combine SM text, the comparison, t statistical expectationsof and 1% for systematic resonance some uncertainties width, on Z withAlso the cross shown total are sections the taken ratio from of the the expected fractional limits difference discussed between in the section data and the prediction, shown in Figure 5. JHEP09(2012)029 to 2 2 c (5.1) c , integrated  t mass windows. 1% at 1 TeV/ =1.3–2.4 TeV/ t < 1 3 t 267 2 6 8 0.7< 1.6 2.2 2.2 m 1+1 1+2 : B 2 . c N B N , based on the production cross + t invariant mass distributions for L exp 5% for the low-mass region, domi- N × ≈  × =0.9–1.1 TeV/ t) t t t t continuum assuming the SM efficiency for 6 6 1319 20 19 24 28 , which is in the range of 1 to 5% depending 2.0 1.6 2.2 2.2 m 1+1 1+2 100% for the high-mass region, dominated by → provides a summary of this information. 0 3.3 – 15 – ≈ t), signal reconstruction efficiency 3 t (Z 5 B 6 → 2.2 ; and the systematic uncertainty on the mistag prob- × 0 ± 0 ± ≈ ± Z 1b . Table (Z See text Variation σ B 2 = exp N , is compared to the expectation . In the main resonance analysis and the cross-check, the number of 3 obs as seen in figure – N 2 t events in table 1 c , and the predicted number of background events L , branching fraction 0 Summary of relative systematic uncertainties on signal efficiency for two t Z spectrum. A cross-check of the analysis is performed by counting the number of t mass. The total background uncertainty is σ t t The uncertainties on the mistagged NTMJ background include the statistical uncer- m MC Statistical Trigger Jet energy scale Subjet efficiency scale factor Luminosity Total Source 10% at 3 TeV/ shown in tables observed events, section luminosity 5.1 Resonance analysis The first analysis uses athe resonant signal hypothesis toevents search in for localized a contributions mass to range defined for each resonant mass value. Two such mass ranges are The main result of thisnew analysis physics, in is which the a fitsignal likelihood to and is data background. fit assuming to The asome the second resonance generic expected hypothesis result model t for corresponds of the an tothe enhancement a additional of contribution. counting the of t These events two relative results to are discussed below. nated by the systematic uncertainty,statistical and uncertainty associated with the sample after loose selection. 5 Statistical treatment tainty on the samplestatistical after loose uncertainty on selection, the to≈ which mistag the probability mistag itself, probability rangingability is application, from applied; as the described inon section the t Table 3. variation in the yield, estimatedthe from number MC of studies. t This is reflected in the uncertainties on All values are in percent.scale The factor central that value has of a the non-unit subjet mean. selection scale factor is 0.94, it is the only JHEP09(2012)029 0 2 2 t) c c 2 t → = 3%, 0 0 g Z ( , and from B production models are with width 2 /m 0 0 0 0 c × Z 0 , given a mean g with 10% width σ hypothesis with obs 0 0 N and a narrow range ], which exclude the , predictions are also 2 c 12 6a is excluded for a topcolor 2 sample, and 1.3–2.4 TeV/ c = 1.2% and Γ 5 TeV/ 0 0 in a range from 1 to 3 TeV/ . , as well as in a narrow region Z Z 0 2 Z 2 c 3–1 c /m . m 0 6 TeV/ . Z , are excluded for the same topcolor . , and the background estimates from 2 = 10%, and (c) a Randall-Sundrum 2 0–1 t 5 TeV/ c . c t . 0 , all defined through log-normal priors distribution. Z , the prediction of the Randall-Sundrum m B t 4–1 t final state are extracted for the combina- t . N ], with Γ 6c /m 0 m 0 TeV/ 0 TeV/ , from 0.10 to 0.26 pb at 2 TeV/ spectrum, but are not as sensitive. Table Z . . 57 2 c t 0 TeV is excluded for a topcolor Z t . – 16 – , and = 10%, is compared to the limits obtained assum- m  0 ] is compared to the limits from data. 0–2 with 1% width, mass ranges for two Z , Z . 0 12 L /m 0 Z sample. The observed 95% CL upper limits on signal cross 0 , upper limits in the range of 1 pb are set on Z corresponding to the 1 TeV/ . Finally, in figure 2 6c 2 . First, the mass range 1 c c ] is used to extract the 95% CL upper limits, with the posterior . Most of the difference is attributed to a better statistical han- hypothesis with Γ t mass spectra, as a function of 6b 2 6a 0 c 56 model following ref. [ – = 3%. Second, two mass ranges, 1 = 1.2%. Similarly, using the upper limits for the Z 0 0 0 for a specific Randall-Sundrum gluon model [ 54 Z Z 2 , the mass range 1 c increment. /m /m model, but for Γ are integrated over this range. The results obtained from this cross-check 0 0 6b 2 0 Z Z c 5b shows the observed and expected upper limits for: (a) a Z 4 TeV/ method [ . 6 1 S and = 1%, (b) a Z = 10%. > , with uncertain parameters 0 0 5a 0 Z Z g exp The resonant analysis is cross-checked by counting events in specified mass windows of Finally, as seen in figure Using the upper limits for the Z Figure The upper limits at 95% confidence level (CL) on the product of the Z A CL The likelihood is computed using the Poisson probability to observe m . The signal region is defined by a window in /m /m N t with width Γ with width Γ 0 0 t Z Z 0 0 dling in the resonance analysis of the bins with large background in the mass distribution. shows the number of events1+2 observed channels, and 0.9–1.1 TeV/ expected incorresponding two to mass the 2 windows TeV/ forsection the change 1+1 from and 1.00.02 to to 2.0 pb 0.05 pb at at 1 3 TeV/ TeV/ (smaller than the mass increment) close to 1 m figures are consistent with the analysis of the as seen in figure Γ for existence of this particle with masses between 1 excluded as seen in figure Z (smaller than the massZ increment) close to 1 shown for a topcolor Z compared to limits obtained assuming aproduction 1% cross width. section Higher-order were QCD1.3. accounted corrections for to The the through same Z Z a constanting K-factor, a computed 10% to width in be Kaluza-Klein figure gluon model from ref. [ based on a Poisson model for each bin ofΓ the Kaluza-Klein gluon hypothesis.models to Also compare shown to the are observed the and expected theoretical limits. predictions In for figure several cross section and the branchingtion fraction of to the the 1+1 t andwith 1+2 a t 0.1 TeV/ of based on their meansignal and values background and distributions theirthe are uncertainties. varied likelihood within is their Thedescribing systematic maximized. shapes the uncertainties systematic until and This uncertainties, normalizations thereby procedure reducing of effectively their impact. integrates over the parameters JHEP09(2012)029 ) and branching σ = 10% (10% width 0 Z /m 0 Z 3 ) 3 ) 3 ) 2 2 2 2.5 2.5 2.5 ] for a width of 10%. (c) Randall-Sundrum 6 10% Width Assumption 10% Width Assumption KK Gluon 1% Width Assumption 1% Width – 4 1 s.d. Expected 2 s.d. Expected 1 s.d. Expected 2 s.d. Expected 1 s.d. Expected 2 s.d. Expected production with Γ Observed (95% CL) Expected (95% CL) ± ± Z', 10.0% width, Harris et al Observed (95% CL) Expected (95% CL) ± ± Agashe etKK al Gluon, Z', 3.0% width, Harris et al Observed (95% CL) Observed (95% CL) Expected (95% ± ± Z', 1.2% width, Harris et al 0 Invariant Mass (TeV/c Invariant Mass (TeV/c Invariant Mass (TeV/c t t t t t t 2 2 2 (c) (a) (b) – 17 – t, as a function of assumed resonance mass. (a) ], compared to the theoretical prediction of that model. = 7 TeV = 7 TeV = 7 = 7 TeV = 7 s s s 12 at at at -1 -1 -1 1.5 1.5 1.5 = 1% (1% width assumption) compared to predictions based on 0 CMS, L = 5 fb CMS, L = 5 fb CMS, L CMS, L = 5 fb CMS, L Z 1 1 1 2 2 2 1 1 1 -1 -1 -1 -2 -2 -2 10 10 10

=1.2% and 3.0%. (b) Z 10 10 10

/m 10 10 10

10 10 10

0

Z' Z' g' × σ × σ B (pb) B Limit Upper B (pb) B Limit Upper × σ Upper Limit Limit Upper

B (pb) B 0 Z Z /m 0 Z 2 standard deviation (s.d.) excursions are shown relative to the results expected for ± ) of hypothesized objects into t The 95% CL upper limits on the product of production cross section ( B ] for Γ 6 – 1 and 4 ± production with Γ 0 Kaluza-Klein gluon production from ref.The [ the available luminosity. Figure 6. fraction ( Z refs. [ assumption) compared to predictions based on refs. [ JHEP09(2012)029 , 2 2 c c (5.2) since . The 4 S − 1 TeV/ 4 1 TeV/ 10 − > > 0.11 for the t × 10 t t t production, t events with t ± 80 130 153 0) × m . m 1 t mass spectrum ± ± ± 0) . distribution above ± 1+2 2423 1 t 6 . t 129 ± t and non-top multijet 2271 2400 m 6 . (1 t events with a true mass 4 t production is taken to be . − t t from SM t t 10 t m 2 45 c d 115 × m 106 t and NTMJ backgrounds are shown d ± ± NP 3) t t ± . t t + 1+1 1738 SM 1 t mass distribution to estimate the true m m 1 TeV/ σ d d SM d ± 194 1546 σ 1740 > 2 d 5 c . t production cross section for t 2 t c (2 ]. The limit on any possible enhancement is m – 18 – . These factors do not affect the quantity 1 TeV/ 23 2 > , 1 TeV/ c t t > 22 t m t R m , the ratio of the integral of the by the number of simulated t R 0.08 for the Type 1+1 analysis and 1.41 S t production and a contribution from some NP, to that 2 , and for Type 1+2, the efficiency is (1 = ± c 4 S − 6. The a priori expectation is for this limit to lie in the interval . 10 2 1 TeV/ × < t events 3) > . 1 t mass above 1 TeV/ ± 5 . t production: ]. The efficiency for Type 1+1 events, relative to inclusive SM t )) must be 50 . This ratio is 1.24 Expected number of events with – 5.2 2 , along with these efficiencies. Following the statistical procedure outlined above, corresponding to SM t c t efficiency enhancement analysis 48 Expected SM t Expected non-top multijet events Total expected events Observed events t 4 2 t c t t production, which is used in the limit setting procedure described in the text, is shown on The approximate NNLO cross section for inclusive t The events used for setting the limit are selected to have reconstructed in eq. ( 1 TeV/ S t continuum, as described in refs. [ numbers of observed and expectedin events for table the SM t it follows that the enhancement factor( to the t 2.0–3.5 at 68% CL, and 1.7–5.5 at 95% CL, with a most probable value of 2.5. yields for the true t they cancel in the ratio. 163 pb [ is found to be (2 which does not correspondtion to factor the must same be range appliedmass for to distribution. the the This reconstructed true t isa mass. estimated reconstructed Consequently, by mass a dividing correc- > the number of simulatedType t 1+2 analysis. These differences are applied as multiplicative factors to obtain the Table 4. t presented in terms of1 a TeV/ variable from just SM t 5.2 In the second analysis, generaldue enhancement to is assumed some in new modeling phenomenon the t (NP), assuming the same signal efficiency as for the SM backgrounds, along with their total,SM compared t to the observedthe number of final events. line. The efficiency for JHEP09(2012)029 t > t t t pair m t produc- t production collected with the 1 − cross section and branch- ) decaying into a t 0 0 =1% and 10%), as well as an 0 Z /m 0 Z t production, and limits are placed on any t resonances in the kinematic region of – 19 – with standard-model couplings is considered as a model 0 modeled for several widths, as well as for a Randall-Sundrum 0 . This constrains generic enhancements to standard-model t 2 c 1 TeV/ , and is also the first work to use the jet-substructure tools described above. > 2 t c t This work was supported in part by the DOE under under Task TeV of contract This is the first publication to constrain t Finally, results are presented for any generic source of new phenomena with the same No excess of events is observed over the expected yield from SM background sources. m t masses that yield collimated decay products, partially or fully merged into single jets. Washington. Uzbekistan); MON, RosAtom, RASCPAN and (Spain); RFBR Swiss (Russia);TAEK MSTD Funding (Turkey); STFC (Serbia); Agencies (United MICINN Kingdom); (Switzerland); and DOE NSC and NSF (Taipei); (U.S.A.). DE-FG02-96ER40956 TUBITAK and during the Workshop on Jet Substructure at the University of RPF (Cyprus); MoER, SF0690030s09and and HIP (Finland); ERDF CEA (Estonia); andGSRT Academy CNRS/IN2P3 (France); of (Greece); BMBF, Finland, DFG, and OTKA MEC, HGFSFI and (Germany); (Ireland); NKTH INFN (Hungary);CONACYT, (Italy); SEP, NRF DAE and and andMSHE UASLP-FAI WCU DST and (Mexico); (Korea); (India); NSC LAS MSI (Poland); IPM (Lithuania); (New FCT (Iran); (Portugal); CINVESTAV, Zealand); JINR PAEC (Armenia, (Pakistan); Belarus, Georgia, Ukraine, 7 TeV. We congratulate our colleagueslent in performance the of CERN the accelerator LHC departmentsCERN for machine. and the other We excel- thank CMS institutes, theand and technical FWO acknowledge and support (Belgium); administrative from: staff CNPq,CERN; at FMSR CAPES, (Austria); CAS, FAPERJ, FNRS and MoST, FAPESP and (Brazil); NSFC MES (China); (Bulgaria); COLCIENCIAS (Colombia); MSES (Croatia); 1 TeV/ Acknowledgments We thank Seung J. Lee for the computations of the Kaluza-Klein gluon cross sections at cross section (in total) mustfor be less than ation, factor which of can 2.6 be timesproduction used that asymmetry to of observed at the check the SM models Tevatron expectation that as a seek sign to of interpret new the physics. forward-backward t ing fraction for a topcolorKaluza-Klein Z gluon. reconstruction efficiency as standard-modelenhancement to t the cross section from such a contribution. In particular, the t t The analysis therefore relies onproviding suppression new of developments in non-top the multijet area production. of jet substructure,Upper thereby limits in the range of 1 pb are set on the product of the Z In summary, a searchin is the all-hadronic presented final forCMS state a detector using massive at an resonance 7of integrated TeV. (Z luminosity such of a A 5 resonance. fb Z additional model Two widths of a are Randall-Sundrum considered Kaluza-Klein (Γ gluon. The search focuses on high 6 Summary JHEP09(2012)029 ]. ]. , ] Phys. (1994) ]. ]. , SPIRE (1999) ] B 193 Phys. IN SPIRE , ][ ¯ t 83 IN t D 49 SPIRE SPIRE ][ ]. IN IN ]. → (1976) 974 ][ ][ ¯ p p ]. SPIRE Nucl. Phys. SPIRE D 13 hep-ph/9411426 IN IN [ Phys. Rev. ][ SPIRE ][ , (2008) 202001 ]. arXiv:1101.5203 IN [ hep-ph/9809470 LHC signals from warped SU(5), Phys. Rev. Lett. ][ [ , 101 arXiv:0911.2955 SPIRE [ Phys. Rev. hep-ph/0105239 (1995) 483 IN , arXiv:1112.4928 [ Top quark seesaw theory of ][ (2011) 003 ]. and B 345 03 hep-ph/0612015 arXiv:0709.1652 [ (1999) 075003 (2010) 294 [ The and new dimensions LHC predictions from a Tevatron anomaly in SPIRE (2001) 232 hep-ph/9803315 Electroweak symmetry breaking from [ Phys. Rev. Lett. IN , JHEP On models of new physics for the Tevatron top ][ D 59 , Top quarks, axigluons and charge asymmetries at B 683 – 20 – TeV Phys. Lett. B 513 Forward-backward asymmetry in top quark ]. , arXiv:1103.3501 Axigluon as possible explanation for 96 [ . hep-ph/9911288 (2008) 015003 (1998) 263 (2008) 014003 = 1 ]. ]. SPIRE Phys. Rev. s Softly broken supersymmetry and IN , Phys. Lett. √ D 77 A large mass hierarchy from a small extra dimension An alternative to compactification [ , ]. D 77 Phys. Lett. B 429 , hep-ph/9905221 SPIRE SPIRE Top production: sensitivity to new physics [ IN IN (2011) 114027 [Updates in ][ ][ SPIRE IN ]. ][ Phys. Rev. (1979) 2619 Phys. Rev. collisions at D 83 , Phys. Lett. , ¯ p , This article is distributed under the terms of the Creative Commons p (1999) 3370 SPIRE Implications of dynamical symmetry breaking Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory (1991) 419 IN D 20 [ 83 Topcolor assisted Topcolor: top quark condensation in a gauge extension of the standard model ]. ]. ]. collaboration, T. Aaltonen et al., hep-th/9906064 hep-ph/9312324 Phys. Rev. B 266 [ [ , SPIRE SPIRE SPIRE FB arXiv:0806.2472 IN IN IN hadron colliders CDF production in [ [ forward-backward asymmetry A 4690 extra dimensions the top quark forward-backward asymmetry at a millimeter Rev. Lett. [ electroweak symmetry breaking dimensional deconstruction 4454 Lett. (1981) 150 [ Phys. Rev. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, R.S. Chivukula, B.A. Dobrescu, H. Georgi and C.T. Hill, N. Arkani-Hamed, A.G. Cohen and H. Georgi, C.T. Hill and S.J. Parke, C.T. Hill, C.T. Hill, S. Weinberg, L. Susskind, S. Dimopoulos and H. Georgi, O. Antunano, J.H. Kuhn and G. Rodrigo, P.H. Frampton, J. Shu and K. Wang, M.I. Gresham, I.-W. Kim and K.M. Zurek, L. Randall and R. Sundrum, K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J.Y. Virzi, Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, L. Randall and R. Sundrum, [9] [7] [8] [4] [5] [6] [2] [3] [1] [16] [17] [14] [15] [11] [12] [13] [10] Attribution License which permits anyprovided use, the distribution original and author(s) reproduction and in source any are medium, credited. References Open Access. JHEP09(2012)029 ] ] ] ¯ t t , 2008 ]. ] ] , (2007) 028 ]. collisions at collisions at 09 resonances in ¯ p ]. ¯ p ¯ t SPIRE p p t SPIRE IN (2008) 142001 arXiv:1101.0034 arXiv:1101.0034 arXiv:1103.2297 ]. IN [ [ ][ [ JHEP SPIRE ][ , 101 IN asymmetry at LHC ][ ¯ t SPIRE t arXiv:0710.5335 arXiv:0802.2470 , CERN, Geneva IN Implications of the CDF [ [ (2010) 094023 ][ (2008) 142002 resonance in Top tagging: a method for production in Jet substructure as a new Higgs (2011) 031 ¯ t ¯ t t t (2011) 112003 (2011) 112003 100 08 D 81 arXiv:0903.5081 [ arXiv:0709.0705 Phys. Rev. Lett. D 83 D 83 [ , JHEP ]. (2008) 051102 (2008) 242001 , arXiv:1111.1271 [ Phys. Rev. : the new web generation arXiv:1107.4995 100 SPIRE Probing the Tevatron , 4 Techniques for improved heavy particle searches Recombination algorithms and jet substructure: [ D 77 v IN The CMS experiment at the CERN LHC CMS-PAS-JME-009-01 Phys. Rev. Lett. Phys. Rev. Phys. Rev. – 21 – ][ Search for resonant Evidence for a mass dependent forward-backward Evidence for a mass dependent forward-backward Limits on the production of narrow , , , Search for a narrow Forward-backward asymmetry in top quark-antiquark (2009) 051501 (2008) 231801 First measurement of the forward-backward charge (2012) 051101 D 80 100 Phys. Rev. , MadEvent (2011) 112005 ]. ]. ]. ]. / Phys. Rev. Lett. D 85 , ]. TeV 96 D 84 . SPIRE SPIRE SPIRE SPIRE arXiv:1103.2765 Phys. Rev. [ IN IN IN IN A Cambridge-Aachen (C-A) based jet algorithm for boosted top-jet , SPIRE = 1 ][ ][ ][ ][ IN s [ MadGraph Phys. Rev. Lett. Phys. Rev. √ , , Phys. Rev. TeV TeV , (2011) 034 S08004 ]. ]. ]. ]. ]. 96 96 3 . . , CMS Physics Analysis Summary 05 collaboration, S. Chatrchyan et al., collaboration, collaboration, T. Aaltonen et al., collaboration, T. Aaltonen et al., collaboration, T. Aaltonen et al., collaboration, T. Aaltonen et al., collaboration, V.M. Abazov et al., collaboration, V.M. Abazov et al., collaboration, V. Abazov et al., = 1 = 1 collisions at SPIRE SPIRE SPIRE SPIRE SPIRE s s ¯ p IN arXiv:0706.2334 arXiv:0912.0033 arXiv:0806.0848 IN IN IN arXiv:0712.0851 IN [ CMS JINST [ search channel at the LHC DØ √ pruning as a tool[ for heavy particle searches CMS tagging Switzerland (2009). with jet substructure identifying boosted hadronically decaying top[ quarks CDF p [ CDF √ forward-backward asymmetry for hard top[ physics JHEP DØ production CDF asymmetry in top quark[ pair production asymmetry in top quark[ pair production CDF asymmetry in top quark[ pair production DØ J. Alwall et al., S.D. Ellis, C.K. Vermilion and J.R. Walsh, J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, S.D. Ellis, C.K. Vermilion and J.R. Walsh, D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, C. Delaunay, O. Gedalia, Y. Hochberg, G. Perez and Y. Soreq, J. Aguilar-Saavedra and M. P´erez-Victoria, [32] [33] [30] [31] [28] [29] [26] [27] [24] [25] [22] [23] [20] [21] [19] [18] JHEP09(2012)029 ] D D JHEP (2008) B 641 , (2006) , ] 04 53 ]. (2012) 1896 Comput. Phys. ]. Phys. Rev. Phys. Rev. , JHEP , 1, SPIRE C 72 Comput. Phys. . , Phys. Lett. 8 IN arXiv:1009.4935 , 1, ]. . SPIRE , CERN, Geneva [ ][ 6 , CMS Physics IN ][ ]. , CMS Physics Analysis Jets in hadron-hadron arXiv:1107.4277 pythia SPIRE production cross section in [ IN jet-finder ¯ t pythia t t ][ Eur. Phys. J. SPIRE k , IN ]. IEEE Trans. Nucl. Sci. (2010) 114030 P11002 ][ , 6 ]. hep-ph/9907280 Better jet clustering algorithms ]. -quark jet identification SPIRE jet clustering algorithm b D 82 IN t arXiv:0712.2447 CMS-PAS-PFT-09-01 k SPIRE [ ][ myth for the JINST SPIRE IN ]. ]. 3 IN ][ ][ arXiv:1007.1327 N , CERN, Geneva Switzerland (2010). [ A brief introduction to ]. Determination of jet energy calibration and Measurement of the 2011 -jet identification in CMS , – 22 – b SPIRE SPIRE hep-ph/0609070 Phys. Rev. The anti- FastJet user manual [ IN IN , (2008) 484 Measuring the running top-quark mass ]. ][ ][ SPIRE 60 IN , CERN, Geneva Switzerland (2011). ]. ][ hep-ph/0201195 SPIRE (2011) 1034 [ Electroweak gauge boson production at hadron colliders through IN Hadronization corrections to jet cross-sections in deep inelastic Dispelling the ]. , DESY, Germany (1998) [ ][ hep-ph/0010017 arXiv:0710.3820 SPIRE developments and applications 182 [ [ 02 (2006) 114017 IN ][ SPIRE IN Performance of the Particle-flow event reconstruction in CMS and performance for jets, Tracking and vertexing results from first collisions High-energy physics event generation with (2002) 012 D 74 CMS-PAS-TRK-10-001 arXiv:0906.5273 arXiv:1108.3773 ][ New generation of parton distributions with uncertainties from global QCD [ [ TeV in lepton + jets events using Geant4 07 HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR 7 hep-ph/9707323 , CMS Physics Analysis Summary (2001) 238 (2008) 852 Next-to-next-to-leading soft-gluon corrections for the top quark cross section [ ]. hep-ph/0512210 135 178 Prog. Part. Nucl. Phys. , DESY-PROC CMS-PAS-BTV-11-001 [ JHEP , ]. ]. , Phys. Rev. SPIRE collaboration, S. Chatrchyan et al., collaboration, collaboration, S. Chatrchyan et al., collaboration, collaboration, ), arXiv:0802.1189 IN 2 s [ [ (2009) 054009 (2011) 092004 (1997) 001 collisions at α SPIRE SPIRE ( IN arXiv:1111.6097 IN [ O collisions Comput. Phys. Commun. 80 and transverse momentum distribution CMS pp 84 CMS Summary 063 CMS transverse momentum resolution in[ CMS 08 (2006) 57 [ CMS Analysis Summary scattering 270 CMS taus, and MET Switzerland (2009). Commun. Commun. analysis K. Melnikov and F. Petriello, S. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, U. Langenfeld, S. Moch and P. Uwer, N. Kidonakis, M. Aliev et al., M. Cacciari, G.P. Salam and G. Soyez, M. Cacciari and G.P. Salam, M. Cacciari, G.P. Salam and G. Soyez, M. Wobisch and T. Wengler, Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, J. Allison et al., T. Sj¨ostrand,S. Mrenna and P.Z. Skands, J. Pumplin et al., T. Sj¨ostrandet al., [51] [52] [49] [50] [46] [47] [48] [44] [45] [42] [43] [39] [40] [41] [37] [38] [35] [36] [34] JHEP09(2012)029 , Nucl. , ]. (2002) 2693 SPIRE G 28 IN ][ decaying to top-antitop 0 Z ]. J. Phys. ]. , SPIRE SPIRE IN IN ][ technique ][ arXiv:1106.5788 s [ CL – 23 – (2011) 069 hep-ex/9902006 09 [ arXiv:1112.4928 , CERN, Geneva Switzerland (2011) [CMS-NOTE-11-005]. [ JHEP , Cross sections for leptophobic topcolor (1999) 435 Procedure for the LHC search combination in summer (2012) 2072 TeV LHC A 434 7 C 72 Presentation of search results: the Parton distribution function dependence of benchmark standard model total cross Confidence level computation for combining searches with small statistics ]. ATL-PHYS-PUB-2011-011 SPIRE IN 2011, Eur. Phys. J. sections at the [ Instrum. Meth. ATLAS collaboration, R.M.. Harris and S. Jain, A.L. Read, T. Junk, G. Watt, [56] [57] [54] [55] [53] JHEP09(2012)029 , B. Rahbaran, C. Rohringer, H. Rohringer, – 24 – † , N. H¨ormann,J. Hrubec, M. Jeitler, W. Kiesenhofer, M. Kram- 1 , J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, 2 M.H.G. Souza Universidade do Estado doW.L. Rio W. de Ald´aJ´unior, Carvalho, Janeiro, A. RioS. Cust´odio,E.M. de Fonseca De Da Janeiro, Souza, Brazil Costa, D.Da Matos C. Silva, Figueiredo, De A. L. Mundim, Santoro, Oliveira H. S.M. Martins, Nogima, Silva V. Do Oguri, Amaral, W.L. L. Prado Soares Jorge, A. Sznajder Universit´ede Mons, Mons, Belgium N. Beliy, T. Caebergs, E. Daubie,Centro G.H. Brasileiro Hammad de PesquisasG.A. Fisicas, Rio Alves, de M. Janeiro, Brazil Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, F. Thyssen, M. Tytgat, L. Vanelderen,Universit´eCatholique P. de Verwilligen, S. Louvain, Walsh, Louvain-la-Neuve, E. Belgium Yazgan,S. N. Basegmez, Zaganidis G.A. Bruno, Giammanco L. Ceard,A. C. Pin, K. Delaere, Piotrzkowski, T. N. Schul du Pree, D. Favart, L. Forthomme, O. Charaf, B. Clerbaux,P.E. G. Marage, De T. Reis, Lentdecker, L. V. Thomas, Dero,Ghent C. A.P.R. University, Vander Gay, Ghent, Velde, T. P. Belgium Vanlaer Hreus,V. A. Adler, L´eonard, K. Beernaert,J. A. Lellouch, Cimmino, S. A. Costantini, Marinov, G. J. Garcia, M. Mccartin, Grunewald, A.A. B. Ocampo Klein, Rios, D. Ryckbosch, N. Strobbe, Vrije Universiteit Brussel, Brussel, Belgium F. Blekman, S. Blyweert,A. J. Olbrechts, D’Hondt, W. R. Van Doninck, Gonzalez P. Suarez, VanUniversit´eLibre A. Mulders, de G.P. Kalogeropoulos, Bruxelles, Van M. Bruxelles, Onsem, Maes, Belgium I. Villella V. Mossolov, N. Shumeiko, J. SuarezUniversiteit Gonzalez Antwerpen, Antwerpen, Belgium S. Bansal, K.L. Mucibello, Cerny, S. Ochesanu, T. B. Roland,Mechelen, Cornelis, R. N. Rougny, Van M. E.A. Remortel, Selvaggi, H. A. Van De Van Haevermaet, Spilbeeck P. Wolf, Van X. Janssen, S. Luyckx, T. Maes, V.M. Ghete, J. Hammer mer, D. Liko,R. I. Sch¨ofbeck, J. Mikulec, Strauss,G. Walzel, M. E. A. Widl, Pernicka C.-E. Taurok, Wulz National F. Centre Teischinger, for Particle P. and Wagner, High Energy W. Physics, Waltenberger, Minsk, Belarus Yerevan Physics Institute, Yerevan, Armenia S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A.Institut Tumasyan f¨urHochenergiephysik der OeAW, Wien,W. Austria Adam, T. Bergauer, M. Dragicevic, J. Er¨o, C. Fabjan, M. Friedl, R. Fr¨uhwirth, The CMS collaboration JHEP09(2012)029 , 3 10 , 8 , A. Radi 9 1 , M.A. Mahmoud 8 , S. Khalil 7 , S.F. Novaes, Sandra S. Padula – 25 – , T.R. Fernandez Perez Tomei, E. M. Gregores 3 4 , D. Polic, I. Puljak 5 , F.A. Dias 3 , S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, 1 , P. Iaydjiev , C.A. Bernardes 1 , S. Elgammal, A. Ellithi Kamel 3 6 V. Azzolini, P. Eerola, G. Fedi, M.Helsinki Voutilainen Institute of Physics,S. Helsinki, Finland Czellar, J.T. H¨ark¨onen,A. Heikkinen, Lamp´en,K. Lassila-Perini, V. S. Karim¨aki,R.E. Lehti, Tuominen, Kinnunen, J. T. Tuominiemi, M.J. Lind´en,P. E. Luukka, Tuovinen, Peltola, Kortelainen, D. T. Ungaro, M¨aenp¨a¨a,T. L. Wendland Y. Assran National Institute of ChemicalM. Physics Kadastik, and M. M. Biophysics, M¨untel, Raidal, Tallinn, Estonia L. Rebane,Department A. of Tiko Physics, University of Helsinki, Helsinki, Finland A. Attikis, M. Galanti, G. Mavromanolakis, J.Charles Mousa, University, C. Prague, Nicolaou, Czech F. Ptochos, Republic M. P.A. Finger, Razis M. Finger Jr. Academy of Scientific Research andEgyptian Technology of Network the of Arab High Republic Energy of Egypt, Physics, Cairo, Egypt Z. Antunovic, M. Dzelalija, M. Kovac Institute Rudjer Boskovic, Zagreb,V. Croatia Brigljevic, S. Duric, K. Kadija,University J. of Luetic, Cyprus, S. Nicosia, Morovic Cyprus C. Avila, B. Gomez Moreno, A.F.Technical Osorio University Oliveros, of J.C. Split, Sanabria Split,N. Croatia Godinovic, D. Lelas, R. Plestina University of Split, Split, Croatia J. Wang, J. Wang, X. Wang, Z.State Wang, Key H. Lab. Xiao, M. ofC. Xu, Nucl. Asawatangtrakuldee, J. Y. Phys. Zang, Ban, and S. Z. Guo, Tech., Zhang S. Y. Guo, Wang, Peking B. W. University, Li, Zhu, Beijing, S. W. Liu, China Zou Y. Mao,Universidad S.J. de Qian, Los H. Teng, Andes, Bogota, Colombia University of Sofia, Sofia,A. Bulgaria Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L.Institute Litov, of B. Pavlov, High P. Petkov EnergyJ.G. Physics, Beijing, Bian, China G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, T.S. Anjos C. Lagana, F. Marinho, P.G. Mercadante Institute for Nuclear ResearchV. and Genchev Nuclear Energy, Sofia,R. Bulgaria Trayanov, M. Vutova Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil JHEP09(2012)029 , † , D. Gel´e,U. Goerlach, , C. Broutin, P. Busson, 12 11 14 , D. Contardo, P. Depasse, H. El Mamouni, 1 – 26 – , C. Ferro, J.-C. Fontaine 12 , F. Drouhin , A.-C. Le Bihan, P. Van Hove 12 12 13 , J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, 12 K. Klein, J.D. Sprenger, Merz, H. Weber, A. B. Ostapchuk, Wittmer,RWTH V. Aachen A. Zhukov University, III. Perieanu, PhysikalischesM. F. Institut Ata, A, J. Raupach, Caudron, E. J. Aachen, Dietz-Laursonn,C. D. Germany Sammet, Duchardt, Heidemann, M. Erdmann, S. K. A. G¨uth,T. Hebbeker, Schael, Hoepfner, T. Klimkovich, D. Klingebiel, P. Kreuzer, D. Lanske Institute of High Energy PhysicsTbilisi, and Georgia Informatization, Tbilisi StateZ. University, Tsamalaidze RWTH Aachen University, I. PhysikalischesG. Institut, Anagnostou, Aachen, S. Germany Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, C. Baty, S. Beauceron,diene, N. H. Beaupere, Brun, M.A. J. Bedjidian, Chasserat, Falkiewicz, O. R. Bondu, J.M. Chierici G. Lethuillier, Fay, L. Boudoul, S. Mirabito, D. S. Gascon, Boume- Perries, V. M. Sordini, S. Gouzevitch, Tosi, Y. B. Tschudi, P. Verdier, Ille, S. Viret T. Kurca, T. Le Grand, Centre de Calcul dedes l’Institut Particules National (IN2P3), de PhysiqueF. Villeurbanne, Nucleaire Fassi, France D. et Mercier de Physique Lyon,Universit´ede Bernard Universit´eClaude Lyon 1, CNRS-IN2P3,de Institut Physique Nucl´eairede Lyon, Villeurbanne, France Institut Pluridisciplinaire Hubertsit´ede Curien, Haute Alsace Universit´ede Mulhouse, Strasbourg, CNRS/IN2P3,J.-L. Univer- Strasbourg, Agram France C. Collard, E. Conte P. Juillot, M. Karim France S. Baffioni, F. Beaudette,C. Charlot, L. N. Benhabib, Daci, L. T.P. Min´e,C. Bianchini, Dahms, Mironov, C. L. M. Ochando, Dobrzynski, Bluj P. R. Paganini,A. Granier D. Zabi de Sabes, Cassagnac, R. Salerno, M. Y. Haguenauer, Sirois, C. Veelken, M. Besancon, S. Choudhury,S. M. Ganjour, Dejardin, D. A.J. Denegri, Malcles, Givernaud, L. B. Millischer, P. Fabbro, A. Gras, J.L. Nayak,Laboratoire J. Faure, G. Rander, Leprince-Ringuet, F. A. Hamel Ecole Ferri, Rosowsky, I. Polytechnique, de Shreyber, IN2P3-CNRS, M. Monchenault, Palaiseau, Titov P. Jarry, E. Locci, K. Banzuzi, A. Korpela, T. Tuuva Laboratoire d’Annecy-le-VieuxAnnecy-le-Vieux, de France Physique desD. Sillou Particules, IN2P3-CNRS, DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France Lappeenranta University of Technology, Lappeenranta, Finland JHEP09(2012)029 , , , 1 15 15 , B. Radics, , A. Bethani, 17 15 , A. Kapusi, K. Krajczar 16 17 – 27 – , M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, 1 , P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras 1 , P. Hidas, D. Horvath 1 , J.R. Komaragiri, D. Martschei, S. Mueller, Th. M¨uller,M. Niegel, 14 , V. Veszpremi, G. Vesztergombi 1 University of Io´annina,Io´annina,Greece I. Evangelou, C. Foudas KFKI Research Institute for ParticleG. and Nuclear Bencze, Physics, Budapest, C. Hungary F. Hajdu Sikler G. Daskalakis, T. Geralis, S. Kesisoglou,C. A. Markou, Kyriakis, C. D. Mavrommatis, Loukas, E. I. Ntomari Manolakos,University A. of Markou, Athens, Athens, Greece L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou A. O. N¨urnberg, Oberst, A. Oehler, J.N. Ott, Ratnikova, T. S. Peiffer, C. G. R¨ocker, Saout, Quast,H.J. A. K. Rabbertz, Scheurer, Simonis, F. F.-P. F.M. Ratnikov, Schilling, Stober, M.E.B. D. Schmanau, Ziebarth Troendle, G. R. Schott, Ulrich, J.Institute Wagner-Kuhr, T. of Weiler, Nuclear M. Physics Zeise, ”Demokritos”, Aghia Paraskevi, Greece G. J. Steinbr¨uck, Thomsen Institut f¨urExperimentelle Kernphysik, Karlsruhe, Germany C. Barth, J.C. Berger, Hackstein, T. F. Chwalek, Hartmann,mann, W. De M. I. Boer, Heinrich, Katkov H. A. Held, Dierlamm, K.H. M. Hoffmann, Feindt, M. S. Guthoff Honc, U. Huse- University of Hamburg, Hamburg, Germany C. Autermann, V. Blobel,M. S. G¨orner, T. Bobrovskyi, Hermanns, J.R. Klanner, Draeger, R.S. J. Lange, H. H¨oing, B. K. Enderle, Mura,P. F. Kaschube, J. Schleper, Nowak, N. Erfle, G. E. Pietsch, D. U. Kaussen, Schlieckau, Rathjens, Gebbert, C. A. Sander, H. H. Schmidt, Schettler, Kirschenmann, M. Schr¨oder,T. Schum, M. Seidel, H. Stadie, A. Knutsson, M.B. Kr¨amer, Lutz, D. R.J. Kr¨ucker, E. Mnich, Mankel, A. Kuznetsova, Mussgiller, I. S.A. W. Naumann-Emme, Raspereza, Marfin, J. P.M. Lange, Ribeiro Olzem, M. Cipriano, H.T. C. W. Perrey, Marienfeld, Riedl, Schoerner-Sadenius, A. M. N. Lohmann Petrukhin, Rosin, I.-A. Sen, D. J. A. Pitzl, Salfeld-Nebgen, Melzer-Pellmann, Spiridonov, R. M. Schmidt A.B. Stein, R. Meyer, Walsh, C. Wissing Deutsches Elektronen-Synchrotron, Hamburg, Germany M. Aldaya Martin,K. J. Borras, Behr, A. Burgmeier, W.D. A. Dammann, Behrenhoff, Cakir, G. U. L. Eckerlin,S. Calligaris, Behrens, D. A. Habib, M. Eckstein, Campbell, D. Bergholz J. E. Fischer, Castro, Hauk, G. F. Flucke, Costanza, H. A. Jung Geiser, I. Glushkov, H. Reithler, S.A. Schmitz, L. Sonnenschein,RWTH J. Aachen Steggemann, University, D. III. Teyssier, Physikalisches M.M. Institut Weber Bontenackels, B, V. Cherepanov, Aachen,Ahmad, M. Germany F. Davids, G. Hoehle, Fl¨ugge,H. B.O. Geenen, Kargoll, Pooth, M. J. T. Geisler, Rennefeld, Kress, W. P. Y. Sauerland, Haj Kuessel, A. Stahl A. Linn, A. Nowack, L. Perchalla, J. Lingemann, C. Magass, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, JHEP09(2012)029 , , , , , , , , , 1 a a a a,b a,b a,b a,b a,b a , L. Lusito , Bari, Italy , T. Rovelli c , A. Colaleo a,c , A. Montanari a,b , N. Pacifico 1 a,b , M. Cuffiani , G. Zito , P. Giacomelli a,b a 1 a,b, a,b a,b, , M. Hashemi, H. Hesari, , G. Iaselli a 21 , A.M. Rossi , Bologna, Italy , G. Majumder, K. Mazumdar, b , S. Braibant-Giacomelli , G. Singh , S. Nuzzo a,b 20 a a,b a,c , S.S. Chhibra 1 , M. Meneghelli , F.R. Cavallo a , L. Fiore , Politecnico di Bari a,b a,b, , D. Fasanella b a,b , A. Fahim a,b 22 , M. Maity , S. My , M. Mohammadi Najafabadi, S. Paktinat 19 , L. Silvestris 23 a,b , F. Primavera a – 28 – a,b 22 , G. Masetti a , D. Bonacorsi , A. Castro a , C. Calabria , A. Gurtu a,b , M. De Palma 1 , A. Fanfani 18 a,b a , S.M. Etesami , Universit`adi Bologna a a,c, 21 , A. Perrotta , M. Zeinali , G. Selvaggi a 24 , Universit`adi Bari , B. Marangelli a,c a a a,b , F. Fabbri , P. Capiluppi , L. Barbone a , F. Odorici , A.C. Benvenuti a,b a,b a , N. De Filippis a,b , G. Pugliese , M. Maggi a,c , L. Guiducci, S. Marcellini , M. Khakzad, A. Mohammadi , R. Travaglini a,b a,c a 21 a,b L. Brigliadori G.M. Dallavalle C. Grandi F.L. Navarria G. Siroli D. Creanza G. Maggi A. Pompili INFN Sezione di Bologna G. Abbiendi H. Arfaei, H.A. Bakhshiansohi Jafari Mehdiabadi, B. Safarzadeh INFN Sezione di Bari M. Abbrescia G.B. Mohanty, B. Parida, K. Sudhakar, N.Tata Wickramage Institute of Fundamental ResearchS. - Banerjee, HECR, S. Mumbai, Dugad India Institute for Research in Fundamental Sciences (IPM), Tehran, Iran A. Abdulsalam, R.K.L.M. Pant, Choudhury, P. Shukla D. Dutta,Tata S. Institute of Kailas, Fundamental Research V.T. - Aziz, EHEP, Kumar, S. Mumbai, Ganguly, M. India A.K. Guchait Mohanty Saha Institute of Nuclear Physics,S. Kolkata, Banerjee, India S.S. Bhattacharya, Sarkar S. Dutta, B.Bhabha Gomber, Atomic Research Sa. Centre, Jain, Mumbai, India Sh. Jain, R. Khurana, S.B. Beri, V.M.Z. Mehta, Bhatnagar, N. Nishu, N. L.K. Saini, Dhingra, A.University Sharma, of R. J. Delhi, Singh, Gupta, Delhi, S.P. India Singh S. M. Ahuja, B.C. Jindal, Choudhary, A. M. Kumar,V. A. Sharma, Kaur, Kumar, R.K. S. Shivpuri Malhotra, J.M. M. Naimuddin, Kohli, K. Ranjan, N. Beni, J. Molnar, J. Palinkas, Z.University Szillasi of Debrecen, Debrecen, Hungary J. Karancsi, P. Raics, Z.L. Trocsanyi, B.Panjab Ujvari University, Chandigarh, India Institute of Nuclear Research ATOMKI, Debrecen, Hungary JHEP09(2012)029 , , , , , , , , , , , , , 1 1 a a a 30 a,b a,b a,b a,b a,b a,b a,c a,c a, a, a,b, a 1 a, , Milano, b , L. Moroni , A. Ghezzi a , M. Tosi , S. Frosali 1 a , A. Tricomi , R. Carlin , T. Lomtadze a, 1 , M. Menichelli a,b , Napoli, Italy , M. Nespolo , O. Dogangun b a,b a, a,c , A.T. Serban a a,b , K. Kanishchev a,b , R.T. D’Agnolo , Universit`a di a,b a , P. Paolucci b a a,b a,b 1 , T. Tabarelli de Fatis , A. Tropiano a,b a a a,b, , D. Menasce , S. Gennai , E. Torassa 1 , E. Focardi a,b a,b , Catania, Italy , F. Ligabue , R. Potenza a,b, , Perugia, Italy , A. Rizzi b , Firenze, Italy , A. Branca a,b a b a b , P.G. Verdini , A. De Cosa a,b , S. Sala 1 , R. Castaldi a,b , G. Mantovani , A. Gozzelino 26 a , M. Merola 1 a, , P. Vitulo , Pavia, Italy , Scuola Normale Superiore di a,c a, b 27 b a,b , S. Taroni a,b a, , A.T. Meneguzzo a,b, a,b , G. Sguazzoni a,b a , S. Fiorendi , A. Kraan 1 , S. Costa a , F. Simonetto , A. Massironi a,b, a,b a,b , D. Bisello a,b , N. Redaelli , A. Venturi , F. Palmonari , P. Torre – 29 – , F. Fabbri, D. Piccolo , N. Cavallo 1 , S. Meola a 1 , Universit`adi Milano-Bicocca a,b a a,b , R. D’Alessandro , G. Broccolo 25 a,b a a, a a , F. Gasparini a,b, , A. Lucaroni a , S. Paoletti , Universit`a di Padova , A. Giassi a a,b a , M. Margoni a,c a,c , Universit`adi Catania , F. Palla , L. Lista , Universit`adi Perugia , Universit`adi Firenze , A. Martelli , L. Di Matteo a 1 a , Universit`adi Napoli ”Federico II” a , M. Chiorboli , P. Ronchese a a,b , Universit`adi Pavia a, , Universit`adi Pisa , S. Ragazzi , P. Bellan a,b a,b a a a 1 a,b , G. Tonelli , C. Riccardi , T. Boccali a,b , C. Civinini a a , A. Saha, A. Santocchia a, , L. Fo`a , U. Dosselli a,b a a,b , P. Lariccia a,b a,b , M. Meschini a,b a,b , Padova, Italy a,b c , I. Lazzizzera , F. De Guio , D. Pedrini , C.A. Carrillo Montoya 28 1 , A. Messineo a , A.O.M. Iorio , F. Fiori a, , G. Cappello , S.P. Ratti , V. Ciulli , G. Bagliesi , T. Dorigo , R. Tenchini a,b a 29 , R.A. Manzoni 26 , N. Pozzobon a a a , F. Romeo , P. Zotto , L. Fan`o a,b, a a a, a,b a,b a a, a,c , S. Gonzi a,b a,b , N. Bacchetta a a a,b , Pisa, Italy c Pisa P. Azzurri R. Dell’Orso L. Martini P. Spagnolo INFN Sezione di Perugia G.M. Bilei A. Nappi INFN Sezione di Pisa L. Perrozzi S. Vanini INFN Sezione di Pavia M. Gabusi INFN SezioneTrento (Trento) diP. Padova Azzi P. Checchia S. Lacaprara M. Paganoni INFN Sezione di Napoli S. Buontempo F. Fabozzi P. Fabbricatore, R. Musenich INFN Sezione diItaly Milano-Bicocca A. Benaglia S. Malvezzi INFN Laboratori Nazionali di Frascati,L. Frascati, Benussi, Italy S. Bianco, S. Colafranceschi INFN Sezione di Genova, Genova, Italy S. Albergo C. Tuve INFN Sezione di Firenze G. Barbagli E. Gallo INFN Sezione di Catania JHEP09(2012)029 , , , , , , , 1 1 1 a,b a,b a,b a,c a, a, a,b, , C. Botta , R. Sacchi a , F. Pandolfi , M. Grassi , C. Mariotti a,c , Roma, Italy a,b a,b b a,b , D. Montanino , M.M. Obertino 1 1 a, a,b, , C. Biino a,c , M. Ruspa , C. Fanelli , Universit`adel Piemonte a a,b b , G. Organtini a , Trieste, Italy , A. Graziano b a , M. Marone , M. Musich a,b a a,b , M. Arneodo a,b , A. Romero , M. Diemoz , L. Soffi 1 a a a,b , B. Gobbo , N. Demaria – 30 – , S. Nourbakhsh a,b, a,b a,b a,b , V. Monaco a,b , S. Argiro a,c , Universit`adi Torino , M. Sigamani , Universit`adi Trieste a , A. Potenza a a , Universit`adi Roma ”La Sapienza” , M. Costa , D. Del Re a a,b , F. Micheli a 1 a,b , A. Vilela Pereira a, , G. Della Ricca a a , Torino, Italy c a,b , R. Arcidiacono , S. Rahatlou a , M. Pelliccioni , R. Castello , F. Cavallari a,b , A. Staiano a a , P. Meridiani , F. Cossutti , G. Mazza, E. Migliore a,b a , A. Schizzi a a,b a a,b Centro de Investigacion y de EstudiosH. Avanzados del Castilla-Valdez, IPN, E. Mexico City, De Mexico R. Villasenor-Cendejas Maga˜naVillalba, La J. Mart´ınez-Ortega,A. S´anchez-Hern´andez,L.M. Cruz-Burelo, I. Heredia-deUniversidad La Iberoamericana, Cruz, Mexico City, R. Mexico S. Lopez-Fernandez, Carrillo Moreno, F. Vazquez Valencia Sungkyunkwan University, Suwon, Korea Y. Cho, Y. Choi, Y.K. Choi,Vilnius J. University, Goh, Vilnius, M.S. Lithuania Kim, B.M.J. Lee, Bilinskas, J. I. Lee, Grigelionis, S. M. Lee, Janulis, A. H. Juodagalvis Seo, I. Yu S. Choi, D. Gyun,E. B. Seo Hong, M. Jo, H.University Kim, of T.J. Seoul, Kim, Seoul, K.S. Korea M. Lee, Choi, D.H. S. Moon, Kang, S.K. H. Park, Kim, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu J.Y. Kim, Zero J. Kim, S.Konkuk Song University, Seoul, Korea H.Y. Jo Korea University, Seoul, Korea S.G. Heo, T.Y. Kim, S.K. Nam Kyungpook National University, Daegu, Korea S. Chang, J. Chung, D.H. Kim,Chonnam G.N. National Kim, University, Institute D.J. for Kong, UniverseKwangju, H. and Park, Korea Elementary Particles, S.R. Ro, D.C. Son INFN Sezione di Trieste S. Belforte A. Penzo Kangwon National University, Chunchon, Korea N. Amapane N. Cartiglia S. Maselli N. Pastrone A. Solano L. Barone E. Longo R. Paramatti INFN Sezione diOrientale Torino (Novara) INFN Sezione di Roma JHEP09(2012)029 , N. Lychkovskaya, V. Popov, 1 – 31 – , L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, 4 , J. Seixas, J. Varela, P. Vischia 1 , V. Savrin, A. Snigirev † G. Safronov, S. Semenov, V. Stolin,Moscow E. State Vlasov, University, A. Moscow, Zhokin Russia A. Belyaev, E.O. Boos, M. Kodolova, Dubinin I.L. Sarycheva Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, Institute for Nuclear Research,Yu. Moscow, Russia Andreev, A.V. Matveev, Dermenev, A. Pashenkov, S. D. Tlisov, Gninenko,Institute A. Toropin for N. Theoretical Golubev, andV. Experimental M. Physics, Epshteyn, Kirsanov, Moscow, Russia M. N. Erofeeva, Krasnikov, V. Gavrilov, M. Kossov S. Shmatov, V. Smirnov, A. Volodko,Petersburg A. Nuclear Zarubin Physics Institute,S. Gatchina (St Evstyukhin, V. Petersburg), Golovtsov,I. Y. Russia Smirnov, Ivanov, V. V. Sulimov, Kim, L. P. Uvarov, Levchenko, S. V. Vavilov, Murzin, A. Vorobyev, V. An. Oreshkin, Vorobyev N. Almeida, P.P. Bargassa, Musella, A. J. Pela David, P.Joint Faccioli, Institute P.G. for Ferreira Nuclear Parracho,I. Research, M. Dubna, Belotelov, Gallinaro, Russia P.G. Bunin, Kozlov, A. M. Lanev, Gavrilenko, A. I. Malakhov, Golutvin, P. Moisenz, V. V. Karjavin, Palichik, V. V. Perelygin, Konoplyanikov, M. Savina, Soltan Institute for NuclearH. Studies, Bialkowska, Warsaw, B. Poland Boimska, T.K. Frueboes, Romanowska-Rybinska, R. M. Gokieli, Szleper, M. G. G´orski,M. Kazana, Wrochna, K. P.Laborat´oriode Zalewski Nawrocki, F´ısicaExperimental Instrumenta¸c˜aoe de Lisboa, Part´ıculas, Portugal M.A. Shah, M. Shoaib Institute of Experimental Physics,Warsaw, Poland Faculty of Physics,G. University Brona, of M. Cwiok, Warsaw, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski University of Canterbury, Christchurch, NewA.J. Zealand Bell, P.H. Butler, R. Doesburg,National S. Centre Reucroft, for H. Silverwood Physics,M. Quaid-I-Azam University, Ahmad, Islamabad, M.I. Pakistan Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, H.A. Salazar Ibarguen Universidad Aut´onomade San Luis Potos´ı,E. San Casimiro Luis Linares, Potos´ı, Mexico A. Morelos Pineda,University M.A. of Reyes-Santos Auckland, Auckland, NewD. Zealand Krofcheck Benemerita Universidad Autonoma de Puebla, Puebla, Mexico JHEP09(2012)029 , 5 , V. Kachanov, D. Konstantinov, 1 , J. Milosevic 31 – 32 – , J.M. Vizan Garcia 32 , M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo, , M. Djordjevic, M. Ekmedzic, D. Krpic 33 31 Guida, M. Dobson, N. Dupont-Sagorin, A.M. Elliott-Peisert, Giffels, B. Frisch, D. W. Funk, Gigi, G.P. K. Georgiou, Govoni, Gill, D. S. Giordano, Gowdy,A. M. R. Hinzmann, Giunta, Guida, F. V. M. Glege, Innocente,P. Hansen, R. P. Gomez-Reino Janot, P. Lenzi, Garrido, Harris, K. C. Kaadze, C. E. Louren¸co, Hartl, T. Karavakis, J. K. M¨aki, M. Harvey, Kousouris, B. P. Malberti, Lecoq, Hegner, L. Malgeri, M. Mannelli, L. Masetti, I. Vila, R. Vilar Cortabitarte CERN, European Organization forD. Nuclear Research, Abbaneo, Geneva, E. Switzerland G. Auffray, Bianchi, G. P. Auzinger, Bloch,G. A. Cerminara, P. Baillon, T. Bocci, Christiansen, A. A.H. J.A. Bonato, Ball, Coarasa H. D. Perez, Breuker, D. Barney, K. D’Enterria, C. Bunkowski, A. Bernet T. De Camporesi, Roeck, S. Di Santander, Spain J.A. Brochero Cifuentes, I.J. Cabrillo,M. A. Felcini Calderon, S.H.A. Chuang, Lopez J. Virto, Duarte J. Campderros, Marco, R.T. Marco, Rodrigo, C. Martinez A.Y. Rivero, Rodr´ıguez-Marrero,A. F. Matorras, Ruiz-Jimeno, F.J. L. Munoz Sanchez, Scodellaro, M. Sobron Sanudo, C. Albajar, G. Codispoti, J.F. deUniversidad Troc´oniz de Oviedo, Oviedo,J. Spain Cuevas, J. Fernandez Menendez,J. S. Piedra Folgueras, Gomez I. Gonzalez Caballero, L.Instituto Lloret de Iglesias, de F´ısica Cantabria (IFCA), CSIC-Universidad de Cantabria, J. Flix, M.C. Fouz,M.I. P. Josa, Garcia-Abia, G. Merino, O. J. Gonzalez PuertaC. Pelayo, Lopez, Willmott I. Redondo, S. L. Goy Romero, J. Lopez, Santaolalla,Universidad M.S. J.M. Soares, Aut´onomade Hernandez, Madrid, Madrid, Spain Centronol´ogicas(CIEMAT), de Madrid, Spain M. Investigaciones Aguilar-Benitez, J.M. Alcaraz Energ´eticas Maestre, Chamizo P. Llatas,D. Arce, Medioambientales N. Dom´ınguez C. V´azquez, C. Colino, Battilana, Fernandez E. B. y Bedoya, Calvo, De J.P. M. La Ramos, Fern´andez Cerrada, Tec- Cruz, A. A. Ferrando, Delgado Peris, C. Diez Pardos, A. Korablev, V. Krychkine, V. Petrov,N. R. Ryutin, Tyurin, A. A. Sobol, Uzunian, L. A. Tourtchanovitch, S. Volkov Troshin, University of Belgrade,Sciences, Belgrade, Faculty Serbia ofP. Physics Adzic and Vinca Institute of Nuclear V. Andreev,S.V. M. Rusakov, A. Vinogradov Azarkin, I.State Research Dremin,Physics, Center M. Protvino, of Russia Kirakosyan, RussianI. A. Azhgirey, Federation, Leonidov, I. Institute Bayshev, G. for S. Mesyats, High Bitioukov, Energy V. Grishin P.N. Lebedev Physical Institute, Moscow, Russia JHEP09(2012)029 , , 46 41 , A. Thea, † , H. Topakli , J.R. Vlimant, 42 17 , S. Ozkorucuklu 45 , B. Tali 42 , O. Kaya 45 , D. Sunar Cerci , M. Rovere, H. Sakulin, F. Santanastasio, 44 35 – 33 – , C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, , B. Stieger, M. Takahashi, L. Tauscher 42 , M. Stoye, A. Tsirou, G.I. Veres 40 4 , S. Cerci 41 , W.D. Zeuner 37 , A. Polatoz, K. Sogut 43 , T. Rommerskirchen, C. Rovelli , D. Spiga, M. Spiropulu 34 , P. Nef, F. Nessi-Tedaldi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, 47 36 39 38 I.V. Akin, T. Aliev, B.A. Bilin, Ozpineci, S. M. Bilmis, Serin, R. M. Sever, Deniz,Bogazici U.E. H. Surat, University, Gamsizkan, Istanbul, A.M. M. Turkey Guler, Yalvac, E. K.M. Yildirim, Ocalan, M. Deliomeroglu, Zeyrek E.N. Sonmez G¨ulmez, B. Isildak, M. Kaya A. Adiguzel, M.N.G. Bakirci Gokbulut, I.K. Ozdemir, Hos, S. Ozturk E.E.L.N. Vergili, Kangal, M. Vergili G. Karapinar,Middle East A. Technical University, Kayis Physics Department, Topaksu, Ankara, G. Turkey Onengut, P. Bartalini, P.U. Chang, Grundler, Y.H. W.-S.E. Chang, Petrakou, Hou, X. Y.W. Shi, Y. J.G. Chang, Shiu, Hsiung,Cukurova Y.M. Y. University, Tzeng, K.Y. Adana, Chao, M. Turkey Kao, Wang K.F. Y.J. Chen, Lei, C. R.-S. Dietz, Lu, D. Majumder, National Central University, Chung-Li, Taiwan Y.H. Chang, K.H.D. Mekterovic, Chen, A.P. Singh, A. R. Volpe, Go, S.S.National Yu Taiwan C.M. University (NTU), Kuo, S.W. Taipei, Taiwan Li, W. Lin, Z.K. Liu, Y.J. Lu, L. Sala, A.K. Sanchez, A.K. Starodumov Theofilatos, D. Treille, C. Zurich, Urscheler, Switzerland R.Universit¨atZ¨urich, Wallny, H.A. Weber, L. Wehrli E. Aguilo, C. Amsler, V.Mejias, Chiochia, P. Otiougova, S. P. De Robmann, Visscher, H. C. Snoek, Favaro, S. M. Tupputi, Ivova Rikova, M. B. Verzetti Millan Institute for Particle Physics, ETHL. Zurich, B¨ani,P. Zurich, Bortignon, Switzerland G. M.A. Dissertori, M. Buchmann, Dittmar, B.W. M. J. D¨unser, Casal, Eugster, Lustermann, K. N. Freudenreich, A.C.C. C. Chanon, N¨ageli Grab, Marini, Z. P. Lecomte, P. Chen, Martinez A. Ruiz Deisher, del Arbol, N. Mohr, F. Moortgat, H.K. W¨ohri,S.D. Worm Paul Scherrer Institut, Villigen, Switzerland W. Bertl,H.C. K. Kaestli, Deiters, S.J. K¨onig,D. W. Sibille Kotlinski, Erdmann, U. Langenegger, K. F. Gabathuler, Meier, D. R. Renker, Horisberger, T. Rohe, Q. Ingram, T. Orimoto, L. Orsini,M. E. Piparo, Pimi¨a,D. Palencia G. Polese, Cortezon, L. E. Quertenmont,G. A. Perez, Racz, Rolandi A. W. Petrilli, Reece, J. A. RodriguesC. Pfeiffer, Antunes, Sch¨afer,C. M. Schwick, Pierini, I. Segoni,P. S. Sphicas Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold, M. Nguyen, JHEP09(2012)029 , 40 , K. Nirun- 37 , D.M. Raymond, S. Rogerson, 49 , A. Sparrow, A. Tapper, M. Vazquez † – 34 – , C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Cough- 48 , K.W. Bell, A. Belyaev 48 G. Landsberg, M.K.V. Luk, Tsang M. Narain, D. Nguyen,University of M. California, Segala, Davis, T. Davis,R. U.S.A. Sinthuprasith, Breedon, T. G. Speer, J. Breto, Conway, R. M. Conway, P.T. Calderon Cox, De J. Dolen, La R. Barca Erbacher, M. Sanchez, Gardner, S. R. Chauhan, Houtz, W. M. Ko, Chertok, A. Avetisyan, T. Bose, C.D. Fantasia, Sperka, A. L. Heister, Sulak J. St. John,Brown P. Lawson, University, Providence, D. Lazic, U.S.A. J.J. Rohlf, Alimena, S. Bhattacharya, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, Baylor University, Waco, U.S.A. K. Hatakeyama, H. Liu, T. Scarborough The University of Alabama, Tuscaloosa,C. U.S.A. Henderson, P. Rumerio Boston University, Boston, U.S.A. Acosta, T. Virdee, S. Wakefield, N. Wardle,Brunel T. University, Whyntie Uxbridge, United Kingdom M. Barrett, M.D. Chadwick, Leslie, W. J.E. Martin, Cole, I.D. Reid, P.R. P. Symonds, Hobson, L. A. Teodorescu, M. Khan, Turner P. Kyberd, D. Leggat, P. Dauncey, G. Davies, M.A. Della Guneratne Negra, Bryer, W. G.L. Ferguson, Hall, Lyons, J. A.-M. Z. Fulcher, D. Magnan, Hatherell,A. Futyan, J. J. A. Papageorgiou, Marrouche, Gilbert, Hays, B. M. G. Mathias,N. Pesaresi, Iles, Rompotis, R. K. M. A. Nandi, Rose, Jarvis, Petridis, J. M.J. G. Nash, Ryan, M. C. Karapostoli, A. Pioppi Seez, Nikitenko P. Sharp L. Basso lan, K. Harder, S. Harper,Smith, J. C.H. Jackson, Shepherd-Themistocleous, B.W. I.R. Kennedy, Tomalin, E. W.J. Olaiya,Imperial Womersley D. Petyt, College, B.C. London, Radburn- UnitedR. Kingdom Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, University of Bristol, Bristol, UnitedF. Kingdom Bostock, J.J. Brooke,M. Grimes, E. G.P. Clement, Heath, D.pong, H.F. A. Cussans, Heath, Poll, L. H. S. Kreczko, Flacher, Senkin, S. V.J. R. Metson,Rutherford Smith, Frazier, D.M. Appleton T. J. Newbold Williams Laboratory, Goldstein, Didcot, United Kingdom K. Cankocak National ScientificKharkov, Center, Ukraine Kharkov InstituteL. Levchuk of Physics and Technology, Istanbul Technical University, Istanbul, Turkey JHEP09(2012)029 , V. Krutelyov, S. Lowette, 1 , J. Tucker, V. Valuev, M. Weber † , F. A. W¨urthwein, Yagil, J. Yoo 51 – 35 – , H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, 50 Fairfield University, Fairfield, U.S.A. D. Winn Fermi National Accelerator Laboratory, Batavia,S. U.S.A. Abdullin, M.P.C. Bhat, Albrow, I. Bloch, J. K. Burkett, Anderson, J.N. Butler, L.A.T. V. Chetluru, Bauerdick, H.W.K. A. Cheung, F. Beretvas, Chlebana, J. Berryhill, Cornell University, Ithaca, U.S.A. L. Agostino, J. Alexander,kins, A. Chatterjee, A. N. Khukhunaishvili, Eggert,A. L.K. B. Ryd, Gibbons, Kreis, B. E. N. Heltsley, Salvati,L. W. W. Mirman, Winstrom, Hop- P. Sun, G. Wittich W.D. Nicolas Teo, Kaufman, J. Thom, J.R. J. Patterson, Thompson, J. Vaughan, Y. Weng, I. Vorobiev University of Colorado atJ.P. Boulder, Cumalat, Boulder, U.S.A. B.R. Drell,Lopez, J.G. C.J. Smith, Edelmaier, K. Stenson, W.T. K.A. Ford, Ulmer, A. S.R. Wagner Gaz, B. Heyburn, E. Luiggi A. Apresyan, A. Bornheim, Y. Chen,H.B. E. Di Newman, Marco, J. C. Duarte, M. Rogan,R.Y. Gataullin, Y. Zhu V. Ma, A. Timciuc, Mott, P. Traczyk,Carnegie J. Mellon Veverka, University, Pittsburgh, R. U.S.A. B. Wilkinson, Akgun, Y. R. Carroll, Yang, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, D. Barge, R. Bellan,J. C. Incandela, Campagnari, C. M. Justus, D’Alfonso, P.N. T. Kalavase, Mccoll, Danielson, S.A. V. K. Koay, Pavlunin, D. Flowers, F.C. Kovalskyi P. Rebassoo, Geffert, West J. Ribnik, J. Richman, R.California Rossin, Institute D. of Stuart, Technology, W. Pasadena, To, U.S.A. W. Andrews, J.G.R. Branson, Kelley, M. G.B. Lebourgeois, J. Cerati,C. Letts, Palmer, I. S. G. Macneill, Petrucciani, Cittolin, B. M. Mangano,M. Pieri, D. J. R. Tadel, Y. Ranieri, Muelmenstaedt, Evans, M. S. Tu, A. Sani, F. Padhi, V. Vartak, Golf, Sharma, S.University S. Wasserbaech of A. Simon, California, E. Holzner, Sudano, Santa Barbara, Santa Barbara, U.S.A. J. Babb, R.G.Y. Clare, Jeng M.E.S. Dinardo, Sumowidagdo, R. J. Wilken, S. Ellison, Wimpenny University of J.W. California, Gary, San F. Diego, La Giordano, Jolla, U.S.A. G. Hanson, J. Smith, M. Squires, M. Tripathi,University R. of Vasquez Sierra California, LosV. Angeles, Andreev, Los D. Angeles, Cline, U.S.A. M. R. Ignatenko, Cousins, C. J. Plager, Duris, G. S. Rakness, Erhan,University P. P. of Schlein Everaerts, California, C. Riverside, Farrell, Riverside, J. U.S.A. Hauser, A. Kopecky, R. Lander, O. Mall, T. Miceli, R. Nelson, D. Pellett, B. Rutherford, M. Searle, JHEP09(2012)029 – 36 – , K. Chung, W. Clarida, F. Duru, S. Griffiths, C.K. Lae, 54 , A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, 55 , C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton- 52 , G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, P. Sellers, 53 B.A. Barnett, B. Blumenfeld, S. Bolognesi,G. D. Hu, Fehling, P. G. Maksimovic, Giurgiu, S. A.V. Gritsan, Rappoccio, Z.J. M. Guo, The Swartz, University A. of Whitbeck Kansas, Lawrence,P. U.S.A. Baringer, A. Bean,V. Radicci, G. S. Benelli, Sanders, O. R. Stringer, Grachov, G. R.P. Tinti, Kenny J.S. Iii, Wood, V. M. Zhukova Murray, D. Noonan, U. Akgun, E.A. Albayrak, B. Bilki J.-P. Merlo, H. Mermerkaya E. Norbeck, J. Olson, Y. Onel, F.Johns Ozok, Hopkins S. University, Sen, Baltimore, E. U.S.A. Tiras, J. Wetzel, T. Yetkin, K. Yi M.R. Adams, I.M. Anghel, L.R. Apanasevich, Cavanaugh, Y. C. Bai, Dragoiu, V.E.D.J. Bazterra, O. Hofman, R.R. Evdokimov, Betts, S. E.J. J. Khalatyan,N. Garcia-Solis, Callner, F. Varelas L. Lacroix, Gauthier, M. C.E. Malek, Gerber, C.The O’Brien, University C. of Silkworth, Iowa, D. Iowa City, Strom, U.S.A. Florida Institute of Technology, Melbourne,M.M. U.S.A. Baarmand, B. Dorney, M. Hohlmann, H.University Kalakhety, of I. Vodopiyanov Illinois at Chicago (UIC), Chicago, U.S.A. V. Gaultney, L.M. Lebolo, S. Linn, P.Florida Markowitz, G. State Martinez, University, Tallahassee, J.L. U.S.A. Rodriguez T. Adams, A.S. Hagopian, Askew, V. J.M. Hagopian, Weinberg Bochenek, M. J. Jenkins, K.F. Chen, Johnson, B. H. Diamond, Prosper, S.V. V. Veeraraghavan, Gleyzer, J. Haas, B. Kim, J. Konigsberg, A.P. Korytov, A. Milenovic Kropivnitskaya, T. Kypreos, J.F.N. Low, Skhirtladze, K. M. Matchev, Snowball, J. Yelton, M.Florida Zakaria International University, Miami, U.S.A. L. Uplegger, E.W. Vaandering,J.C. R. Yun Vidal, J. Whitmore, W.University of Wu, Florida, F. Gainesville, Yang, U.S.A. F.D. Yumiceva, Acosta, P. Avery, D.D. Bourilkov, Dobur, M. A. Drozdetskiy, Chen, R.D. S. Field, Das, M. M. Fisher, De Y. Fu, Gruttola, I.K. G.P. Furic, Di J. Giovanni, Gartner, J. Hugon, lon, R.M. Harris,B. J. Kilminster, Hirschauer, B. B.J. Lykken, Hooberman, K. Klima, Maeshima, J.M. S. S. Marraffino,S. S. Jindariani, Maruyama, Kunori, Mrenna, D. M. Mason, P. Y. S. Johnson, McBride,Kennedy, K. Musienko S. Mishra, Kwan, U. Sharma, Joshi, W.J. D. Spalding, L. Lincoln, Spiegel, P. R. Tan, L. Lipton, Taylor, S. Tkaczyk, L. N.V. Tran, Lueking, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, A. Hahn, J. Han- JHEP09(2012)029 – 37 – M. Schmitt, S. Stoynev, M. Velasco, S.University Won of Notre Dame, NotreL. Dame, Antonelli, U.S.A. D. Berry,K. A. Brinkerhoff, Lannon, M. W. Hildreth,J. Slaunwhite, C. Luo, N. Jessop, Valls, D.J. S. J. Warchol, Karmgard, M. Lynch, J. Wayne, M. Kolb, N. Wolf, J. Marinelli, Ziegler D.M. Morse, T. Pearson, R. Ruchti, G. Alverson, E.J. Barberis, Zhang D. Baumgartel, M. Chasco,Northwestern University, J. Evanston, U.S.A. Haley, D.A. Trocino, Anastassov, A. D. Kubik, N. Wood, Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, State University of New YorkU. at Baur, Buffalo, A. Buffalo, Godshalk,K. U.S.A. Smith I. Iashvili, S. Jain,Northeastern A. University, Kharchilava, Boston, A. U.S.A. Kumar, S.P. Shipkowski, University of Mississippi, University, U.S.A. L.M. Cremaldi, R. Kroeger, L. Perera,University R. of Rahmat, D.A. Nebraska-Lincoln, Sanders Lincoln, U.S.A. E. Avdeeva, K. Bloom,J. S. Keller, Bose, I. J. Kravchenko, J. Butt, Lazo-Flores, D.R. H. Claes, Malbouisson, A. S. Dominguez, Malik, M. G.R. Eads, Snow P. Jindal, University of Minnesota, Minneapolis, U.S.A. S.I. Cooper, P. Cushman,S.C. B. Dahmes, Kao, A. De K.M. Benedetti, Sasseville, Klapoetke, G. A. Franzoni, Singovsky, A. Y. N. Gude, Tambe, Kubota, J. J. Turkewitz Haupt, J. Mans, N. Pastika, V. Rekovic, R. Rusack, G. Bauer, J.Ceballos, Bendavid, M. W. Goncharov, Busza, K.A.T. E. Hahn, Ma, Butz, S. Y. Nahn, Kim, I.A. C.F. K. M. Cali, Paus, St¨ockli, Sumorok, D. Klute, M. K. Ralph, Y.-J. Sung, C. Chan, D. Lee,M. Roland, Velicanu, V. Yang, W. G. E.A. Y. Roland, Wenger, Dutta, Li, R. Yilmaz, M. P.D. Wolf, G. A.S. Rudolph, B. Luckey, Yoon, G.S.F. Gomez Wyslouch, M. Stephans, S. Zanetti Xie, University of Maryland, College Park,A. U.S.A. Baden, M. Boutemeur,M. B. Kirn, Calvert, S.C. T. Eno, Kolberg,A. J.A. Y. Skuja, Gomez, J. Lu, N.J. Temple, M. M.B. Hadley, Marionneau, R.G. Tonjes, S.C. Kellogg, A.C.Massachusetts Tonwar, Institute E. Mignerey, Twedt of A. Technology, Peterman, Cambridge, K. U.S.A. Rossato, A.F. Barfuss, T. Bolton,S. I. Shrestha, Chakaberia, I. A. Svintradze Ivanov, S.Lawrence Khalil, Livermore M. National Makouski, Laboratory, Y. Livermore,J. Maravin, U.S.A. Gronberg, D. Lange, D. Wright Kansas State University, Manhattan, U.S.A. JHEP09(2012)029 , V. Khotilovich, R. Montalvo, I. Os- 56 – 38 – G. Cerizza, M. Hollingsworth, S. Spanier, Z.C.Texas A&M Yang, A. University, York College Station,R. U.S.A. Eusebi, W. Flanagan,ipenkov, Y. J. Pakhotin, Gilmore, A. T.A. Perloff, Tatarinov, J. Kamon D. Roe, Toback A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, gan, D. Ferencek,S. Y. Panwalkar, Gershtein, M. Park, R. R.C. Gray, Patel, Seitz, E. A. S. Halkiadakis, Richards, Somalwar, J. R. D. Robles, Stone, Hidas, S. K.University Thomas of Rose, D. S. Tennessee, Hits, Knoxville, Salur, U.S.A. A. S. Schnetzer, Lath, The Rockefeller University, New York,A. U.S.A. Bhatti, R. Ciesielski, L. Demortier,Rutgers, K. Goulianos, the G. State Lungu, University S. ofS. Malik, New Arora, C. Jersey, A. Mesropian Piscataway, Barker, U.S.A. J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Dug- R. Redjimi, J. Roberts, J. Zabel University of Rochester, Rochester, U.S.A. B. Betchart, A. Bodek,A. Garcia-Bellido, Y.S. P. Chung, Goldenzweig, Y. R. Gotra,D. Covarelli, J. Vishnevskiy, Han, P. M. A. de Zielinski Harel, Barbaro, S. Korjenevski, R. D.C. Demina, Miner, Y. Eshaq, Purdue University Calumet, Hammond, U.S.A. S. Guragain, N. Parashar Rice University, Houston, U.S.A. A. Adair, C. Boulahouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, Purdue University, West Lafayette, U.S.A. E. Alagoz, V.E. Barnes, D.Z. Benedetti, Hu, G. Bolla, M. D.P. Jones, Bortoletto, Merkel, M. O. D.H. De Miller, Koybasi, Mattia,Marono, N. A. M. H.D. Neumeister, Everett, Yoo, Kress, I. J. A.T. Zablocki, Shipsey, Y. D. Laasanen, Zheng Silvers, N. A. Leonardo, Svyatkovskiy, M. V. Vidal Maroussov, P. Pirou´e,X. Quan, A. Raval, H. Saka, D.University Stickland, of C. Puerto Tully, J.S. Rico, Werner, Mayaguez,J.G. A. U.S.A. Zuranski Acosta, X.T.A. Zatserklyaniy Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, B. Bylsma, L.S. Durkin, C.M. Hill, Rodenburg, R. C. Hughes, Vuosalo, G. P. Killewald, Williams, K. B.L.Princeton Kotov, Winer University, T.Y. Princeton, Ling, U.S.A. D. Puigh, N. Adam, E. Berry,E. P. Elmer, Laird, D. D. Gerbaudo, Lopes V. Pegna, Halyo, P. P. Lujan, Hebda, J. D. Hegeman, Marlow, A. T. Hunt, Medvedeva, M. Mooney, J. Olsen, The Ohio State University, Columbus, U.S.A. JHEP09(2012)029 – 39 – Also at Suez CanalAlso University, Suez, at Egypt Cairo University, Cairo,Also Egypt at British University, Cairo,Also Egypt at Fayoum University, El-Fayoum, Egypt Also at CERN, EuropeanAlso Organization at for National Nuclear Institute Research,Also of Geneva, Switzerland at Chemical Universidade Physics Federal and do Biophysics,Also ABC, Tallinn, at Estonia Santo California Andre, Institute Brazil Also of at Technology, Pasadena, Laboratoire U.S.A. Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France Deceased Also at Tata Institute ofNow Fundamental at Research King - Abdulaziz HECR,Also University, Mumbai, Jeddah, at India Saudi University Arabia of Visva-Bharati,Also Santiniketan, at India Sharif University ofAlso Technology, at Tehran, Isfahan Iran University ofAlso Technology, at Isfahan, Shiraz Iran University, Shiraz, Iran Also at Universit´ede Haute-Alsace, Mulhouse,Now France at Joint Institute forAlso Nuclear at Research, Moscow Dubna, State Russia University,Also Moscow, at Russia Brandenburg University ofAlso Technology, at Cottbus, Institute Germany of University,Also Nuclear Budapest, at Research Hungary ATOMKI, E¨otv¨osLor´and Debrecen, Hungary Now at Ain Shams University,Also Cairo, at Egypt Soltan Institute for Nuclear Studies, Warsaw, Poland : † 6: 7: 8: 9: 1: 2: 3: 4: 5: 18: 19: 20: 21: 22: 23: 12: 13: 14: 15: 16: 17: 10: 11: J. Klukas, A.G.A. Lanaro, Pierro, C. I. Lazaridis, Ross, A. J. Savin, Leonard, W.H. Smith, R. J. Loveless, Swanson A. Mohapatra, I. Ojalvo, S. Gollapinni, R. Harr,A. Sakharov P.E. Karchin, C. KottachchiUniversity Kankanamge of Don, Wisconsin, P. Madison, Lamichhane, U.S.A. M. Anderson, M. Bachtis,L. D. Gray, Belknap, K.S. L. Grogg, Borrello, M. D. Grothe, Carlsmith, R. M. Hall-Wilton, Cepeda, M. S. Herndon, Dasu, A. Herv´e,P. Klabbers, University of Virginia, Charlottesville, U.S.A. M.W. Arenton, M.A. Ledovskoy, Balazs, C. Lin, S. C. Neu, Boutle, J.Wayne Wood, State B. R. University, Detroit, Yohay Cox, U.S.A. B. Francis, J. Goodell, R. Hirosky, N. Akchurin, J. Damgov, P.R.Y. Dudero, Roh, C. I. Jeong, Volobouev K. Kovitanggoon, S.W.Vanderbilt Lee, University, Nashville, T. U.S.A. Libeiro, E. Appelt, D. Engh,A. Melo, C. P. Florez, Sheldon, S. B. Snook, Greene, S. A. Tuo, Gurrola, J. Velkovska W. Johns, P. Kurt, C. Maguire, Texas Tech University, Lubbock, U.S.A. JHEP09(2012)029 – 40 – Belgrade, Serbia Southampton, United Kingdom Islamic Azad University, Teheran, Iran Also at University of Belgrade, Faculty of Physics andAlso Vinca at Institute Argonne of National NuclearAlso Laboratory, Sciences, Argonne, at U.S.A. Erzincan University, Erzincan,Also Turkey at Kyungpook National University, Daegu, Korea Also at School of Physics and Astronomy, University ofAlso Southampton, at INFN SezioneAlso di at Perugia; Universit`adi University Perugia, of Perugia, Sydney,Also Italy Sydney, at Australia Utah Valley University,Also Orem, at U.S.A. Institute for Nuclear Research, Moscow, Russia Also at Adiyaman University, Adiyaman,Also Turkey at The University ofAlso Iowa, at Iowa Mersin City, University, U.S.A. Mersin,Also Turkey at Kafkas University, Kars,Also Turkey at Suleyman DemirelAlso University, Isparta, at Turkey Ege University, Izmir, Turkey Also at University of Athens,Also Athens, at Greece Rutherford AppletonAlso Laboratory, Didcot, at United The Kingdom University ofAlso Kansas, at Lawrence, Paul U.S.A. Scherrer Institut,Also Villigen, at Switzerland Institute forAlso Theoretical at and Gaziosmanpasa Experimental University, Physics, Tokat, Moscow, Turkey Russia Also at University of Bucharest,Also Bucuresti-Magurele, at Romania Faculty of PhysicsAlso of at University University of of Belgrade, Florida,Also Belgrade, Gainesville, at Serbia U.S.A. University of California,Also Los at Angeles, Scuola Los Normale Angeles,Also e U.S.A. at Sezione INFN dell’ Sezione INFN, di Pisa, Roma; Italy Universit`adi Roma ”La Sapienza”, Roma, Italy Also at Facolt`aIngegneria Universit`adi Roma, Roma,Also Italy at Universit`adella Basilicata, Potenza,Also Italy at Universit`adegli Studi GuglielmoAlso Marconi, at Roma, Laboratori Italy NazionaliAlso di at Legnaro Universit`adegli dell’ studi INFN, di Legnaro, Siena, Italy Siena, Italy Also at Plasma Physics Research Center, Science and Research Branch, 53: 54: 55: 56: 48: 49: 50: 51: 52: 42: 43: 44: 45: 46: 47: 36: 37: 38: 39: 40: 41: 30: 31: 32: 33: 34: 35: 25: 26: 27: 28: 29: 24: