Intraventricular Trifascicular Block Bundle-Branch System

Total Page:16

File Type:pdf, Size:1020Kb

Intraventricular Trifascicular Block Bundle-Branch System British I971, 33, 626-628. Heart_Journal, Br Heart J: first published as 10.1136/hrt.33.4.626 on 1 July 1971. Downloaded from Intraventricular trifascicular block Observations on conduction disturbance in bundle-branch system Nabil El-Sherif From the Cardiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt, U.A.R. A case of intraventricular trifascicular block secondary to an inferior myocardial infarction is reported. The case denonstrates instances of 2: I atrioventricular conduction due to alternating block in the right bundle-branch and block in the right bundle and both anterior and posterior divisions of the left bundle (trifascicular block). Instances of I: i A V conduction with grade I block and periods of type I (Mobitz) block are ascribed to a delayed and a Wenckebach type of conduction respectively in the posterior division of the left bundle. Recent recognition of the trifascicular nature but experienced two separate attacks of fainting of the bundle-branch system has changed sensation not mounting to actual syncope within some of the concepts about AV conduction I2 hours and suddenly expired 24 hours later. disturbances and the pathways of impulse Description of cardiogram (Fig.) The record propagation in the ventricular myocardium. reveals two different QRS patterns and three In a recent review by Rosenbaum et al. (I969) types of AV conduction disturbance. no more than 20 cases of intraventricular The first QRS pattern (type A) is always pre- http://heart.bmj.com/ trifascicular block were found while the ceded by a normal PR interval of O-I9 sec and has authors recognized the various combinations a duration of O'i2 sec. The pattern reveals right that may arise secondary to the different bundle-branch block (RBBB) in the chest leads grades of conduction disturbance in the three and a frontal plane axis of -400 with ST-T fascicles of the bundle-branch system. The changes suggestive of inferolateral injury. The second QRS pattern (type B) is always preceded following report deals with a further case of by a prolonged PR interval of at least o025 sec intraventricular trifascicular block and pre- and has practically the same duration of O-I2 sents certain features of interest where differ- sec. The pattern reveals more prominent S on October 1, 2021 by guest. Protected copyright. ent grades of AV conduction disturbance are waves in leads II and III shifting the frontal plane explained on the basis of variable dysfunction axis to -8oo, and significant changes in the of the three fascicles of the bundle-branch praecordial leads especially lead V6 which shows system. loss of the initial Q wave and a more prominent S wave. The ST-T changes of inferolateral injury pattern are less prominent. Case report The three types of AV conduction disturbance A 54-year-old man was admitted to Kasr El-Aini are as follows. Faculty of Medicine of Cairo University on March 1960. The patient, who was known to have I Periods of 2: I AV block occurring at an atrial diabetes and hypertension for some time, began rate of 65-7I beats per minute. The conducted P to complain of anginal attacks one week before wave has a PR interval of O-I9 sec and is always admission. The attacks were frequent, not always followed by type (A) QRS pattern. related to exertion, and lasted from a few up to 2 Periods of I:I AV conduction seen to take I5 minutes. On examination, he was in no appar- place at critical slowing of the atrial rate to 6o-65 ent distress. His pulse showed frequent irregu- beats per minute. These periods always start at a larities and his blood pressure was I5o/Ioo mm P wave followed after a PR interval of O-I9 sec Hg. Cardiac examination revealed no abnormality. by type (A) QRS pattern, while the next P waves Continuous cardiographic monitoring for half an are conducted with constant PR intervals of o 25 hour showed frequent shifts between i: i and 2: I sec and are followed by type (B) QRS pattern. AV response with occasional instances of the 3 Periods of Wenckebach conduction usually in Wenckebach conduction. The patient received the form of 3:2 or 4:3 periods. During instances sublingual tablets of isoprenaline every 3 hours of 3:2 conduction, the first P wave is followed Intraventricular trifascicular block 627 Br Heart J: first published as 10.1136/hrt.33.4.626 on 1 July 1971. Downloaded from *'':+'''--':::X. .}: :.g: .:: .. .~~~~~~~~~~~~......... VI i;-'77; 000 tt0>>, x rirf0 t' 12t<f i 4'6__< _ _ = X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~<~~~~~~..... FIG.Intraventriculartrifascicular block. See text for details.~~~~~~~~~~~~~~~E'.41R -H after a PR interval of O-I9 sec by type (A) QRS of the left bundle. On the other hand, during type pattern, while the second P wave is followed after (B) QRS pattern, the impulse is conducted through a PR interval of 0-25 to o04 sec by type (B) QRS the posterior division of the left bundle alone. http://heart.bmj.com/ pattern and the third P wave is blocked. During This pattern is always preceded by prolonged PR 4:3 Wenckebach periods, the second P wave is interval of at least 0-25 sec. This reveals that there always followed by type (B) QRS pattern after a is a conduction delay in the posterior division of PR interval of at least 0-25 sec, while the third P the left bundle which becomes uncovered only by wave reveals further prolongation ofthePRinterval block of the conduction in the anterior division. before block of the fourth P wave (see lead V6). The shorter PR interval of O-I9 sec preceding type (A) QRS pattern can now be explained by Interpretation ofcardiogram Type (A) QRS the relatively faster conduction through the pattern represents right bundle-branch block. anterior division. on October 1, 2021 by guest. Protected copyright. The presence of left axis deviation of -4o0 During periods of 3:2 Wenckebach conduction, in the frontal plane is, however, unusual. This the first atrial impulse is conducted through both can be explained either by involvement of the anterior and posterior divisions of the left bundle diaphragmatic surface of the heart in myo- (though faster through the former division) and cardial infarction or by the presence of an 'in- is blocked in the right bundle-branch alone (a complete' block in the anterior division of the monofascicular block). The second atrial impulse left bundle or both. However, for the rest of the is conducted through the posterior division of the report the pattern will be considered to represent left bundle alone and is blocked in both the right 'pure' RBBB. This will make the discussion bundle and the anterior division of the left bundle easier and will not interfere much with the validity (a bifascicular block). The third atrial impulse of the interpretations. Type (B) QRS pattern re- shows complete AV block which is explained by veals more conspicuous left axis deviation in the failure of conduction in the three fascicles of the frontal plane and represents RBBB +'complete' bundle-branch system (a trifascicular block). block in the anterior division of the left bundle. During periods of 4:3 conduction the second and The recognition of these two QRS patterns facili- third atrial impulses reveal an increasing conduc- tates the interpretation of the AV conduction dis- tion delay through the posterior division of the turbance. Though concomitant disturbance at the left bundle before block of the fourth atrial beat. AV node-His bundle cannot be excluded, yet the Lastly, instances of 2: I block are explained by evidence points to exclusive disturbance at the conduction through the two divisions of the left bundle-branch system. bundle alternating with a trifascicular block. During type (A) QRS pattern, the impulse The observation that both I: i conduction in reaches the ventricles through the two fascicles the posterior division of the left bundle and com- 628 Nabil El-Sherif Br Heart J: first published as 10.1136/hrt.33.4.626 on 1 July 1971. Downloaded from plete block in the anterior division take place at a (Mobitz) block, while anteroseptal infarction critical slowing of the atrial rate to 6o to 65 beats associated with extensive lesion of the bifur- a minute is explained by the presence of a higher cation or bundle-branches or both usually critical rate for conduction in the posterior leads to type II block. Lepeschkin (I964) has division of the left bundle (6o-65 beats per minute) and a slower critical rate for conduction theoretically related this observation to the in the anterior division. The latter probably lies greater difference in velocity between the somewhere between 35 beats a minute (the rate slow conduction through the AV node and of the ventricular response during instances of the rapid conduction through the bundle- 2: I AV block) and 6o beats a minute (the slowest branches. Thus a pathological prolongation rate of ventricular response during I: I conduction of impulse conduction at the AV node will in the posterior division). usually give rise to measurable change in the PR interval, while a constant delay simulating Discussion grade I block or an increasing delay simulating type I (Mobitz) block will not usually lead to One or more of the fundamental patterns of measurable delay in the PR interval. In fact AV conduction disturbance can be observed according to this consideration, Lepeschkin in the three fascicles of the bundle-branch (I964) has suggested that analysis of AV con- system in the present case. The right bundle- duction time may be helpful in locating the branch shows a permanent third degree (com- level of AV block in myocardial infarction.
Recommended publications
  • Definition of Terms Related to Cardiac Rhythm*
    EUROPEAN JOURNAL OF CARDIOLOGY, 1978, 8/2,127-144 127 © Elsevier/North-Holland Biomedical P:-ess Definition of terms related to cardiac rhythm* WHO/ISFC Task Force Etienne O. Robles de Medina (editor) Department of Cardiology, University Hospital, Utrecht Roland Bernard Intensive Care Research Group of the EEC Philippe Coumel French Society of Cardiology Anthony N. Damato American Heart Association Charles Fisch American College of Cardiology Dennis Krikier British Cardiac Society Nicolai A. Mazur Cardiological Society of the USSR Frits L. Meijler In teruniversity Cardiological Institute, The Netherlands Lars Mogensen Swedish Society of Cardiology Pierre Moret International Society and Federation of Cardiology Zbynek Pisa World Health Organization Hein J.J. Wellens European Society of Cardiology KEY WORDS : arrhythmias; cardiac electrogram; conduction disturbances ; electrocardio­ gram; electrocardiographic nomenclature I ntroduction In recent years several individuals and working groups have been con­ cerned with definition and classification of electrocardiographic findings. Both increasing international communication, exchange of data and intro- * Supported by a grant from the Dutch Heart Foundation. Reproduced with permission from Amer. Heart J., Vol. 95, pp. 796-806, 1978, copy­ righted by The C.V. Mosby company, St. Louis, MO, U.S.A. 128 duction of new techniques like computer aided interpretation of the electro­ cardiogram, have promoted the need for common language in electrocardiol­ ogy. Sponsored by the World Health Organization (WHO) and the International Society and Federation of Cardiology (ISFC), and financially supported by the Dutch Heart Foundation (DHF), this Task Force was composed of mem­ bers nominated by various cardiological societies. It has been engaged primar­ ily with the definition of terms related to cardiac rhythm.
    [Show full text]
  • Triage EKG—Unit 7, Case 28
    Triage EKG—Unit 7, Case 28 Courtesy of Edward Burns of Life in the Fast Lane Creative Commons License Unit 7, Case 28 - Bifascicular Block with 1st Degree AV Block What is your interpretation of the EKG? History/Clinical Picture— elderly woman with CHF who presents with syncope Rate— 70 Rhythm— Sinus rhythm Axis— left axis deviation P Waves— present Q, R, S Waves— no clear pathologic q waves, S-waves inferiorly and laterally, early R-wave progression T Waves— inversions inveriorly U Waves— not present PR Interval— consistently prolonged at 220 ms consistent with 1st Degree AV Block. No progressive prolongation that would be consistent with 2nd Degree Type I or intermittent dropped beats that would be consistent with 2nd Degree Type II QRS Width— prolonged at just over 120 ms with RBBB and LAFB RBBB: RSR’ in V1 and QRS > 120ms LAFB: 1. Left axis deviation 2. Small q waves with large R waves (“qR complexes”) in I and aVL 3. Small r waves with large S waves (“rS complexes”) in II, III, and aVF 4. Normal or slightly prolonged QRS duration(80 -110 ms). ST Segment— no marked elevation or depression QT Interval— normal Diagnosis: Bifascicular block (RBBB + LAFB) with first degree AV block Management: This EKG shows severe disease of the interventricular conduction system. A right bundle branch block with a left anterior fascicular block (or left posterior fascicular block) in the presence of a 1st degree AV nodal block is sometimes erroneously called a “trifascicular block”. Conduction between the atria and the ventricles is reliant on the remaining fasci- cle, in this case the left posterior fascicle.
    [Show full text]
  • A Patient with Atrioventricular Block and Ventricular Tachycardia: Think Sarcoid! Suchit Majumdar1, Arindam Chatterjee2, Suvro Banerjee3
    J R Coll Physicians Edinb 2020; 50: 284–6 | doi: 10.4997/JRCPE.2020.314 CASE REPORT A patient with atrioventricular block and ventricular tachycardia: think sarcoid! Suchit Majumdar1, Arindam Chatterjee2, Suvro Banerjee3 ClinicalCardiac involvement in sarcoidosis is often dif cult to diagnose, and most Correspondence to: alarmingly can lead to sudden cardiac arrest as its rst manifestation. We Suvro Banerjee Abstract report the case of a 45-year-old Indian woman with an implanted permanent Department of Cardiology pacemaker for atrioventricular block, who presented with haemodynamically Apollo Gleneagles Hospital stable ventricular tachycardia and was found to have impaired left ventricular 58 Canal Circular Road function. Subsequent investigations established the diagnosis of cardiac Kolkata 700 054 sarcoidosis. The patient was treated with prednisolone initially at 40 mg a day for 3 months. India Left ventricular function improved over 3 months of treatment and there was no further recurrence of ventricular tachycardia. Screening for cardiac sarcoidosis should be considered Email: in a patient with unexplained atrioventricular block and ventricular tachycardia, particularly if [email protected] young, even in the absence of clinical ndings of extracardiac sarcoidosis. Treatment of the cardiac sarcoidosis could control ventricular tachycardia and improve left ventricular function. Keywords: cardiac pacemaker, ventricular tachycardia, atrioventricular block, cardiac sarcoidosis, left ventricular function, imaging Financial and Competing Interests: No confl ict of interests declared Informed consent: Written informed consent for the paper to be published (including images, case history and data) was obtained from the patient for publication of this paper, including accompanying images. Introduction waves were seen in the jugular venous pulsation.
    [Show full text]
  • Initial Management of Cardiac Arrhythmias
    THEME ACUTE CARE Jaycen Cruickshank MBBS, FACEM, is Director of Emergency Medicine, Ballarat Health Services, and Lecturer, Rural Clinical School, School of Rural Health, University of Melbourne, Victoria. [email protected] Initial management of cardiac arrhythmias Diagnosis of arrhythmias can be a challenge, in particular Background if a patient has no symptoms and a normal electrocardiogram Diagnosis of acute arrhythmias requires recognition and (ECG) between symptomatic episodes. Ideally, the patient interpretation of important electrocardiogram (ECG) findings, and should be managed in an area with access to ECG monitoring, knowledge of Australian resuscitation guidelines. oxygen and an external defibrillator. Acute arrhythmias may Objective require urgent intervention including resuscitation. All clinical This article aims to provide a guide for general practitioners in staff should be trained in basic life support (BLS) and managing patients who present with acute arrhythmias in the advanced life support (ALS) (see Resource). rural or regional setting. Discussion Assessment of the patient with an abnormal rhythm Rural GPs need to be familiar with acute management of History bradycardias, supraventricular tachycardia, atrial fibrillation Cardiac arrhythmia is an important differential diagnosis in any and ventricular tachyarrhythmias, despite the fact that they patient with palpitations, syncope, near syncope or chest pain. may deal with these problems infrequently. A good local or Palpitations are a sensitive but not particularly specific symptom of regional network will help determine which patients can be arrhythmias. They are usually of benign origin. An association with treated locally, versus the need to refer to a hospital emergency 1 department or outpatient setting. This might include a colleague syncope, near syncope or dizziness, is more worrying.
    [Show full text]
  • View Pdf Copy of Original Document
    Phenotype definition for the Vanderbilt Genome-Electronic Records project Identifying genetics determinants of normal QRS duration (QRSd) Patient population: • Patients with DNA whose first electrocardiogram (ECG) is designated as “normal” and lacking an exclusion criteria. • For this study, case and control are drawn from the same population and analyzed via continuous trait analysis. The only difference will be the QRSd. Hypothetical timeline for a single patient: Notes: • The study ECG is the first normal ECG. • The “Mildly abnormal” ECG cannot be abnormal by presence of heart disease. It can have abnormal rate, be recorded in the presence of Na-channel blocking meds, etc. For instance, a HR >100 is OK but not a bundle branch block. • Y duration = from first entry in the electronic medical record (EMR) until one month following normal ECG • Z duration = most recent clinic visit or problem list (if present) to one week following the normal ECG. Labs values, though, must be +/- 48h from the ECG time Criteria to be included in the analysis: Criteria Source/Method “Normal” ECG must be: • QRSd between 65-120ms ECG calculations • ECG designed as “NORMAL” ECG classification • Heart Rate between 50-100 ECG calculations • ECG Impression must not contain Natural Language Processing (NLP) on evidence of heart disease concepts (see ECG impression. Will exclude all but list below) negated terms (e.g., exclude those with possible, probable, or asserted bundle branch blocks). Should also exclude normalization negations like “LBBB no longer present.”
    [Show full text]
  • Radiofrequency Catheter Ablation for Treatment of Bundle Branch Reentrant Ventricular Tachycardia : Results and Long-Term Follow-Up TODD J
    15CC Vel . la. Nn. 7 1767 D- robe, 1991 :1767-A Radiofrequency Catheter Ablation for Treatment of Bundle Branch Reentrant Ventricular Tachycardia : Results and Long-Term Follow-Up TODD J . COHEN . MD, WALTER W . CHIEN . M D . KEITH G . LURIE, MD, CHARLIE YOUNG, MD, FACC . HAROLD F . GOLDBERG, MD, FACC, YIN-SHI W ANG . M D. JONATHAN J . LANGBERG, MD. FACC, MICHAEL D. LESH . MD, FACC, MICHAEL A . LEE, MD, JERRY C . GRIFFIN, MD . FACC . MELVIN M . SCHEINMAN . MD, FACC San Francisco, California Seven of 120 consecutive patients with inducible sustained ventric . vclve with the distal electrode tip of the catheter near the right ular tachycardia (from September 1 . 1988 to January 1, 1991) had bundle branch . One to three applications of continuous nemndu- bundle branch reentrant tachycardia and underwent percutane . lated radiofrequency current at 300 kHz between the distal tuts radiofrequency ablation of the right bundle branch. The seven electrode and a large posterior skin patch resulted in complete patients had been unsuccessfully treated with a mean of 3 ± t right bundle branch block in all patients, after which none had drugs. Four patients presented with syncope and three with inducible bundle branch reentrant tachycardia on restudy. On aborted sudden death. The baseline electrocardiogram revealed a restudy, three of the seven patients had ventricular tacbycardia of left bundle branch black pattern in three patients and an intro. myocardial origin (not bundle branch reentry). One patient ventricular conduction defect in four. required no therapy ; drug re defibrillator therapy was used in the The baseline HV interval was prolonged in each case (79 z others.
    [Show full text]
  • LBBB, RBBB, Bifascicular, Trifascicular Block
    10/18/2019 Section 5 LBBB, RBBB Bifascicular, Trifascicular Block Objectives • At the conclusion of this presentation the participant will be able to – Outline a systematic approach to 12 lead ECG interpretation – Dysrhythmias – Demonstrate the process for determining axis – List criteria for LVH, RVH, RAE, LAE LBBB, RBBB, Bifasicular and trifasicular block, acute and chronic MI changes – Define QTc significance and other EKG Abnormalities 10/18/2019 2 Bundle Branches • Bundle of His divides into right and left bundle branches • Left bundle branch divides into septal, anterior and posterior fascicles I 10/18/2019 3 1 10/18/2019 Conduction Abnormalities BBB • Causes of BBB • Arterial occlusion total • Arterial occlusion partial • Structural changes Helpful hints r/t BBB ST segment and the T wave are opposite deflection of QRS If T waves same deflection, may mean ischemia 10/18/2019 4 Normal QRS Complex • Narrow ‐ < 0.12 seconds in duration • Electrical axis between 0° and +90° I 10/18/2019 5 QRS Interval/Bundle Branch Block Assess QRS Duration 1. QRS duration can be measured from any of the 12 leads 2. All that matters is whether the QRS is normal or wide 3. Judge QRS prolongation from the lead where the QRS appears longest 10/18/2019 6 2 10/18/2019 QRS Interval/Bundle Branch Block Assess QRS Duration cont. 4. If the QRS is: < 0.12 seconds than the QRS is normal > 0.12 seconds than the QRS is wide (greater than half a large box) 5. The limits given do not hold for children 10/18/2019 7 Bundle Branch Block • Leads to one or both bundle
    [Show full text]
  • Transient Trifascicular Block in Severe Hyperkalemia: a Case Report
    Medical Case Studies Vol. 2(5), pp. 44-46, August 2011 Available online at http://www.academicjournals.org/MCS ISSN 2141-6532 ©2011 Academic Journals Case Report Transient trifascicular block in severe hyperkalemia: A case report AGARWAL Navnit, SINGH Anurag, GABA Ripudaman*, SHUKLA Ranjeet, AGARWAL Mandavi and JAISWAL Pankaj Department of Medicine, MLB Medical College, Jhansi Uttar Pradesh, 284128, India. Accepted 17 June, 2011 Hyperkalemia is a commonly encountered electrolyte abnormality that can significantly alter normal cardiac conduction. Potentially lethal dysrhythmias associated with hyperkalemia include complete heart block and Mobitz type II second-degree atrioventricular (AV) block. We report a case of trifascicular block, due to hyperkalemia. The patient's symptoms and electrocardiogram (ECG) evidence of trifascicular block resolved with lowering of serum potassium levels, with subsequent ECG showing left anterior hemiblock. This paper highlights an infrequently reported dysrhythmia associated with hyperkalemia that emergency physicians should be familiar with. Key words: Hyperkalemia, trifascicular block, right bundle branch block, left anterior fascicular block, first degree AV block, isoprenaline, hemodialysis, emergency. INTRODUCTION Hyperkalemia is life threatening electrolyte abnormality interval lengthening and QRS widening (Bashour et al., requiring urgent management. Serum potassium levels 1975). Reversible fascicular blocks, as well as bundle greater than 5.5 mmol/l is considered hyperkalemia. branch blocks or intraventricular conduction delay can be Hyperkalemia is a common and potentially life- seen. Moreover, hyperkalemia is known to cause threatening electrolyte abnormality (Sood et al., 2007). potentially lethal dysrhythmias including ventricular Hyperkalemia is often asymptomatic until plasma tachycardia, ventricular fibrillation, idioventricular potassium concentration is above 6.5-7 mmol/L when it rhythms, and asystole (Alfonzo et al., 2006; Sood et al., results in fatal arrhythmias, hence it’s called silent killer.
    [Show full text]
  • Trifascicular Heart Block, Genetically Inherited Or Hyperkalemia-Induced; a Rare Case Report
    Journal of Cardiology & Current Research Clinical Images Open Access Trifascicular heart block, genetically inherited or hyperkalemia-induced; a rare case report Abstract Volume 11 Issue 6 - 2018 We report a case of trifascicular block with hyperkalemia, due to a familial heart 1, 4 block and/or hyperkalemia. The patient’s symptoms and electrocardiogram (ECG) Seyyed-Mohsen Hosseininejad , Fateme- *2 1 evidence of trifascicular block resolved with correcting serum potassium level. This Sadat Hosseininejad , Kourosh Ghamsari , patient was also diagnosed with a progressive familial heart block (PFHB) type I. This Negin Akbari3, Mansoor Mirza’ali3 would be the first report of a PFHB type I documented in Iran; this paper highlights 1Student Research Committee, Golestan University of Medical an infrequently reported dysrhythmia associated with hyperkalemia which emergency Sciences, Gorgan, Iran. physicians should be familiar with. 2Student Research Committee, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran. Keywords: hyperkalemia, trifascicular block, hereditary bundle branch system 3Clinical Research Development Unit (CRDU), Sayad Shirazi defect Hospital, Golestan University of Medical Sciences, Gorgan, Iran. 4North Khorasan University of Medical Sciences, Bojnurd, Iran. Correspondence: Fateme-Sadat Hosseininejad, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran, Email Received: July 03, 2018 | Published: November 19, 2018 Introduction electrocardiogram showed heart rate of 78/min, PR interval of 253milli-sec, and QRS duration of 144milli-sec with mean QRS axis Progressive familial heart block (PFHB) type I am an autosomal which was 264°. ECG showed as trifascicular block i.e. first degree dominant congenital cardiac conduction disorder which might atrioventricular (AV) block, right bundle branch block (RBBB), left 1 develop into complete atrioventricular (AV) heart block.
    [Show full text]
  • ICD-10 May 19 2015 Webex Attachment Diagnosis Code Crosswalks
    ICD-10 May 19 2015 WebEx Attachment Diagnosis Code Crosswalks Diagnosis Code Crosswalk : ICD-9-CM to ICD-10-CM Cardiac Rhythm and Heart Failure Diagnoses ICD-9-CM ICD-10-CM 402.01 Hypertensive heart disease, malignant, with heart failure 402.11 Hypertensive heart disease, benign, with heart failure I11.0 Hypertensive heart disease with heart failure 402.91 Hypertensive heart disease, unspecified, with heart failure Hypertensive heart and chronic kidney disease, malignant, with heart 404.01 failure and with chronic kidney disease stage I through stage IV, or unspecified Hypertensive heart and chronic kidney disease, benign, with heart Hypertensive heart and chronic kidney disease with heart failure and 404.11 failure and with chronic kidney disease stage I through stage IV, or I13.0 stage 1 through stage 4 chronic kidney disease, or unspecified unspecified chronic kidney disease Hypertensive heart and chronic kidney disease, unspecified, with 404.91 heart failure and with chronic kidney disease stage I through stage IV, or unspecified Hypertensive heart and chronic kidney disease, malignant, with heart 404.03 failure and with chronic kidney disease stage V or end stage renal disease Hypertensive heart and chronic kidney disease, benign, with heart Hypertensive heart and chronic kidney disease with heart failure and 404.13 I13.2 failure and chronic kidney disease stage V or end stage renal disease with stage 5 chronic kidney disease, or end stage renal disease Hypertensive heart and chronic kidney disease, unspecified, with 404.93 heart
    [Show full text]
  • Impulse Conduction
    MODULEMODULE 11 RhythmRhythm BasicsBasics ModuleModule 1:1: RhythmRhythm BBaasicssics OverviewOverview •• TheThe ConductionConduction SystemSystem –– ImpulseImpulse FormationFormation –– ImpulseImpulse ConductionConduction –– PropertiesProperties ofof CardiacCardiac FunctionFunction –– 55 PhasesPhases ofof ActionAction PotentialPotential •• RhythmRhythm DisordersDisorders –– MechanisMechanismsms –– ArrhythmArrhythmiaia RecognitionRecognition •• CausesCauses ofof RhythmRhythm DisordersDisorders ModuleModule 1:1: RhythmRhythm BBaasicssics ObjectivesObjectives •• IdentifyIdentify thethe componentscomponents thatthat makemake upup thethe electricalelectrical pathwaypathway knownknown asas thethe conductionconduction systemsystem •• StateState thethe 55 phasesphases ofof actionaction potentialpotential •• DescribeDescribe thethe mechanismsmechanisms causingcausing rhythmrhythm disordersdisorders •• IdIdentifyentify rhythmrhythm ddiisorderssorders onon anan EKGEKG THETHE CONDUCTIONCONDUCTION SYSTEMSYSTEM HeartHeart BeBeatat AnatomyAnatomy SINUS NODE • The Heart’s ‘Natural Pacemaker’ Sinus Node (SA Node) - 60-100 BPM at rest HeartHeart BeBeatat AnatomyAnatomy AV NODE • Receives impulse from Sinus Node SA Node (SA Node) • Delivers impulse to the His- Purkinje System Atrioventricular Node (AV Node) • 40-60 BPM if SA Node fails to deliver an impulse HeartHeart BeBeatat AnatomyAnatomy BUNDLE OF HIS •Begins conduction to Sinus Node the Ventricles (SA Node) • AV Junctional Tissue: 40-60 BPM Atrioventricular Node (AV Node) Bundle of His HeartHeart
    [Show full text]
  • Bradycardia and Heart Block the ConducOn System
    Bradycardia and Heart Block The conduc3on system SA node (natural pacemaker) AV node (junction box) Left bundle branch posterior fascicle Left bundle branch anterior fascicle Right bundle branch The normal ECG Bradycardia • The conduc3on system can fail at any point • Bradycardia per se is not a bad thing • Bradycardia without symptoms is usually not an issue, except in select cases The conduc4on system – SA node SA node (natural pacemaker) Sinus Bradycardia Sinus Bradycardia – a problem? • Physically fit people have heart rates in the 50s • Athletes can have heart rates as low as 25 without a problem • If this is an 80 yr old lady, chances are this is sinus node dysfuncon • If she has lethargy, exercise incapacity, falls or blackouts, refer for consideraon of pacing Atrial Pacemakers • Atrial pacemakers can restore exercise capacity • Have not been shown to improve mortality, only morbidity What is happening with the rhythm? Sinus arrhythmia: Sinus arrhythmia • In itself not an issue • Usually mediated by vagal tone • Common in athletes What is unusual about this rhythm strip? Low atrial rhythm – usually benign Describe the rhythm strip Junconal ectopics (no p waves visible with the ectopics despite ‘room’ to see them) Profoundly hypothyroid paent Junconal bradycardia The conducon system AV node (junction box) Left bundle branch anterior fascicle The AV node • If problems occur within the AV node, they can form one of the three types of HB • First degree (conducts every beat) • Second degree (conducts some beats) • Third degree heart block
    [Show full text]