The Floristic Relationship Between The

Total Page:16

File Type:pdf, Size:1020Kb

The Floristic Relationship Between The Cleal and Cascales-Miñana Journal of Palaeogeography (2019) 8:14 https://doi.org/10.1186/s42501-019-0029-3 Journal of Palaeogeography ORIGINALARTICLE Open Access The floristic relationship between the upland and lowland Carboniferous wetlands of Variscan Euramerica — Evidence from some medullosalean pteridosperm fronds Christopher J. Cleal1* and Borja Cascales-Miñana2 Abstract Alethopteris grandinii represents remains of fronds of a medullosalean pteridosperm (probably a small tree) that rapidly migrated across the lowland wetland habitats of Variscan Euramerica in middle Asturian (late Moscovian) times. This was probably caused by changing drainage patterns within the lowland coal swamps, in response to climate and landscape changes. However, these medullosaleans had first appeared rather earlier, in early Bolsovian (early Moscovian) times, in upland wetland habitats. These upland habitats may have pre-adapted these plants to the changed condition in the lowland coal swamps. Keywords: Carboniferous, Coal swamps, Medullosales, Upland, Migration 1 Introduction 2010a; Fig. 1). We now believe that these floristic differ- During Pennsylvanian (late Carboniferous) times, large ences provide important insights into how the coal swamp parts of palaeotropical Euramerica were covered by wet- vegetation evolved during Pennsylvanian times, especially lands, often referred to as coal swamps because of the in response to the landscape and climate changes occurring extensive coal deposits that were formed from their at this time (Gastaldo et al. 1996;ClealandThomas1999, peats. These heavily vegetated wetlands consisted of a 2005;Opluštil and Cleal 2007; Cleal et al. 2010a, 2011). complex of clastic and peat substrates habitats formed In this paper we examine evidence for the migration in a fluvio-lacustrine setting. During most of Westpha- of vegetation from upland to lowland wetland habitats lian (late Bashkirian to late Moscovian) times, the vege- during late Moscovian times, with particular reference tation tended to be dominated by arborescent lycopsids, to the Saar-Lorraine Basin that straddles the border with subsidiary ferns, sphenophytes, and pteridosper- between France and Germany (Schindler and Heidtke mous and cordaitean gymnosperms; later in Westphalian 2007). This basin formed in a half-graben between the and Stephanian (latest Moscovian to Gzhelian) times, Rheno-Hercynian and Saxo-Thuringian zones of the marattialean ferns and alethopterid medullosaleans Variscan Orogen (Kneuper 1964, 1966; Korsch and became the dominant plants. Schäfer 1995; Schäfer and Korsch 1998) and is one of Although at any one time the general character of the the best documented of the Westphalian age intramon- coal swamp vegetation was broadly similar across Eura- tane basins, with an Upper Paleozoic sedimentary fill of merica, some palaeobiogeographical variation has been c. 10 km thickness. We will be focussing in particular on recognised, especially between the paralic lowland areas a group of medullosalean pteridosperms that bore fronds and the intra-montane basins (Gothan 1915, 1925, 1951, of the fossil-genus Alethopteris von Sternberg, which in 1954; Thomas 2007; Cleal 2008a, 2008b; Cleal et al. late Moscovian and Kasimovian times was a major com- ponent of the Euramerican wetland vegetation; in the low- * Correspondence: [email protected] land paralic basins, its appearance was part of a major 1Department of Natural Sciences, National Museum Wales, Cardiff CF10 3NP, vegetational change represented by the base of the Crenu- UK lopteris acadica Zone, formerly known as the Lobatopteris Full list of author information is available at the end of the article © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Cleal and Cascales-Miñana Journal of Palaeogeography (2019) 8:14 Page 2 of 12 Fig. 1 Palaeogeographical map of Variscan Euramerica during middle Westphalian times, showing large area of paralic coal swamps and the two main intramontane basins, Saar-Lorraine and West and Central Bohemia. Adapted with permission from Cleal et al. (2010a, their Fig. 1) vestita Zone (Wagner 1984;Cleal1991). However, we upland floras were not upland in any meaningful sense; will show that there is evidence that these plants the term was instead mainly being used to refer to vege- were present rather earlier in the upland wetlands tation of dryland or better drained lowland habitats. such as the Saar-Lorraine Basin. There is nevertheless evidence of some truly upland We will limit our discussion to the evidence available Westphalian vegetation in Variscan Euramerica, in the in the area of palaeotropical coal swamps between the intra-montane basins of the orogen. The elevation of Acadian Mountains (Pfefferkorn and Gillespie 1980)in these basins relative to the paralic areas has been the sub- the west, which approximates in position to the ject of debate. Based on the distinctive nature of the vege- modern-day Appalachian Mountains, and the Palaeo- tation, Holub et al. (1977) and Tenchov (1976, 1977) tethys Ocean in the east. This area has been named estimated elevations of 1000–2000 m above sea level, Variscan Euramerica (Cleal et al. 2010a) and at least whilst Becq-Giraudon and Van Den Driessche (1994)and during early Bashkirian to middle Moscovian time repre- Becq-Giraudon et al. (1996) interpreted deposits in the sented the largest area of coal swamps in Euramerica Autunian basins of Central France as periglacial, from (Cleal and Thomas 2005). There are extensive adpression which they suggested elevations of 4000–5000 m above floras known from coal swamp habitats west of the Aca- sea-level based. More recently, by modelling drainage pat- dian Mountains (e.g. Pfefferkorn and Gillespie 1980;Blake terns within the West and Central Bohemia Basin and et al. 2002) but their taxonomy and biostratigraphy have comparing its palaeogeographical position relative to the not been investigated in detail in recent years, making a foreland basins to the north, Opluštil (2005) estimated it comparison with the data from the more easterly basins formed at an elevation of about 1000 m. difficult. We will hereafter use the Heerlen Regional Chronostratigraphy, as reviewed by (Wagner 1974)and 3 Stratigraphical correlation Wagner and Winkler Prins (2016) as this still provides a A difficulty with trying to compare the vegetation dy- far better temporal resolution of the terrestrial namics of upland intramontane and lowland paralic ba- coal-bearing sequences of Variscan Euramerica; for a sins is stratigraphical correlation. In the paralic basins, correlation between this scheme and the IUGS Global marine bands resulting from eustatic flooding have Chronostratigraphy based mainly on marine stratotypes, provided what are in effect time-lines that allow accurate see Fig. 2. This will include the use of the name Asturian correlation (e.g. Bless and Winkler Prins 1972; Bless et for what was traditionally referred to as the Westphalian al. 1972, 1977) but these are absent from the D Substage (Wagner et al. 2002). For biostratigraphy, we intra-montane basins. Until relatively recently, macro- will use the scheme developed by Wagner (1984)and floral and palynological biostratigraphy have been the modified by Cleal (1991) and Cleal and Thomas (1994); main alternative means of correlation, but using these see also Fig. 2. correlations to compare the vegetation dynamics in the two types of area clearly has the potential to introduce 2 What were the upland wetlands? circular arguments. Correlations independent of biostra- Thomas and Cleal (2017) recently discussed what tigraphy have been mainly based around ash bands, palaeobotanists have meant in the past when using the often termed tonsteins. Initially this was based around term upland floras. It became clear that most so-called the simple lithostratigraphical correlation of the tonsteins Cleal and Cascales-Miñana Journal of Palaeogeography (2019) 8:14 Page 3 of 12 Fig. 2 Summary of the currently accepted correlations between the IUGS Global Chronostratigraphy and the Heerlen Regional Chronostratigraphy, and the macrofloral biozones referred to in this paper. Adapted from Cleal (2018, his Fig. 3) between different basins and this was used to establish a lycopsid- to fern-dominated vegetation that occurred in detailed correlation between the intra-montane Saar- the peat-substrate habitats of Variscan Euramerica at this Lorraine and paralic Nord-Pas-de-Calais sequences time (Gastaldo et al. 1996; Cleal and Thomas 1999, (Bouroz 1967). More recently, high resolution radiometric 2005;Opluštil and Cleal 2007; Cleal et al. 2010a, 2011). dating has further improved the correlations with the However, there was also a marked change in the clastic West and Central Bohemia Basin (Opluštil et al. 2016)but substrate vegetation reflected in the base of the Crenu- similar work has yet to be done in Saar-Lorraine Basin. lopteris acadica Zone (formerly the Lobatopteris vestita Zone) in the Wagner (1984) and Cleal (1991) biostrati- 4 Major changes in coal swamp floras of Variscan graphical scheme. As with the peat substrate vegeta- Euramerica tion, there is a marked increase in abundance
Recommended publications
  • International Organisation of Palaeobotany IOP NEWSLETTER
    INTERNATIONAL UNION OF BIOLOGIC A L S C IENC ES S ECTION FOR P A L A EOBOTANY International Organisation of Palaeobotany IOP NEWSLETTER 110 August 2016 CONTENTS FROM THE SECRETARY/TREASURER IPC XIV/IOPC X 2016 IOPC 2020 IOP MEMBERSHIP IOP EXECUTIVE COMMITTEE ELECTIONS IOP WEBMASTER POSITION WHAT HAPPENED TO THE OUPH COLLECTIONS? THE PALAEOBOTANY OF ITALY UPCOMING MEETINGS CALL FOR NEWS and NOTES The views expressed in the newsletter are those of its correspondents, and do not necessarily reflect the policy of IOP. Please send us your contributions for the next edition of our newsletter (June 2016) by M ay 30th, 2016. President: Johanna Eder-Kovar (G ermany) Vice Presidents: Bob Spicer (Great Britain), Harufumi Nishida (Japan), M ihai Popa (Romania) M embers at Large: Jun W ang (China), Hans Kerp (Germany), Alexej Herman (Russia) Secretary/Treasurer/Newsletter editor: M ike Dunn (USA) Conference/Congress Chair: Francisco de Assis Ribeiro dos Santos IOP Logo: The evolution of plant architecture (© by A. R. Hemsley) I OP 110 2 August 2016 FROM THE In addition, please send any issues that you think need to be addressed at the Business SECRETARY/TREASURER meeting. I will add those to the Agenda. Dear IOP Members, Respectfully, Mike I am happy to report, that IOP seems to be on track and ready for a new Executive Council to take over. The elections are IPC XIV/IOPC X 2016 progressing nicely and I will report the results in the September/October Newsletter. The one area that is still problematic is the webmaster position. We really to talk amongst ourselves, and find someone who is willing and able to do the job.
    [Show full text]
  • Ecoregions of New England Forested Land Cover, Nutrient-Poor Frigid and Cryic Soils (Mostly Spodosols), and Numerous High-Gradient Streams and Glacial Lakes
    58. Northeastern Highlands The Northeastern Highlands ecoregion covers most of the northern and mountainous parts of New England as well as the Adirondacks in New York. It is a relatively sparsely populated region compared to adjacent regions, and is characterized by hills and mountains, a mostly Ecoregions of New England forested land cover, nutrient-poor frigid and cryic soils (mostly Spodosols), and numerous high-gradient streams and glacial lakes. Forest vegetation is somewhat transitional between the boreal regions to the north in Canada and the broadleaf deciduous forests to the south. Typical forest types include northern hardwoods (maple-beech-birch), northern hardwoods/spruce, and northeastern spruce-fir forests. Recreation, tourism, and forestry are primary land uses. Farm-to-forest conversion began in the 19th century and continues today. In spite of this trend, Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and 5 level III ecoregions and 40 level IV ecoregions in the New England states and many Commission for Environmental Cooperation Working Group, 1997, Ecological regions of North America – toward a common perspective: Montreal, Commission for Environmental Cooperation, 71 p. alluvial valleys, glacial lake basins, and areas of limestone-derived soils are still farmed for dairy products, forage crops, apples, and potatoes. In addition to the timber industry, recreational homes and associated lodging and services sustain the forested regions economically, but quantity of environmental resources; they are designed to serve as a spatial framework for continue into ecologically similar parts of adjacent states or provinces. they also create development pressure that threatens to change the pastoral character of the region.
    [Show full text]
  • The Contact of the Upper Neoproterozoic with the Lower
    Ugidos, J.M., Barba, P., Valladares, M.I., Suarez, M., and Ellam, R.M. (2016) The Ediacaran-Cambrian transition in the Cantabrian Zone 1 (North Spain): sub-Cambrian weathering, K-metasomatism and provenance of detrital series. Journal of the Geological Society, 173(4), pp. 603-615. (doi:10.1144/jgs2016-004) This is the author’s final accepted version. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/115950/ Deposited on: 1 February 2016 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk 1 1 The Ediacaran-Cambrian transition in the Cantabrian Zone (North Spain): sub- 2 Cambrian weathering, K-metasomatism and provenance of detrital series 3 4 J.M. Ugidos,a* P. Barba,a M.I. Valladares,a M. Suárez,a R.M. Ellam, b 5 a Departamento de Geología, Facultad de Ciencias, Universidad de Salamanca, 37008 6 Salamanca, Spain b Scottish Universities Environmental Research Centre, East Kilbride G75 OQF, UK 7 8 9 Abstract: The Upper Ediacaran detrital succession in the Cantabrian Zone shows 10 geochemical and mineralogical changes resulting from sub-Cambrian weathering during 11 the Late Ediacaran worldwide sea-level fall. Relative to the unaltered rocks the altered 12 ones show crosscutting rubefaction of varying thickness a remarkable increase in illite, 13 K2O, Rb and Cs indicating K-metasomatism, and also depletion in MgO, CaO, Na2O, 14 Be and Sr, but not in Zr, Nb, Y, Sc.
    [Show full text]
  • New Paleobotanical Data on the Portuguese Pennsylvanian (Douro Carboniferous Basin, NW Portugal)
    Versão online: http://www.lneg.pt/iedt/unidades/16/paginas/26/30/185 Comunicações Geológicas (2014) 101, Especial I, 409-414 IX CNG/2º CoGePLiP, Porto 2014 ISSN: 0873-948X; e-ISSN: 1647-581X New paleobotanical data on the Portuguese Pennsylvanian (Douro Carboniferous Basin, NW Portugal) Novos dados paleobotânicos do Pensilvaniano português (Bacia Carbonífera do Douro, NW Portugal) P. Correia1*, Z. Šimůnek2, J. Pšenička3, A. A. Sá4,5, R. Domingos6, A. Carneiro7, D. Flores1,7 Artigo Curto Short Article © 2014 LNEG – Laboratório Nacional de Geologia e Energia IP Abstract: This paper describes nine new macrofloral taxa from 1. Introduction Douro Carboniferous Basin (lower Gzhelian) of Portugal. The plant assemblage is mainly composed by pteridophylls (Sphenopteriss The fossil flora of Carboniferous of Portugal is still little arberi Kidston, Sphenopteris fayoli Zeiller, Sphenopteris tenuis known. The new megafloral occurrences recently found in Schenk, Odontopteris schlotheimii Brongniart), sphenopsids the Upper Pennsylvanian strata of Douro Carboniferous (Annularia spicata Gutbier, Stellotheca robusta (Feistmantel) Basin (DCB) provide new and important data about Surange and Prakash, Calamostachys grandis Zeiller (Jongmans) and Calamostachys calathifera Sterzel) besides the gymnosperm paleobotanical richness and diversity of the Paleozoic Cordaites foliolatus Grand`Eury. The new data provide a better floras of Portugal offering more information to previous understating of the knowledge of Late Carboniferous floras of researches reported from diverse localities and by different Portugal, showing the high plant diversity of Gzhelian floras, when authors (e.g. Wenceslau de Lima, Bernardino António considerable changes in paleogeography and climate dynamics are Gomes, Carlos Ribeiro, Carríngton da Costa, Carlos evidenced in Euramerican floristic assemblages.
    [Show full text]
  • A Fan Delta Complex of Dinantian/Namurian Age
    The Orustdalen Formation of Braggerhalvaya, Svalbard: A fan delta complex of Dinantian/Namurian age By Ian J. Fairchildl Abstract The Orustdalen Formation of Broggerhalvnya is well exposed on two coastal sections and is 200-250 m thick. It consists dominantly of siliceous conglomerates anid sandstones with subordinate shales and impure coal. One horizoin low in the sequence yielded spores of upper- most Dinantian/lowermost Namurian agc. Three sedimentary facies have been recognised The fluvial channel facies (interbedded conglomerates and cross-stratified sandstones) are interpreted as braided sitream deposits with flow directions to south and west A shale facies, sometimes with dri\fted plant remains, is interpreted as ovrrbank ia origin. Highly quartzose, medium-to-coarse-grained, cross-stratified sandstones make up the reworked facies wheie palaeocurrents are bimodal or indicate movement to the NE The Formation is thought to represent semdiments shed from an early Carboniferuus fault scarp erod,ing a siliceous Lower Palaeozoic source terramin The proximity of a nearby coastline led to the construction of fan deltas where fluvial deposits were reworked by waves and/or tides Early diagenetic events include the local development of pyrite, kaoIinite and calcite cements Reddening probably occurred during Middle Carboniferous times beneath an exposed land surface. Following burial, pressure solution and quartz cementation eliminated porosity at depths greater than 1000 m. Introduction The association of conglomerates with coal is unusual (Heward 1978), but is found in a number of Upper Devonian and Lower Carboniferous sequences in Svalbard (Dineley 1958; Birkenmajer 1964; Worsley and Edwards 1976; Gjelberg 1978; Gjelberg and Steel 1979). A discussion of the Br~ggerhalveya Lower Carboniferous, conglomerates and sandstones with subordinate shales and coals, is thus of interest in contributing to an understanding of this facies association.
    [Show full text]
  • South Africa's Coalfields — a 2014 Perspective
    International Journal of Coal Geology 132 (2014) 170–254 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo South Africa's coalfields — A 2014 perspective P. John Hancox a,⁎,AnnetteE.Götzb,c a University of the Witwatersrand, School of Geosciences and Evolutionary Studies Institute, Private Bag 3, 2050 Wits, South Africa b University of Pretoria, Department of Geology, Private Bag X20, Hatfield, 0028 Pretoria, South Africa c Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Republic of Tatarstan, Russian Federation article info abstract Article history: For well over a century and a half coal has played a vital role in South Africa's economy and currently bituminous Received 7 April 2014 coal is the primary energy source for domestic electricity generation, as well as being the feedstock for the Received in revised form 22 June 2014 production of a substantial percentage of the country's liquid fuels. It furthermore provides a considerable source Accepted 22 June 2014 of foreign revenue from exports. Available online 28 June 2014 Based on geographic considerations, and variations in the sedimentation, origin, formation, distribution and quality of the coals, 19 coalfields are generally recognised in South Africa. This paper provides an updated review Keywords: Gondwana coal of their exploration and exploitation histories, general geology, coal seam nomenclature and coal qualities. With- Permian in the various coalfields autocyclic variability is the norm rather than the exception, whereas allocyclic variability Triassic is much less so, and allows for the correlation of genetically related sequences. During the mid-Jurassic break up Coalfield of Gondwana most of the coal-bearing successions were intruded by dolerite.
    [Show full text]
  • Spatial Variation in Fish Assemblages Across a Beaver-Influenced Successional Landscape
    Ecology, 81(5), 2000, pp. 1371±1382 q 2000 by the Ecological Society of America SPATIAL VARIATION IN FISH ASSEMBLAGES ACROSS A BEAVER-INFLUENCED SUCCESSIONAL LANDSCAPE ISAAC J. SCHLOSSER1,3 AND LARRY W. K ALLEMEYN2 1Department of Biology, Box 9019, University Station, Grand Forks, North Dakota 58202 USA 2United States Geological Survey, Columbia Environmental Research Center, International Falls Biological Station, 3131 Highway 33, International Falls, Minnesota 56649 USA Abstract. Beavers are increasingly viewed as ``ecological engineers,'' having broad effects on physical, chemical, and biological attributes of north-temperate landscapes. We examine the in¯uence of both local successional processes associated with beaver activity and regional geomorphic boundaries on spatial variation in ®sh assemblages along the Kabetogama Peninsula in Voyageurs National Park, northern Minnesota, USA. Fish abun- dance and species richness exhibited considerable variation among drainages along the peninsula. Geological barriers to ®sh dispersal at outlets of some drainages has reduced ®sh abundance and species richness. Fish abundance and species richness also varied within drainages among local environments associated with beaver pond succession. Fish abun- dance was higher in upland ponds than in lowland ponds, collapsed ponds, or streams, whereas species richness was highest in collapsed ponds and streams. Cluster analyses based on ®sh abundance at sites classi®ed according to successional environment indicated that four species (northern redbelly dace, Phoxinus eos; brook stickleback, Culaea incon- stans; ®nescale dace, P. neogaeus; and fathead minnow, Pimephales promelas), were pre- dominant in all successional environments. Several less abundant species were added in collapsed ponds and streams, with smaller size classes of large lake species (e.g., black crappie, Pomoxis nigromaculatus; smallmouth bass, Micropertus dolomieui; yellow perch, Perca ¯avescens; and burbot, Lota lota) being a component of these less abundant species.
    [Show full text]
  • Llesins in PALEOZOIC PLANTS and in COALS of ·HIGH RANK
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR PROFESSIONAL PAPER 85-E llESINS IN PALEOZOIC PLANTS AND IN COALS OF ·HIGH RANK BY DAVID WHITE Published l\1arch 25, 19~4 PART E OF PROFESSIONAL PAPER 85, ~~CONTRIBUTIONS TO GENERAL GEOLOGY, 1913" WASHINGTON GOVERNMENT PRINTING OFFICE 1914 CONTENTS. Page. Introduction ..............•............................................................................. 65 Resins in coals of low rank .............................................................................. ·. 66 Concentration of resins in coals .......................... , ............................................... 67 Effects of resin concentration ................. c •••••••••••••••••• _ •••••••• _ •••••••••••• _ •••••••••• ___ •• _ ••• 67 The obliteration of the resins ........................ ·... _.. _............. _........ _. __ ... _._ .. __ .. __ .. __ .. _ 69 Res.ins in Paleozoic plants and coals ..............................· ..................... _........ ___ .. _... 73 Conclusions ............. : ............................................... _.. · .................. __ . __ ._ ... 82 ILLUSTRATIONS. Page. PI,ATE IX. Fragments of bituminous coal showing carbonized wood, etc ........ _.. : ... __ .............. _. _.. 86 X. Bedding plane of coal from Exeter, IlL ............. _... _......... _........ _..... , ............. 88 XI. Resin lumps in Paleozoic coals ......... _.. _._ ........... _........ _.. _............. _.......... 90 . XII. Fragment from thin parting in coal
    [Show full text]
  • The Fossil Flora and Age of the Wamsutta Red Beds (Middle
    Document generated on 10/01/2021 10:12 p.m. Atlantic Geology Journal of the Atlantic Geoscience Society Revue de la Société Géoscientifique de l'Atlantique The fossil flora and age of the Wamsutta red beds (Middle Pennsylvanian), Narragansett Basin, southeastern Massachusetts, USA and correlation with the Cumberland Group of the Maritime Provinces of Canada Paul C. Lyons and Robert G. Sproule Volume 54, 2018 Article abstract New collections of plant macrofossils provide a precise Middle Pennsylvanian URI: https://id.erudit.org/iderudit/1055420ar age for the lower Wamsutta Formation red beds of the Narragansett Basin, DOI: https://doi.org/10.4138/atlgeol.2018.011 southeastern Massachusetts, USA. The Wamsutta assemblage indicates strong correlation with the Cumberland Group of the Maritimes Provinces of Canada, See table of contents which was earlier considered to be of late Langsettian to early Duckmantian age. This correlation is supported by the presence in the Wamsutta Formation of the following plant-fossil species: Neuralethopteris schlehanii, Neuropteris Publisher(s) obliqua, Senftenbergia plumosa, Calamites suckowii, Annularia asteris, Annularia cf. microphylla,Asterophyllites charaeformis, Asterophyllites Atlantic Geoscience Society grandis, Asterophyllites lindleyanus, Sphenophyllum cuneifolium, and Sphenopteris valida. Moreover, the new fossil flora resembles the Middle ISSN Pennsylvanian florules of western Europe, such as the Laveineopteris loshii Subzone. The new flora is especially similar to those of the Iberian Peninsula, 0843-5561 (print) where there is a complete succession of Carboniferous macrofloral zones, and 1718-7885 (digital) this similarity confirms a late Langsettian or early Duckmantian age for the lower Wamsutta macroflora. The new collections of Wamsutta Formation Explore this journal plant fossils, along with a smaller existing collection, represent the oldest known macroflora in the Narragansett Basin.
    [Show full text]
  • A New Microsporangiate Organ from the Lower Carboniferous of the Novgorod Region, Russia O
    ISSN 0031-0301, Paleontological Journal, 2009, Vol. 43, No. 10, pp. 1316–1329. © Pleiades Publishing, Ltd., 2009. A New Microsporangiate Organ from the Lower Carboniferous of the Novgorod Region, Russia O. A. Orlovaa, N. R. Meyer-Melikian†,a, and N. E. Zavialovab a Moscow State University (MGU), Leninskie gory 1, Moscow, 119991 Russia b Borissiak Paleontological Institute of the Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow, 117997 Russia e-mail: [email protected] Received February 5, 2008 Abstract—A new species of the genus Telangiopsis, T. nonnae O. Orlova et Zavialova, was described on the basis of a microsporangiate organ from the Lower Carboniferous deposits of the Novgorod Region. The mor- phology of branching fertile axes, synangia, and sporangia was thoroughly studied. The three-dimensional sys- tem of fertile axes branches monopodially; ultimate axes bear numerous connivent bunches of synangia, which consist of three to six basally fused elongated ovate sporangia. The morphology and ultrastructure of prepollen grains were studied, which were extracted from the rock matrix surrounding the sporangia. The two-layered exine includes a well-developed endexine and an alveolate ectexine, with one–three rows of large thin-walled alveolae. The new species was compared with other Early Carboniferous microsporangiate organs. Key words: Early Carboniferous, Novgorod Region, fertile axis, synangia, Lyginopteridales, trilete prepollen, exine ultrastructure. DOI: 10.1134/S003103010910013X INTRODUCTION synangia and numerous casts and imprints of detached synangia were found in yellow ferruginous sandstone. During the three last decades, the interest of bota- In addition to the fertile axes, sterile remains of Lygi- nists dealing with fossil and modern plants to Carbon- nopteridales, Medullosales, and Calamopytiales were iferous synangiate pollen organs has considerably found (Orlova and Snigirevskii, 2003, 2004).
    [Show full text]
  • A Stable Isotopic Investigation of Resource Partitioning Among Neosauropod Dinosaurs of the Upper Jurassic Morrison Formation
    A stable isotopic investigation of resource partitioning among neosauropod dinosaurs of the Upper Jurassic Morrison Formation Benjamin T. Breeden, III SID: 110305422 [email protected] GEOL394H University of Maryland, College Park, Department of Geology 29 April 2011 Advisors: Dr. Thomas R. Holtz1, Jr., Dr. Alan Jay Kaufman1, and Dr. Matthew T. Carrano2 1: University of Maryland, College Park, Department of Geology 2: National Museum of Natural History, Department of Paleobiology ABSTRACT For more than a century, morphological studies have been used to attempt to understand the partitioning of resources in the Morrison Fauna, particularly between members of the two major clades of neosauropod (long-necked, megaherbivorous) dinosaurs: Diplodocidae and Macronaria. While it is generally accepted that most macronarians fed 3-5m above the ground, the feeding habits of diplodocids are somewhat more enigmatic; it is not clear whether diplodocids fed higher or lower than macronarians. While many studies exploring sauropod resource portioning have focused on differences in the morphologies of the two groups, few have utilized geochemical evidence. Stable isotope geochemistry has become an increasingly common and reliable means of investigating paleoecological questions, and due to the resistance of tooth enamel to diagenetic alteration, fossil teeth can provide invaluable paleoecological and behavioral data that would be otherwise unobtainable. Studies in the Ituri Rainforest in the Democratic Republic of the Congo, have shown that stable isotope ratios measured in the teeth of herbivores reflect the heights at which these animals fed in the forest due to isotopic variation in plants with height caused by differences in humidity at the forest floor and the top of the forest exposed to the atmosphere.
    [Show full text]
  • Dr. Sahanaj Jamil Associate Professor of Botany M.L.S.M. College, Darbhanga
    Subject BOTANY Paper No V Paper Code BOT521 Topic Taxonomy and Diversity of Seed Plant: Gymnosperms & Angiosperms Dr. Sahanaj Jamil Associate Professor of Botany M.L.S.M. College, Darbhanga BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants UNIT- I BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants Classification of Gymnosperms. # Robert Brown (1827) for the first time recognized Gymnosperm as a group distinct from angiosperm due to the presence of naked ovules. BENTHAM and HOOKSER (1862-1883) consider them equivalent to dicotyledons and monocotyledons and placed between these two groups of angiosperm. They recognized three classes of gymnosperm, Cyacadaceae, coniferac and gnetaceae. Later ENGLER (1889) created a group Gnikgoales to accommodate the genus giankgo. Van Tieghem (1898) treated Gymnosperm as one of the two subdivision of spermatophyte. To accommodate the fossil members three more classes- Pteridospermae, Cordaitales, and Bennettitales where created. Coulter and chamberlain (1919), Engler and Prantl (1926), Rendle (1926) and other considered Gymnosperm as a division of spermatophyta, Phanerogamia or Embryoptyta and they further divided them into seven orders: - i) Cycadofilicales ii) Cycadales iii) Bennettitales iv) Ginkgoales v) Coniferales vi) Corditales vii) Gnetales On the basis of wood structure steward (1919) divided Gymnosperm into two classes: - i) Manoxylic ii) Pycnoxylic The various classification of Gymnosperm proposed by various workers are as follows: - i) Sahni (1920): - He recognized two sub-divison in gymnosperm: - a) Phylospermae b) Stachyospermae BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants ii) Classification proposed by chamber lain (1934): - He divided Gymnosperm into two divisions: - a) Cycadophyta b) Coniterophyta iii) Classification proposed by Tippo (1942):- He considered Gymnosperm as a class of the sub- phylum pteropsida and divided them into two sub classes:- a) Cycadophyta b) Coniferophyta iv) D.
    [Show full text]