A Lightweight and High Performance Remote Procedure Call Framework for Cross Platform Communication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Remote Procedure Calls
Lectures on distributed systems Remote Procedure Calls Paul Krzyzanowski Introduction, or what’s wrong with sockets? OCKETS are a fundamental part of client-server networking. They provide a S relatively easy mechanism for a program to establish a connection to another program, either on a remote or local machine and send messages back and forth (we can even use read and write system calls). This interface, however, forces us to design our distributed applications using a read/write (input/output) inter- face which is not how we generally design non-distributed applications. In design- ing centralized applications, the procedure call is usually the standard interface model. If we want to make distributed computing look like centralized comput- ing, input-output-based communications is not the way to accomplish this. In 1984, Birrell and Nelson devised a mechanism to allow programs to call procedures on other machines. A process on machine A can call a procedure on machine B. The process on A is suspended and execution continues on B. When B returns, the return value is passed to A and A continues execution. This mechanism is called the Remote Procedure Call (RPC). To the programmer, the goal is that it should appear as if a normal procedure call is taking place. Obvi- ously, a remote procedure call is different from a local one in the underlying implementation. Steps in a remote procedure call Clearly, there is no architectural support for making remote procedure calls. A local procedure call generally involves placing the calling parameters on the stack and executing some form of a call instruction to the address of the proce- dure. -
Distributed Objects in C
Rochester Institute of Technology RIT Scholar Works Theses 2006 Distributed Objects in C# Xiaoyun Xie Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Xie, Xiaoyun, "Distributed Objects in C#" (2006). Thesis. Rochester Institute of Technology. Accessed from This Master's Project is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Rochester Institute of Technology Department of Computer Science Master of Science Project Distributed Objects System in C# Submitted By: Xie, Xiaoyun (Sherry) Date: February 2004 Chairman: Dr. Axel T. Schreiner Reader: Dr. Hans-Peter Bischof Observer: Dr. James Heliotis 2 ABSTRACT Today more and more programs run over a collection of autonomous computers linked by a network and are designed to produce an integrated computing facility. Java Distributed Objects (JDO) proposed by Dr. Axel T. Schreiner [1] builds an infrastructure which allows distributed program components to communicate over a network in a transparent, reliable, efficient, and generic way. JDO was originally intended as a teaching device to assess design parameters for distributed objects. This project focuses on porting JDO, which is implemented in Java on Sun’s JDK, to C# on Microsoft’s .NET. On one hand, it builds an infrastructure in C# that simplifies the construction of distributed programs by hiding the distributed nature of remote objects. On the other hand, it generates insights into the differences between two platforms, namely, Java on Sun and C# on .NET, in the distributed objects area. -
RSS Version History
RRSSSS -- VVEERRSSIIOONN HHIISSTTOORRYY http://www.tutorialspoint.com/rss/rss-version-history.htm Copyright © tutorialspoint.com RSS was first invented by Netscape. They wanted to use an XML format to distribute news, stories, and information. Netscape refined the version of RSS and then dropped it. Later Userland Software started controlling RSS specifications and releasing newer RSS versions. They continued development of their own version of RSS and eventually UserLand released RSS v2. RSS has been released in many different versions. 12/27/97 - Dave Winer at Userland developed scriptingNews. RSS was born. 3/15/99 - Netscape developed RSS 0.90 whichsupportedscriptingNews. This was simply XML with an RDF Header and it was used for my.netscape.com. 6/15/99 - Dave Winer at UserLand develops scriptingNews 2.0b1, which included Netscape's RSS 0.90 features also. 7/10/99 - Netscape developed RSS 0.91. In this version they removed the RDF header, but included most features from scriptingNews 2.0b1. 7/28/99 - UserLand deprecated scriptingNews formats and adopted only RSS 0.91. Netscape stops their RSS development. 6/4/00 - UserLand releases the official RSS 0.91 specification. 8/14/00 - A group led by Rael Dornfest at O'Reilly, developed RSS 1.0. This format uses RDF and namespaces. This version is often confused as being a new version of 0.91, but this is a completely new format with no ties to RSS 0.91 12/25/00 - Dave Winer at UserLand develops RSS 0.92, which is 0.91 with optional elements. 04/20/01 - RSS0.93 was discussed but never deployed. -
More Efficient Serialization and RMI for Java
To appear in: Concurrency: Practice & Experience, Vol. 11, 1999. More Ecient Serialization and RMI for Java Michael Philippsen, Bernhard Haumacher, and Christian Nester Computer Science Department, University of Karlsruhe Am Fasanengarten 5, 76128 Karlsruhe, Germany [phlippjhaumajnester]@ira.u ka.de http://wwwipd.ira.uka.de/JavaPa rty/ Abstract. In current Java implementations, Remote Metho d Invo ca- tion RMI is to o slow, esp ecially for high p erformance computing. RMI is designed for wide-area and high-latency networks, it is based on a slow ob ject serialization, and it do es not supp ort high-p erformance commu- nication networks. The pap er demonstrates that a much faster drop-in RMI and an ecient drop-in serialization can b e designed and implemented completely in Java without any native co de. Moreover, the re-designed RMI supp orts non- TCP/IP communication networks, even with heterogeneous transp ort proto cols. We demonstrate that for high p erformance computing some of the ocial serialization's generality can and should b e traded for sp eed. Asaby-pro duct, a b enchmark collection for RMI is presented. On PCs connected through Ethernet, the b etter serialization and the improved RMI save a median of 45 maximum of 71 of the runtime for some set of arguments. On our Myrinet-based ParaStation network a cluster of DEC Alphas wesave a median of 85 maximum of 96, compared to standard RMI, standard serialization, and Fast Ethernet; a remote metho d invo cation runs as fast as 80 s round trip time, compared to ab out 1.5 ms. -
Remote Procedure Call (RPC)
Remote Procedure Call (RPC) RPC – RMI - Web Services 1 Complexity of the distributed applications . The programming of distributed applications is difficult. In addition to the usual tasks, programmers who build clients and servers must deal with the complex issues of communication. Although many of the needed functions are supplied by a standard API such as the socket interface, the socket calls require the programmer to specify many low level details as names ,addresses,protocols and ports. Moreover, asinchronous communications models are complex to implement. Distributed implementations tend to use the same standard API (e.g.,the socket interface). As a consequence most of the detailed code found in one program is replicated in others RPC – RMI - Web Services 2 . For example, all client programs that use a connection oriented transport must create a socket, specify the server’s endpoint address, open a connection to the server, send requests,receive responses and close the connection when interaction is complete. Tools (software that generates all or part of a computer program) have been created to construct clients and servers. Tools cannot eliminate all programming: a programmer must supply the code that perform the computation for the particular service. However, a tool can handle the communication details. As a result the code contains fever bugs. RPC – RMI - Web Services 3 . RPC = Remote Procedure Call . The basic model has been proposed by Birrell e Nelson in 1984. The essence of this technique is to allow programs on different machines to interact using simple procedure call/return semantics, just as if the two programs were in the same computer . -
Inter Process Communication with Message Passing
Operating systems (vimia219) Collaboration of Tasks Tamás Kovácsházy, PhD 13rd Topic Inter Process Communication with Message Passing Budapest University of Technology and Economics Department of Measurement and Information Systems Looking back, communication solutions . Using shared memory(RAM or PRAM model): o Among threads running in the context of a process (shared memory of the process) . Messages: o No shared memory • Among processes running inside an operating system • Distributed system (network communication) o Microkernel based operating system . Inter Process Communication, IPC © BME-MIT 2014, All Rights Reserved 2. lap Messages . Different from the same word used in computer networks o We consider a more generic notion of message . Message passing . For example: o System call o TCP/IP connection (TCP) or message (UDP) for internal (localhost) or external communication (among machines) . Most cases they are implemented as OS API function/method calls resulting a system call . The operating system implements them by its services © BME-MIT 2014, All Rights Reserved 3. lap Some notes . Semaphore, Critical section object, and Mutex are also implemented by the OS and handled by system calls o Threads running in the context of a process communicate using shared memory (fast, low resource utilization) o Mutual exclusion and synchronization are solved by messages (using system calls). o It has some overhead: • Experiments: Lockless programming, transactional memory etc. • There is no good solution, but we can pick a better one than -
History Contents
RSS - Wikipedia, the free encyclopedia Page 1 of 6 RSS From Wikipedia, the free encyclopedia (Redirected from RSS feeds) RSS (most commonly expanded as Really Simple RSS Syndication ) is a family of web feed formats used to publish frequently updated works—such as blog entries, news headlines, audio, and video—in a standardized format. [2] An RSS document (which is called a "feed", "web feed", [3] or "channel") includes full or summarized text, plus metadata such as publishing dates and authorship. Web feeds benefit publishers by letting them syndicate content automatically. They benefit readers who want to subscribe to timely updates The RSS logo from favored websites or to aggregate feeds from many sites into one place. RSS feeds can be read Filename .rss, .xml using software called an "RSS reader", "feed extension reader", or "aggregator", which can be web-based, application/rss+xml desktop-based, or mobile-device-based. A Internet standardized XML file format allows the media type (Registration Being information to be published once and viewed by Prepared) [1] many different programs. The user subscribes to a feed by entering into the reader the feed's URI or Type of Web syndication by clicking an RSS icon in a web browser that format initiates the subscription process. The RSS reader Extended XML checks the user's subscribed feeds regularly for from new work, downloads any updates that it finds, and provides a user interface to monitor and read the feeds. RSS formats are specified using XML, a generic specification for the creation of data formats. Although RSS formats have evolved from as early as March 1999, [4] it was between 2005 and 2006 when RSS gained widespread use, and the (" ") icon was decided upon by several major Web browsers. -
CSE 486/586 Distributed Systems Remote Procedure Call Recall?
Recall? App CSE 486/586 Distributed Systems Remote Procedure Call Socket API TCP UDP OS Steve Ko IP Computer Sciences and Engineering University at Buffalo Device Drivers Network Interface CSE 486/586 CSE 486/586 2 Socket API What’s Wrong with Socket API? Server • Low-level read/write socket() • Communication oriented • Same sequence of calls, repeated many times bind() • Etc, etc… Client listen() • Not programmer friendly socket() establish accept() connection connect() block send request write() read() process request send response write() read() CSE 486/586 3 CSE 486/586 4 Another Abstraction RPC • RPC (Remote Procedure Call) • Client • Server – Goal: it should appear that the programmer is calling a local function int main (…) … – Mechanism to enable function calls between different { processes – First proposed in the 80’s … void rpc_call(…) { • Examples rpc_call(…); … – Sun RPC … } – Java RMI – CORBA } • Other examples that borrow the idea … – XML-RPC – Android Bound Services with AIDL – Google Protocol Buffers CSE 486/586 5 CSE 486/586 6 C 1 Local Procedure Call Remote Procedure Call • E.g., x = local_call(“str”); • Give an illusion of doing a local call • The compiler generates coDe to transfer necessary • Closer to the programmers things to local_call – Language-level construct, not OS-level support – Push the parameters to the stack • What are some of the challenges? – Call local_call – How do you know that there are remote calls available? • The compiler also generates coDe to execute the – How do you pass the parameters? local call. – How do you find the correct server process? – Assigns registers – How do you get the return value? – AdJust stack pointers – Saves the return value – Calls the return instruction CSE 486/586 7 CSE 486/586 8 Stub, Marshalling, & Unmarshalling RPC Process • Stub functions: local interface to make it appear that the call is local. -
Remote Procedure Call Protocol
Remote Procedure Call Protocol Batholomew wish his killdees detains inaccessibly or swaggeringly after Morris rival and screw sartorially, scotopic and lipped. Juanita synthesizes her illuminist ruddily, detoxicant and odious. Toneless Rusty recommence irruptively. Access control to a procedure call machine boundaries has been performed by the major version number represented by procedure call protocol The client can custom this proxy or façade as though we actually implemented these interfaces, although one actually delegates the invocation to the implementation. In dust, an RPC server uses a standard HTTP server on several specific endpoint. The server side is simpler than the client. They provide remote objects to an email below illustrates one final piece to remote procedure call protocol does in a call is allowed to you can infer that can use. You should charge a copy of this. There now be an led even though the offspring was accepted. Determine those data types of fit procedure calling arguments and the result argument. TODO: we pull review the class names and whatnot in color here. IP address of the server that has responded. Because of transport independence, the RPC protocol does he attach specific semantics to three remote procedures or their execution requirements. IP where our office site is hosted. That gross, can a malicious host yeah a message an retransmit it at a hideous time? Rpc calls do a server, or rejected due to do this does a remote procedure parameters as a given server in this strategy for email below illustrates an office with call protocol stacks as this. -
Podcasting and Copyright: the Mpi Act of Regulation on New Communication Technologies Edward L
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Santa Clara University School of Law Santa Clara High Technology Law Journal Volume 22 | Issue 2 Article 1 2006 Podcasting and Copyright: The mpI act of Regulation on New Communication Technologies Edward L. Carter Scott unL t Follow this and additional works at: http://digitalcommons.law.scu.edu/chtlj Part of the Law Commons Recommended Citation Edward L. Carter and Scott unL t, Podcasting and Copyright: The Impact of Regulation on New Communication Technologies, 22 Santa Clara High Tech. L.J. 187 (2005). Available at: http://digitalcommons.law.scu.edu/chtlj/vol22/iss2/1 This Article is brought to you for free and open access by the Journals at Santa Clara Law Digital Commons. It has been accepted for inclusion in Santa Clara High Technology Law Journal by an authorized administrator of Santa Clara Law Digital Commons. For more information, please contact [email protected]. ARTICLES PODCASTING AND COPYRIGHT: THE IMPACT OF REGULATION ON NEW COMMUNICATION TECHNOLOGIES Edward L. Cartert Scott Lunttt ABSTRACT With the relative democratization of broadcast communication brought about by the new media technologies of podcasting and Internet broadcasting, new questions have arisen regarding appropriate legal standards for regulatory efforts. In particular, Internet broadcasters and podcasters collide with licensing agencies responsible for implementing U.S. and foreign copyright law. Media convergence has caused confusion amongst policymakers, industry professionals and the public with respect to the application of traditional copyright law to these new technologies. This article explores how congressional legislation and federal court jurisprudence, combined with the efforts of private licensing agencies such as ASCAP, BMI and SoundExchange, impact the t Assistant professor of communications, Brigham Young University; ID., Brigham Young University, 2003; M.S. -
Cloud Computing Bible
Barrie Sosinsky Cloud Computing Bible Published by Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana Published by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN: 978-0-470-90356-8 Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011, fax 201-748-6008, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. -
A Fully In-Browser Client and Server Web Application Debug and Test Environment
LIBERATED: A fully in-browser client and server web application debug and test environment Derrell Lipman University of Massachusetts Lowell Abstract ging and testing the entire application, both frontend and backend, within the browser environment. Once the ap- Traditional web-based client-server application devel- plication is tested, the backend portion of the code can opment has been accomplished in two separate pieces: be moved to the production server where it operates with the frontend portion which runs on the client machine has little, if any, additional debugging. been written in HTML and JavaScript; and the backend portion which runs on the server machine has been writ- 1.1 Typical web application development ten in PHP, ASP.net, or some other “server-side” lan- guage which typically interfaces to a database. The skill There are many skill sets required to implement a sets required for these two pieces are different. modern web application. On the client side, initially, the In this paper, I demonstrate a new methodology user interface must be defined. A visual designer, in con- for web-based client-server application development, in junction with a human-factors engineer, may determine which a simulated server is built into the browser envi- what features should appear in the interface, and how to ronment to run the backend code. This allows the fron- best organize them for ease of use and an attractive de- tend to issue requests to the backend, and the developer sign. to step, using a debugger, directly from frontend code into The language used to write the user interface code is backend code, and to debug and test both the frontend most typically JavaScript [6].